1
|
Rahmati SM, Klishko AN, Martin RS, Bunderson NE, Meslie JA, Nichols TR, Rybak IA, Frigon A, Burkholder TJ, Prilutsky BI. Role of forelimb morphology in muscle sensorimotor functions during locomotion in the cat. J Physiol 2024. [PMID: 39705066 DOI: 10.1113/jp287448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats. These characteristics included muscle attachments, physiological cross-sectional area (PCSA) and fascicle length. We also recorded full-body mechanics and EMG activity of forelimb muscles during level overground and treadmill locomotion in seven and 16 adult cats of either sex, respectively. We computed forelimb muscle forces along with force- and length-dependent sensory signals mapped onto corresponding cervical spinal segments. We found that patterns of computed muscle forces and afferent activities were strongly affected by the muscle's moment arm, PCSA and fascicle length. Morphology of the shoulder muscles suggests distinct roles of the forelimbs in lateral force production and movements. Patterns of length-dependent sensory activity of muscles with long fibres (brachioradialis, extensor carpi radialis) closely matched patterns of overall forelimb length, whereas the activity pattern of biceps brachii length afferents matched forelimb orientation. We conclude that cat forelimb muscle morphology contributes substantially to locomotor function, particularly to control lateral stability and turning, rather than propulsion. KEY POINTS: Little is known about the role of forelimb muscle morphology in producing motor outputs and generating somatosensory signals. This information is needed to understand the contributions of forelimbs in locomotor control. We measured morphological characteristics of 46 muscles from cat forelimbs, recorded cat walking mechanics and electromyographic activity, and computed patterns of moment arms, length, velocity, activation, and force of forelimb muscles, as well as length- and force-dependent afferent activity during walking. We demonstrated that moment arms, physiological cross-sectional area and fascicle length of forelimb muscles contribute substantially to muscle force production and proprioceptive activity, to the regulation of locomotor cycle phase transitions and to control of lateral stability. The obtained information can guide the development of biologically accurate neuromechanical models of quadrupedal locomotion for exploring and testing novel methods of treatments of central nervous system pathologies by modulating activities in neural pathways controlling forelimbs/arms.
Collapse
Affiliation(s)
| | - Alexander N Klishko
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Jeswin A Meslie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Thomas J Burkholder
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory feedback and central neuronal interactions in mouse locomotion. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240207. [PMID: 39169962 PMCID: PMC11335407 DOI: 10.1098/rsos.240207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyse a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behaviour to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay91400, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| |
Collapse
|
3
|
Rahmati SM, Klishko AN, Martin RS, Bunderson NE, Meslie JA, Nichols TR, Rybak IA, Frigon A, Burkholder TJ, Prilutsky BI. ROLE OF FORELIMB MORPHOLOGY IN MUSCLE SENSORIMOTOR FUNCTIONS DURING LOCOMOTION IN THE CAT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603106. [PMID: 39071389 PMCID: PMC11275737 DOI: 10.1101/2024.07.11.603106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from 6 cats. These characteristics included muscle attachments, physiological cross-sectional area (PCSA), fascicle length, etc. We also recorded full-body mechanics and EMG activity of forelimb muscles during level overground and treadmill locomotion in 7 and 16 adult cats of either sex, respectively. We computed forelimb muscle forces along with force- and length-dependent sensory signals mapped onto corresponding cervical spinal segments. We found that patterns of computed muscle forces and afferent activities were strongly affected by the muscle's moment arm, PCSA, and fascicle length. Morphology of the shoulder muscles suggests distinct roles of the forelimbs in lateral force production and movements. Patterns of length-dependent sensory activity of muscles with long fibers (brachioradialis, extensor carpi radialis) closely matched patterns of overall forelimb length, whereas the activity pattern of biceps brachii matched forelimb orientation. We conclude that cat forelimb muscle morphology contributes substantially to locomotor function, particularly to control lateral stability and turning, rather than propulsion.
Collapse
Affiliation(s)
| | | | | | | | - Jeswin A Meslie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy; Drexel University, Philadelphia, PA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
4
|
Young MW, Dickinson E, Gustafson JA, Granatosky MC. Center of mass position does not drive energetic costs during climbing. J Exp Biol 2024; 227:jeb246943. [PMID: 38511508 DOI: 10.1242/jeb.246943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Climbing animals theoretically should optimize the energetic costs of vertical climbing while also maintaining stability. Many modifications to climbing behaviors have been proposed as methods of satisfying these criteria, focusing on controlling the center of mass (COM) during ascent. However, the link between COM movements and metabolic energy costs has yet to be evaluated empirically. In this study, we manipulated climbing conditions across three experimental setups to elicit changes in COM position, and measured the impact of these changes upon metabolic costs across a sample of 14 humans. Metabolic energy was assessed via open flow respirometry, while COM movements were tracked both automatically and manually. Our findings demonstrate that, despite inducing variation in COM position, the energetic costs of climbing remained consistent across all three setups. Differences in energetic costs were similarly not affected by body mass; however, velocity had a significant impact upon both cost of transport and cost of locomotion, but such a relationship disappeared when accounting for metabolic costs per stride. These findings suggest that climbing has inescapable metabolic demands driven by gaining height, and that attempts to mitigate such a cost, with perhaps the exception of increasing speed, have only minimal impacts. We also demonstrate that metabolic and mechanical energy costs are largely uncorrelated. Collectively, we argue that these data refute the idea that efficient locomotion is the primary aim during climbing. Instead, adaptations towards effective climbing should focus on stability and reducing the risk of falling, as opposed to enhancing the metabolic efficiency of locomotion.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jon A Gustafson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
5
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory Feedback and Central Neuronal Interactions in Mouse Locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564886. [PMID: 37961258 PMCID: PMC10634960 DOI: 10.1101/2023.10.31.564886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyze a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behavior to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
6
|
Viana Di Prisco G, Marlinski V, Beloozerova IN. Activity of cat premotor cortex neurons during visually guided stepping. J Neurophysiol 2023; 130:838-860. [PMID: 37609687 PMCID: PMC10642938 DOI: 10.1152/jn.00114.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Visual control of steps is critical in everyday life. Several motor centers are implicated in visual control of steps on a complex surface, however, participation of a large cortical motor area, the premotor cortex, in visual guidance of steps during overground locomotion has not been examined. Here, we analyzed the activity of neurons in feline premotor cortex areas 6aα and 6aγ as cats walked on the flat surface where visual guidance of steps is not needed and stepped on crosspieces of a horizontally placed ladder or over barriers where visual control of steps is required. The comparison of neuronal firing between vision-dependent and vision-independent stepping revealed components of the activity related to visual guidance of steps. We found that the firing activity of 59% of neurons was modulated with the rhythm of strides on the flat surface, and the activity of 83-86% of the population changed upon transition to locomotion on the ladder or with barriers. The firing rate and the depth of the stride-related activity modulation of 33-44% of neurons changed, and the stride phases where neurons preferred to fire changed for 58-73% of neurons. These results indicate that a substantial proportion of areas 6aα and 6aγ neurons is involved in visual guidance of steps. Compared with the primary motor cortex, the proportion of cells, the firing activity of which changed upon transition from vision-independent to vision-dependent stepping, was lower and the preferred phases of the firing activity changed more often between the tasks.NEW & NOTEWORTHY Visual control of steps is critical for daily living, however, how it is achieved is not well understood. Here, we analyzed how neurons in the premotor cortex respond to the demand for visual control of steps on a complex surface. We conclude that premotor cortex neurons participate in the cortical network supporting visual control of steps by modifying the phase, intensity, and salience of their firing activity.
Collapse
Affiliation(s)
- Gonzalo Viana Di Prisco
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, United States
- Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, United States
| | - Vladimir Marlinski
- Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, United States
| | - Irina N Beloozerova
- Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Shroff SN, Lowet E, Sridhar S, Gritton HJ, Abumuaileq M, Tseng HA, Cheung C, Zhou SL, Kondabolu K, Han X. Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice. Nat Commun 2023; 14:3802. [PMID: 37365189 PMCID: PMC10293266 DOI: 10.1038/s41467-023-39497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Rhythmic neural network activity has been broadly linked to behavior. However, it is unclear how membrane potentials of individual neurons track behavioral rhythms, even though many neurons exhibit pace-making properties in isolated brain circuits. To examine whether single-cell voltage rhythmicity is coupled to behavioral rhythms, we focused on delta-frequencies (1-4 Hz) that are known to occur at both the neural network and behavioral levels. We performed membrane voltage imaging of individual striatal neurons simultaneously with network-level local field potential recordings in mice during voluntary movement. We report sustained delta oscillations in the membrane potentials of many striatal neurons, particularly cholinergic interneurons, which organize spikes and network oscillations at beta-frequencies (20-40 Hz) associated with locomotion. Furthermore, the delta-frequency patterned cellular dynamics are coupled to animals' stepping cycles. Thus, delta-rhythmic cellular dynamics in cholinergic interneurons, known for their autonomous pace-making capabilities, play an important role in regulating network rhythmicity and movement patterning.
Collapse
Affiliation(s)
- Sanaya N Shroff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Sudiksha Sridhar
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Howard J Gritton
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Hua-An Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cyrus Cheung
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Samuel L Zhou
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
8
|
Beloozerova IN, Nilaweera WU, Viana Di Prisco G, Marlinski V. Signals from posterior parietal area 5 to motor cortex during locomotion. Cereb Cortex 2022; 33:1014-1043. [PMID: 35383368 PMCID: PMC9930630 DOI: 10.1093/cercor/bhac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
Area 5 of the parietal cortex is part of the "dorsal stream" cortical pathway which processes visual information for action. The signals that area 5 ultimately conveys to motor cortex, the main area providing output to the spinal cord, are unknown. We analyzed area 5 neuronal activity during vision-independent locomotion on a flat surface and vision-dependent locomotion on a horizontal ladder in cats focusing on corticocortical neurons (CCs) projecting to motor cortex from the upper and deeper cortical layers and compared it to that of neighboring unidentified neurons (noIDs). We found that upon transition from vision-independent to vision-dependent locomotion, the low discharge of CCs in layer V doubled and the proportion of cells with 2 bursts per stride tended to increase. In layer V, the group of 2-bursters developed 2 activity peaks that coincided with peaks of gaze shifts along the surface away from the animal, described previously. One-bursters and either subpopulation in supragranular layers did not transmit any clear unified stride-related signal to the motor cortex. Most CC group activities did not mirror those of their noID counterparts. CCs with receptive fields on the shoulder, elbow, or wrist/paw discharged in opposite phases with the respective groups of pyramidal tract neurons of motor cortex, the cortico-spinal cells.
Collapse
Affiliation(s)
- Irina N Beloozerova
- Corresponding author: School of Biological Sciences, Georgia Institute of Technology, 555 14th Street, Atlanta, GA, 30332, USA.
| | - Wijitha U Nilaweera
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA,Des Moines Area Community College, 2006 South Ankeny Blvd., Ankeny, IA, 50023, USA
| | - Gonzalo Viana Di Prisco
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA,Stark Neurosciences Research Institute, Indiana University, 320 West 15th Street, Indianapolis, IN, 46202, USA
| | - Vladimir Marlinski
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA
| |
Collapse
|
9
|
Context-independent encoding of passive and active self-motion in vestibular afferent fibers during locomotion in primates. Nat Commun 2022; 13:120. [PMID: 35013266 PMCID: PMC8748921 DOI: 10.1038/s41467-021-27753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
The vestibular system detects head motion to coordinate vital reflexes and provide our sense of balance and spatial orientation. A long-standing hypothesis has been that projections from the central vestibular system back to the vestibular sensory organs (i.e., the efferent vestibular system) mediate adaptive sensory coding during voluntary locomotion. However, direct proof for this idea has been lacking. Here we recorded from individual semicircular canal and otolith afferents during walking and running in monkeys. Using a combination of mathematical modeling and nonlinear analysis, we show that afferent encoding is actually identical across passive and active conditions, irrespective of context. Thus, taken together our results are instead consistent with the view that the vestibular periphery relays robust information to the brain during primate locomotion, suggesting that context-dependent modulation instead occurs centrally to ensure that coding is consistent with behavioral goals during locomotion. Using experimental and computational approaches the authors show that the vestibular efferent system does not modulate peripheral coding during locomotion. Instead, vestibular afferents unambiguously convey information in a context independent manner.
Collapse
|
10
|
Beloozerova IN. Neuronal activity reorganization in motor cortex for successful locomotion after a lesion in the ventrolateral thalamus. J Neurophysiol 2022; 127:56-85. [PMID: 34731070 PMCID: PMC8742732 DOI: 10.1152/jn.00191.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Thalamic stroke leads to ataxia if the cerebellum-receiving ventrolateral thalamus (VL) is affected. The compensation mechanisms for this deficit are not well understood, particularly the roles that single neurons and specific neuronal subpopulations outside the thalamus play in recovery. The goal of this study was to clarify neuronal mechanisms of the motor cortex involved in mitigation of ataxia during locomotion when part of the VL is inactivated or lesioned. In freely ambulating cats, we recorded the activity of neurons in layer V of the motor cortex as the cats walked on a flat surface and horizontally placed ladder. We first reversibly inactivated ∼10% of the VL unilaterally using glutamatergic transmission antagonist CNQX and analyzed how the activity of motor cortex reorganized to support successful locomotion. We next lesioned 50%-75% of the VL bilaterally using kainic acid and analyzed how the activity of motor cortex reorganized when locomotion recovered. When a small part of the VL was inactivated, the discharge rates of motor cortex neurons decreased, but otherwise the activity was near normal, and the cats walked fairly well. Individual neurons retained their ability to respond to the demand for accuracy during ladder locomotion; however, most changed their response. When the VL was lesioned, the cat walked normally on the flat surface but was ataxic on the ladder for several days after lesion. When ladder locomotion normalized, neuronal discharge rates on the ladder were normal, and the shoulder-related group was preferentially active during the stride's swing phase.NEW & NOTEWORTHY This is the first analysis of reorganization of the activity of single neurons and subpopulations of neurons related to the shoulder, elbow, or wrist, as well as fast- and slow-conducting pyramidal tract neurons in the motor cortex of animals walking before and after inactivation or lesion in the thalamus. The results offer unique insights into the mechanisms of spontaneous recovery after thalamic stroke, potentially providing guidance for new strategies to alleviate locomotor deficits after stroke.
Collapse
Affiliation(s)
- Irina N. Beloozerova
- 1School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia,2Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
11
|
Meyer C, Filli L, Stalder SA, Awai Easthope C, Killeen T, von Tscharner V, Curt A, Zörner B, Bolliger M. Targeted Walking in Incomplete Spinal Cord Injury: Role of Corticospinal Control. J Neurotrauma 2020; 37:2302-2314. [PMID: 32552335 DOI: 10.1089/neu.2020.7030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Locomotor recovery after incomplete spinal cord injury (iSCI) is influenced by spinal and supraspinal networks. Conventional clinical gait analysis fails to differentiate between these components. There is evidence that corticospinal control is enhanced during targeted walking, where each foot must be continuously placed on visual targets in randomized order. This study investigates the potential of targeted walking in the functional assessment of corticospinal integrity. Twenty-one controls and 16 individuals with chronic iSCI performed normal and targeted walking on a treadmill while electromyograms (EMGs) and kinematics were recorded. Precision (% of accurate foot placements) in targeted walking was significantly lower in individuals with iSCI (82.9 ± 14.7%, controls: 94.9 ± 4.0%). Although the overall kinematic pattern was comparable between walking conditions, controls showed significantly higher semitendinosus (ST) activity before heel-strike during targeted walking. This was accompanied by a shift of relative EMG intensity from 90-120 Hz to lower frequencies of 20-60 Hz, previously associated with corticospinal control of muscle activity. Targeted walking in individuals with iSCI evoked smaller EMG changes, suggesting that the switch to more corticospinal control is impaired. Accordingly, mildly impaired iSCI individuals revealed higher adaptations to the targeted walking task than more-impaired individuals. Recording of EMGs during targeted walking holds potential as a research tool to reveal further insights into the neuromuscular control of locomotion. It also complements findings of pre-clinical studies and is a promising novel surrogate marker of integrity of corticospinal control in individuals with iSCI and other neurological impairments. Future studies should investigate its potential for diagnosis or tracking recovery during rehabilitation.
Collapse
Affiliation(s)
- Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Linard Filli
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie A Stalder
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | | | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | | | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Björn Zörner
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
12
|
Latash EM, Barnett WH, Park H, Rider JM, Klishko AN, Prilutsky BI, Molkov YI. Frontal plane dynamics of the centre of mass during quadrupedal locomotion on a split-belt treadmill. J R Soc Interface 2020; 17:20200547. [PMID: 32900302 PMCID: PMC7536050 DOI: 10.1098/rsif.2020.0547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
Our previous study of cat locomotion demonstrated that lateral displacements of the centre of mass (COM) were strikingly similar to those of human walking and resembled the behaviour of an inverted pendulum (Park et al. 2019 J. Exp. Biol.222, 14. (doi:10.1242/jeb.198648)). Here, we tested the hypothesis that frontal plane dynamics of quadrupedal locomotion are consistent with an inverted pendulum model. We developed a simple mathematical model of balance control in the frontal plane based on an inverted pendulum and compared model behaviour with that of four cats locomoting on a split-belt treadmill. The model accurately reproduced the lateral oscillations of cats' COM vertical projection. We inferred the effects of experimental perturbations on the limits of dynamic stability using data from different split-belt speed ratios with and without ipsilateral paw anaesthesia. We found that the effect of paw anaesthesia could be explained by the induced bias in the perceived position of the COM, and the magnitude of this bias depends on the belt speed difference. Altogether, our findings suggest that the balance control system is actively involved in cat locomotion to provide dynamic stability in the frontal plane, and that paw cutaneous receptors contribute to the representation of the COM position in the nervous system.
Collapse
Affiliation(s)
- E. M. Latash
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - W. H. Barnett
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - H. Park
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - J. M. Rider
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - A. N. Klishko
- School of Biological Sciences, Georgia Institute of Technology, 555 14th street NW, Atlanta 30332, GA, USA
| | - B. I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, 555 14th street NW, Atlanta 30332, GA, USA
| | - Y. I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
13
|
Beloozerova IN, Marlinski V. Contribution of the ventrolateral thalamus to the locomotion-related activity of motor cortex. J Neurophysiol 2020; 124:1480-1504. [PMID: 32783584 DOI: 10.1152/jn.00253.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of motor cortex is necessary for accurate stepping on a complex terrain. How this activity is generated remains unclear. The goal of this study was to clarify the contribution of signals from the ventrolateral thalamus (VL) to formation of locomotion-related activity of motor cortex during vision-independent and vision-dependent locomotion. In two cats, we recorded the activity of neurons in layer V of motor cortex as cats walked on a flat surface and a horizontal ladder. We reversibly inactivated ~10% of the VL unilaterally with the glutamatergic transmission antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and analyzed how this affected the activity of motor cortex neurons. We examined neuronal subpopulations with somatosensory receptive fields on different segments of the forelimb and pyramidal tract projecting neurons (PTNs). We found that the VL contribution to the locomotion-related activity of motor cortex is very powerful and has both excitatory and inhibitory components. The magnitudes of both the excitatory and inhibitory contributions fluctuate over the step cycle and depend on locomotion task. On a flat surface, the VL contributes more excitation to the shoulder- and elbow-related neurons than the wrist/paw-related cells. The VL excites the shoulder-related group the most during the transition from stance to swing phase, while most intensively exciting the elbow-related group during the transition from swing to stance. The VL contributes more excitation for the fast- than slow-conducting PTNs. Upon transition to vision-dependent locomotion on the ladder, the VL contribution increases more for the wrist/paw-related neurons and slow-conducting PTNs.NEW & NOTEWORTHY How the activity of motor cortex is generated and the roles that different inputs to motor cortex play in formation of response properties of motor cortex neurons during movements remain unclear. This is the first study to characterize the contribution of the input from the ventrolateral thalamus (VL), the main subcortical input to motor cortex, to the activity of motor cortex neurons during vision-independent and vision-dependent locomotion.
Collapse
Affiliation(s)
- Irina N Beloozerova
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.,Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Vladimir Marlinski
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
14
|
Zubair HN, Chu KMI, Johnson JL, Rivers TJ, Beloozerova IN. Gaze coordination with strides during walking in the cat. J Physiol 2019; 597:5195-5229. [PMID: 31460673 PMCID: PMC9260858 DOI: 10.1113/jp278108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/19/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Vision plays a crucial role in guiding locomotion in complex environments, but the coordination between gaze and stride is not well understood. The coordination of gaze shifts, fixations, constant gaze and slow gaze with strides in cats walking on different surfaces were examined. It was found that gaze behaviours are coordinated with strides even when walking on a flat surface in the complete darkness, occurring in a sequential order during different phases of the stride. During walking on complex surfaces, gaze behaviours are typically more tightly coordinated with strides, particularly at faster speeds, only slightly shifting in phase. These findings indicate that the coordination of gaze behaviours with strides is not vision-driven, but is a part of the whole body locomotion synergy; the visual environment and locomotor task modulate it. The results may be relevant to developing diagnostic tools and rehabilitation approaches for patients with locomotor deficits. ABSTRACT Vision plays a crucial role in guiding locomotion in complex environments. However, the coordination between the gaze and stride is not well understood. We investigated this coordination in cats walking on a flat surface in darkness or light, along a horizontal ladder and on a pathway with small stones. We recorded vertical and horizontal eye movements and 3-D head movement, and calculated where gaze intersected the walkway. The coordination of gaze shifts away from the animal, gaze shifts toward, fixations, constant gaze, and slow gaze with strides was investigated. We found that even during walking on the flat surface in the darkness, all gaze behaviours were coordinated with strides. Gaze shifts and slow gaze toward started in the beginning of each forelimb's swing and ended in its second half. Fixations peaked throughout the beginning and middle of swing. Gaze shifts away began throughout the second half of swing of each forelimb and ended when both forelimbs were in stance. Constant gaze and slow gaze away occurred in the beginning of stance. However, not every behaviour occurred during every stride. Light had a small effect. The ladder and stones typically increased the coordination and caused gaze behaviours to occur 3% earlier in the cycle. At faster speeds, the coordination was often tighter and some gaze behaviours occurred 2-16% later in the cycle. The findings indicate that the coordination of gaze with strides is not vision-driven, but is a part of the whole body locomotion synergy; the visual environment and locomotor task modulate it.
Collapse
Affiliation(s)
- Humza N Zubair
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Kevin M I Chu
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Justin L Johnson
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Trevor J Rivers
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Irina N Beloozerova
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Park H, Latash EM, Molkov YI, Klishko AN, Frigon A, DeWeerth SP, Prilutsky BI. Cutaneous sensory feedback from paw pads affects lateral balance control during split-belt locomotion in the cat. J Exp Biol 2019; 222:jeb198648. [PMID: 31308054 PMCID: PMC6679349 DOI: 10.1242/jeb.198648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
Cutaneous sensory feedback from the paw pads plays an important role in regulating body balance, especially in challenging environments like ladder or slope walking. Here, we investigated the contribution of cutaneous sensory feedback from the paw pads to balance control in cats stepping on a split-belt treadmill. Forepaws and hindpaws were anesthetized unilaterally using lidocaine injections. We evaluated body balance in intact and compromised cutaneous feedback conditions during split-belt locomotion with belt-speed ratios of 0.5, 1.0, 1.5 and 2.0. Measures of body balance included step width, relative duration of limb support phases, lateral bias of center of mass (CoM) and margins of static and dynamic stability. In the intact condition, static and dynamic balance declined with increasing belt-speed ratio as a result of a lateral shift of the CoM toward the borders of support on the slower moving belt. Anesthesia of the ipsilateral paws improved locomotor balance with increasing belt-speed ratios by reversing the CoM shift, decreasing the relative duration of the two-limb support phase, increasing the duration of four- or three-limb support phases, and increasing the hindlimb step width and static stability. We observed no changes in most balance measures in anesthetized conditions during tied-belt locomotion at 0.4 m s-1 CoM lateral displacements closely resembled those of the inverted pendulum and of human walking. We propose that unilaterally compromised cutaneous feedback from the paw pads is compensated for by improving lateral balance and by shifting the body toward the anesthetized paws to increase tactile sensation during the stance phase.
Collapse
Affiliation(s)
- Hangue Park
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
- Biomechanics and Motor Control Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Elizaveta M Latash
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | - Alexander N Klishko
- Biomechanics and Motor Control Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Stephen P DeWeerth
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
- P.C. Rossin College of Engineering & Applied Science, Lehigh University, Bethlehem, PA 18015, USA
| | - Boris I Prilutsky
- Biomechanics and Motor Control Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| |
Collapse
|
16
|
Heindorf M, Arber S, Keller GB. Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback. Neuron 2018; 99:1040-1054.e5. [PMID: 30146302 PMCID: PMC6127035 DOI: 10.1016/j.neuron.2018.07.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/06/2018] [Accepted: 07/25/2018] [Indexed: 01/16/2023]
Abstract
Motor cortex (M1) lesions result in motor impairments, yet how M1 contributes to the control of movement remains controversial. To investigate the role of M1 in sensory guided motor coordination, we trained mice to navigate a virtual corridor using a spherical treadmill. This task required directional adjustments through spontaneous turning, while unexpected visual offset perturbations prompted induced turning. We found that M1 is essential for execution and learning of this visually guided task. Turn-selective layer 2/3 and layer 5 pyramidal tract (PT) neuron activation was shaped differentially with learning but scaled linearly with turn acceleration during spontaneous turns. During induced turns, however, layer 2/3 neurons were activated independent of behavioral response, while PT neurons still encoded behavioral response magnitude. Our results are consistent with a role of M1 in the detection of sensory perturbations that result in deviations from intended motor state and the initiation of an appropriate corrective response.
Collapse
Affiliation(s)
- Matthias Heindorf
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland
| | - Silvia Arber
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland.
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
17
|
Granatosky MC, Karantanis NE, Rychlik L, Youlatos D. A suspensory way of life: Integrating locomotion, postures, limb movements, and forces in two-toed sloths Choloepus didactylus (Megalonychidae, Folivora, Pilosa). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:570-588. [PMID: 30129260 DOI: 10.1002/jez.2221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/25/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
Over the last decade, we have learned much about the anatomy, evolutionary history, and biomechanics of the extant sloths. However, most of this study has involved studying sloths in controlled conditions, and few studies have explored how these animals are behaving in a naturalistic setting. In this study, we integrate positional activities in naturalistic conditions with kinematic and kinetic observations collected on a simulated runway to best capture the biomechanical behavior of Linnaeus's two-toed sloths. We confirm that the dominant positional behaviors consist of hanging below the support using a combination of forelimbs and hindlimbs, and walking quadrupedally below the branches. The majority of these behaviors occur on horizontal substrates that are approximately 5-10 cm in diameter. The kinematics of suspensory walking observed both in the naturalistic settings and on simulated arboreal runways are dominated by movement of the proximal limb elements, while distal limb elements tend to show little excursion. Joint kinematics are similar between the naturalistic setting and the simulated runway, but movements of the shoulder and hip tend to be exaggerated while moving in simulated conditions. Kinetic patterns of the two-toed sloth can be explained almost entirely by considering them as an inverted linked strut. However, medially directed forces toward the substrate were more frequent than expected in the forelimb, which may help sloths maintain a better "grip" on the substrate. This study serves as a model of how to gain a comprehensive understanding of the functional-adaptive profile of a particular species.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Nikolaos E Karantanis
- Princess Royal College of Animal Management and Saddlery, Capel Manor College, London, UK.,Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dionisios Youlatos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
A three dimensional multiplane kinematic model for bilateral hind limb gait analysis in cats. PLoS One 2018; 13:e0197837. [PMID: 30080884 PMCID: PMC6078300 DOI: 10.1371/journal.pone.0197837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022] Open
Abstract
Background Kinematic gait analysis is an important noninvasive technique used for quantitative evaluation and description of locomotion and other movements in healthy and injured populations. Three dimensional (3D) kinematic analysis offers additional outcome measures including internal-external rotation not characterized using sagittal plane (2D) analysis techniques. Methods The objectives of this study were to 1) develop and evaluate a 3D hind limb multiplane kinematic model for gait analysis in cats using joint coordinate systems, 2) implement and compare two 3D stifle (knee) prediction techniques, and 3) compare flexion-extension determined using the multiplane model to a sagittal plane model. Walking gait was recorded in 3 female adult cats (age = 2.9 years, weight = 3.5 ± 0.2 kg). Kinematic outcomes included flexion-extension, internal-external rotation, and abduction-adduction of the hip, stifle, and tarsal (ankle) joints. Results Each multiplane stifle prediction technique yielded similar findings. Joint angles determined using markers placed on skin above bony landmarks in vivo were similar to joint angles determined using a feline hind limb skeleton in which markers were placed directly on landmarks ex vivo. Differences in hip, stifle, and tarsal joint flexion-extension were demonstrated when comparing the multiplane model to the sagittal plane model. Conclusions This multiplane cat kinematic model can predict joint rotational kinematics as a tool that can quantify frontal, transverse, and sagittal plane motion. This model has multiple advantages given its ability to characterize joint internal-external rotation and abduction-adduction. A further, important benefit is greater accuracy in representing joint flexion-extension movements.
Collapse
|
19
|
Granatosky MC, Fitzsimons A, Zeininger A, Schmitt D. Mechanisms for the functional differentiation of the propulsive and braking roles of the forelimbs and hindlimbs during quadrupedal walking in primates and felines. ACTA ACUST UNITED AC 2018; 221:jeb.162917. [PMID: 29170258 DOI: 10.1242/jeb.162917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022]
Abstract
During quadrupedal walking in most animals, the forelimbs play a net braking role, whereas the hindlimbs are net propulsive. However, the mechanism by which this differentiation occurs remains unclear. Here, we test two models to explain this pattern using primates and felines: (1) the horizontal strut effect (in which limbs are modeled as independent struts), and (2) the linked strut model (in which limbs are modeled as linked struts with a center of mass in between). Video recordings were used to determine point of contact, timing of mid-stance, and limb protraction/retraction duration. Single-limb forces were used to calculate contact time, impulses and the proportion of the stride at which the braking-to-propulsive transition (BP) occurred for each limb. We found no association between the occurrence of the BP and mid-stance, little influence of protraction and retraction duration on the braking-propulsive function of a limb, and a causative relationship between vertical force distribution between limbs and the patterns of horizontal forces. These findings reject the horizontal strut effect, and provide some support for the linked strut model, although predictions were not perfectly matched. We suggest that the position of the center of mass relative to limb contact points is a very important, but not the only, factor driving functional differentiation of the braking and propulsive roles of the limbs in quadrupeds. It was also found that primates have greater differences in horizontal impulse between their limbs compared with felines, a pattern that may reflect a fundamental arboreal adaptation in primates.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Aidan Fitzsimons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
20
|
Escalona M, Delivet-Mongrain H, Kundu A, Gossard JP, Rossignol S. Ladder Treadmill: A Method to Assess Locomotion in Cats with an Intact or Lesioned Spinal Cord. J Neurosci 2017; 37:5429-5446. [PMID: 28473641 PMCID: PMC6596526 DOI: 10.1523/jneurosci.0038-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022] Open
Abstract
After lesions of the CNS, locomotor abilities of animals (mainly cats) are often assessed on a simple flat treadmill (FTM), which imposes little demands on supraspinal structures as is the case when walking on targets. Therefore, the aims of the present work were as follows: (1) to develop a treadmill allowing the assessment of locomotion of intact cats required to place the paws on the rungs of a moving ladder treadmill (LTM); (2) to assess the capability of cats after a unilateral spinal hemisection at T10 to cope with such a demanding locomotor task; and (3) to regularly train cats for 6 weeks on the LTM to determine whether such regular training improves locomotor recovery on the FTM. A significant improvement would indicate that LTM training maximizes the contribution of spinal locomotor circuits as well as remnant supraspinal inputs. Together, we used 9 cats (7 females, 2 males). Six were used to compare the EMG and kinematic locomotor characteristics during walking on the FTM and LTM. We found that the swing phase during LTM walking was slightly enhanced as well as some specific activity of knee flexor muscles. Fore-hindlimb coupling favored a more stable diagonal coupling. These 6 cats were then hemispinalized and trained for 6 weeks on the LTM, whereas the 3 other cats were hemispinalized and trained solely on the FTM to compare the two training regimens. Intensive LTM training after hemisection was found to change features of locomotion, such as the foot trajectory as well as diminished paw drag often observed after hemisection.SIGNIFICANCE STATEMENT This paper introduces a method (ladder treadmill [LTM]) to study the locomotor ability of cats with an intact spinal cord or after a unilateral hemisection to walk with a precise foot placement on the rungs fixed to an ordinary flat treadmill (FTM). Because cats are compared in various conditions (intact or hemisected at different time points) in the same enclosure on the FTM and the LTM, the changes in averaged locomotor characteristics must reflect the specificity of the task and the neurological states. Furthermore, the ladder treadmill permits to train cats repetitively for weeks and observe whether training regimens (FTM or LTM) can induce durable changes in the parameters of locomotion.
Collapse
Affiliation(s)
- Manuel Escalona
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Hugo Delivet-Mongrain
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Aritra Kundu
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Jean-Pierre Gossard
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|