1
|
Lacour M, Lopez C, Thiry A, Tardivet L. Vestibular rehabilitation improves spontaneous nystagmus normalization in patients with acute unilateral vestibulopathy. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1122301. [PMID: 37325127 PMCID: PMC10264803 DOI: 10.3389/fresc.2023.1122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Introduction Spontaneous nystagmus (SN) can be observed after acute unilateral vestibulopathy (AUVP). The slow phase eye velocity of the SN progressively decreases in darkness as the result of rebalanced neurophysiological activity between both vestibular nuclei, a process that can take several months. Although this compensatory process can occur spontaneously, there is poor evidence that vestibular rehabilitation (VR) can facilitate the process. Methods We documented the natural time course of SN reduction in patients with AUVP, as well as the effects of VR by means of a unilateral rotation paradigm. In a retrospective study (Study 1: n = 126 AUVP patients), we compared the time course of the SN reduction in patients with VR (n = 33) and without VR (n = 93). In a prospective study (Study 2: n = 42 AUVP patients), we compared the effects of early VR (n = 22; initiated within the first two weeks of symptoms onset) or late VR (n = 20; initiated after the second week of symptoms onset) on the time course of the SN reduction. Results Study 1 showed shorter median time of SN normalization in patients with VR compared to patients without VR (14 days and 90 days, respectively). Study 2 showed that AUVP patients with early and late VR had a similar median time of SN normalization. The SN slow phase eye velocity was significantly decreased as early as the end of the first VR session in both groups, and kept decreasing at each subsequent VR session. In the early VR group, 38% of the patients had slow phase eye velocity below 2°/s after the first VR session, 100% after the fifth session. Similar findings were observed in the late VR group. Discussion Taken together, these results indicate that VR with a unidirectional rotation paradigm speeds up the normalization of SN. This effect seems independent of the time between symptoms onset and commencement of VR, but early intervention is recommended to speed up the SN reduction.
Collapse
Affiliation(s)
- Michel Lacour
- Aix-Marseille University, CNRS, Laboratory of Cognitive Neuroscience (LNC), FR3C, Marseille, France
- Independent Researcher, Fuveau, France
| | - Christophe Lopez
- Aix-Marseille University, CNRS, Laboratory of Cognitive Neuroscience (LNC), FR3C, Marseille, France
| | | | | |
Collapse
|
2
|
Zhu W, Steenerson KK, Kattah JC. Generalized vestibular hyporeflexia and chronic upbeat nystagmus due to thiamine deficiency. J Neurol 2023; 270:1713-1720. [PMID: 36520241 DOI: 10.1007/s00415-022-11514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Ocular motor and vestibular manifestations of Wernicke's thiamine deficiency (WTD) are frequent and heterogeneous. Previous neuropathological and neuroimaging findings identified brainstem and cerebellar lesions responsible for these findings, however, peripheral vestibular lesions are probably uncommon in human WTD, though noted on an avian thiamine deficient study. MATERIAL Single case study of a WTD patient post-gastric bypass who developed ataxia, oscillopsia and nystagmus, with low serum thiamine, and increased MRI T2 signal in the thalami, but normal brainstem and cerebellum. Vestibular evaluation showed significant vestibular hyporreflexia affecting all six canals, and a chronic upbeat nystagmus, now for 14 months after WTD onset. METHODS Serial clinical, video head impulse, nystagmus analysis, cervical and ocular vestibular evoked responses. She is undergoing treatment with Memantine, Clonazepam and vestibular rehabilitation, and feels improvement. CONCLUSION This report shows a novel combination of central and peripheral vestibular findings, of relevance for diagnosis and treatment, in addition to the development of a coherent hypothesis on the ocular motor and vestibular findings in WTD.
Collapse
Affiliation(s)
- William Zhu
- Department of Neurology and Neurological Sciences, Neurotology, Stanford School of Medicine, Stanford, CA, USA
| | - Kristen K Steenerson
- Department of Otolaryngology-Head and Neck Surgery and Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Jorge C Kattah
- Department of Neurology, University of Illinois College of Medicine, Peoria, IL, USA.
| |
Collapse
|
3
|
Utricular dysfunction in patients with orthostatic hypotension. Clin Auton Res 2022; 32:431-444. [PMID: 36074194 DOI: 10.1007/s10286-022-00890-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE To delineate the association between otolithic dysfunction and orthostatic hypotension (OH). METHODS We retrospectively reviewed the medical records of 382 patients who presented with orthostatic dizziness at a tertiary dizziness center between July 2017 and December 2021. Patients were included for analyses when they had completed ocular (oVEMP) and/or cervical vestibular-evoked myogenic potentials (cVEMP), and head-up tilt table test with a Finometer (n = 155). We compared the results between the patients with OH (n = 38) and those with NOI (normal head-up tilt table test despite orthostatic intolerance, n = 117). RESULTS Thirty-eight patients with OH were further categorized as either classic (n = 30), delayed (n = 7), or initial (n = 1) types. Multivariable logistic regression showed that OH was associated with high baseline systolic BP (p = 0.046), presence of heart failure (p = 0.016), and unilateral oVEMP abnormalities (p = 0.016). n1 latency of oVEMP were negatively correlated with the maximal changes of systolic blood pressure (BP) in 15 s ([Formula: see text]SBP15s, p = 0.013), 3 min ([Formula: see text]SBP3min, p = 0.005) and 10 min ([Formula: see text]SBP10min, p = 0.002). In contrast, the n1-p1 amplitude was positively correlated with [Formula: see text]SBP15s (p = 0.029). Meanwhile, p13 latency of cVEMP was negatively correlated with [Formula: see text]SBP10min (p = 0.018). CONCLUSIONS Our study provides evidence of utricular dysfunction related to OH.
Collapse
|
4
|
Jia Y, Bagnall MW. Monosynaptic targets of utricular afferents in the larval zebrafish. Front Neurol 2022; 13:937054. [PMID: 35937055 PMCID: PMC9355653 DOI: 10.3389/fneur.2022.937054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022] Open
Abstract
The larval zebrafish acquires a repertoire of vestibular-driven behaviors that aid survival early in development. These behaviors rely mostly on the utricular otolith, which senses inertial (tilt and translational) head movements. We previously characterized the known central brainstem targets of utricular afferents using serial-section electron microscopy of a larval zebrafish brain. Here we describe the rest of the central targets of utricular afferents, focusing on the neurons whose identities are less certain in our dataset. We find that central neurons with commissural projections have a wide range of predicted directional tuning, just as in other vertebrates. In addition, somata of central neurons with inferred responses to contralateral tilt are located more laterally than those with inferred responses to ipsilateral tilt. Many dorsally located central utricular neurons are unipolar, with an ipsilateral dendritic ramification and commissurally projecting axon emerging from a shared process. Ventrally located central utricular neurons tended to receive otolith afferent synaptic input at a shorter distance from the soma than in dorsally located neurons. Finally, we observe an unexpected synaptic target of utricular afferents: afferents from the medial (horizontal) semicircular canal. Collectively, these data provide a better picture of the gravity-sensing circuit. Furthermore, we suggest that vestibular circuits important for survival behaviors develop first, followed by the circuits that refine these behaviors.
Collapse
Affiliation(s)
| | - Martha W. Bagnall
- Department of Neuroscience, Washington University, St. Louis, MO, United States
| |
Collapse
|
5
|
Yakushin SB, Raphan T, Cho C. Treatment of Gravitational Pulling Sensation in Patients With Mal de Debarquement Syndrome (MdDS): A Model-Based Approach. Front Integr Neurosci 2022; 16:801817. [PMID: 35676926 PMCID: PMC9168314 DOI: 10.3389/fnint.2022.801817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Perception of the spatial vertical is important for maintaining and stabilizing vertical posture during body motion. The velocity storage pathway of vestibulo-ocular reflex (VOR), which integrates vestibular, optokinetic, and proprioception in the vestibular nuclei vestibular-only (VO) neurons, has spatio-temporal properties that are defined by eigenvalues and eigenvectors of its system matrix. The yaw, pitch and roll eigenvectors are normally aligned with the spatial vertical and corresponding head axes. Misalignment of the roll eigenvector with the head axes was hypothesized to be an important contributor to the oscillating vertigo during MdDS. Based on this, a treatment protocol was developed using simultaneous horizontal opto-kinetic stimulation and head roll (OKS-VOR). This protocol was not effective in alleviating the MdDS pulling sensations. A model was developed, which shows how maladaptation of the yaw eigenvector relative to the head yaw, either forward, back, or side down, could be responsible for the pulling sensation that subjects experience. The model predicted the sometimes counter-intuitive OKS directions that would be most effective in re-adapting the yaw eigenvector to alleviate the pulling sensation in MdDS. Model predictions were consistent with the treatment of 50 patients with a gravitational pulling sensation as the dominant feature. Overall, pulling symptoms in 72% of patients were immediately alleviated after the treatment and lasted for 3 years after the treatment in 58% of patients. The treatment also alleviated the pulling sensation in patients where pulling was not the dominant feature. Thus, the OKS method has a long-lasting effect comparable to that of OKS-VOR readaptation. The study elucidates how the spatio-temporal organization of velocity storage stabilizes upright posture and how maladaptation of the yaw eigenvector generates MdDS pulling sensations. Thus, this study introduces a new way to treat gravitational pull which could be used alone or in combination with previously proposed VOR readaptation techniques.
Collapse
Affiliation(s)
- Sergei B. Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Theodore Raphan,
| | - Theodore Raphan
- Institute for Neural and Intelligent Systems, Department of Computer and Information Science, Brooklyn College of the City University of New York, Brooklyn, NY, United States
- Department of Computer Science, Graduate Center of CUNY, New York, NY, United States
- Ph.D Program in Psychology and Neuroscience, Graduate Center of CUNY, New York, NY, United States
- Sergei B. Yakushin,
| | - Catherine Cho
- Department Neurology and Otolaryngology, NYU Robert I. Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Bernard-Espina J, Dal Canto D, Beraneck M, McIntyre J, Tagliabue M. How Tilting the Head Interferes With Eye-Hand Coordination: The Role of Gravity in Visuo-Proprioceptive, Cross-Modal Sensory Transformations. Front Integr Neurosci 2022; 16:788905. [PMID: 35359704 PMCID: PMC8961421 DOI: 10.3389/fnint.2022.788905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
To correctly position the hand with respect to the spatial location and orientation of an object to be reached/grasped, visual information about the target and proprioceptive information from the hand must be compared. Since visual and proprioceptive sensory modalities are inherently encoded in a retinal and musculo-skeletal reference frame, respectively, this comparison requires cross-modal sensory transformations. Previous studies have shown that lateral tilts of the head interfere with the visuo-proprioceptive transformations. It is unclear, however, whether this phenomenon is related to the neck flexion or to the head-gravity misalignment. To answer to this question, we performed three virtual reality experiments in which we compared a grasping-like movement with lateral neck flexions executed in an upright seated position and while lying supine. In the main experiment, the task requires cross-modal transformations, because the target information is visually acquired, and the hand is sensed through proprioception only. In the other two control experiments, the task is unimodal, because both target and hand are sensed through one, and the same, sensory channel (vision and proprioception, respectively), and, hence, cross-modal processing is unnecessary. The results show that lateral neck flexions have considerably different effects in the seated and supine posture, but only for the cross-modal task. More precisely, the subjects’ response variability and the importance associated to the visual encoding of the information significantly increased when supine. We show that these findings are consistent with the idea that head-gravity misalignment interferes with the visuo-proprioceptive cross-modal processing. Indeed, the principle of statistical optimality in multisensory integration predicts the observed results if the noise associated to the visuo-proprioceptive transformations is assumed to be affected by gravitational signals, and not by neck proprioceptive signals per se. This finding is also consistent with the observation of otolithic projections in the posterior parietal cortex, which is involved in the visuo-proprioceptive processing. Altogether these findings represent a clear evidence of the theorized central role of gravity in spatial perception. More precisely, otolithic signals would contribute to reciprocally align the reference frames in which the available sensory information can be encoded.
Collapse
Affiliation(s)
- Jules Bernard-Espina
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Daniele Dal Canto
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Mathieu Beraneck
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joseph McIntyre
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Ikerbasque Science Foundation, Bilbao, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Michele Tagliabue
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- *Correspondence: Michele Tagliabue,
| |
Collapse
|
7
|
Keywan A, Yassin G, Jahn K, Wuehr M. Subliminal conditioning of vestibular perception generalizes within otolith organs. J Neurol 2022; 269:5258-5261. [PMID: 35113258 PMCID: PMC9468040 DOI: 10.1007/s00415-022-10982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Aram Keywan
- German Center for Vertigo and Balance Disorders, University Hospital of Munich, Munich, Germany
| | - Gharam Yassin
- German Center for Vertigo and Balance Disorders, University Hospital of Munich, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders, University Hospital of Munich, Munich, Germany.,Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders, University Hospital of Munich, Munich, Germany.
| |
Collapse
|
8
|
Jia J, Puyang Z, Wang Q, Jin X, Chen A. Dynamic encoding of saccade sequences in primate frontal eye field. J Physiol 2021; 599:5061-5084. [PMID: 34555188 DOI: 10.1113/jp282094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022] Open
Abstract
The frontal eye field (FEF) is a key part of the oculomotor system, with dominant responses to the direction of single saccades. However, whether and how FEF contributes to sequential saccades remain largely unknown. By training rhesus monkeys to perform saccade sequences, we found sequence-related activities in FEF neurons, whose selectivity to saccade direction undergoes dynamic changes during sequential vs. single saccades. These sequence-related activities are context-dependent, exhibiting different firing activities during memory- vs. visually guided sequences. When the monkey was performing the sequential saccade task, the thresholds of microstimulation to evoke saccades in FEF were increased and the percentage of the successfully induced saccades was significantly reduced compared with the fixation condition. Pharmacological inactivation of FEF impaired the monkey's performance of previously learned sequential saccades, with different effects on the same actions depending on its position within the sequence. These results reveal the context-dependent, sequence-specific dynamic encoding of saccades in FEF, and underscore the crucial role of FEF in the planning and execution of sequential saccades. KEY POINTS: FEF neurons respond differently during sequential vs. single saccades Sequence-related FEF activity is context-dependent The microstimulation threshold in FEF was increased during the sequential task but the evoked saccade did not alter the sequence structure FEF inactivation severely impaired the performance of sequential saccades.
Collapse
Affiliation(s)
- Jing Jia
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Zhen Puyang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Qingjun Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Xin Jin
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China.,Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Center for Motor Control and Disease, East China Normal University, Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Zhao B, Zhang Y, Chen A. Encoding of vestibular and optic flow cues to self-motion in the posterior superior temporal polysensory area. J Physiol 2021; 599:3937-3954. [PMID: 34192812 DOI: 10.1113/jp281913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neurons in the posterior superior temporal polysensory area (STPp) showed significant directional selectivity in response to vestibular, optic flow and combined visual-vestibular stimuli. By comparison to the dorsal medial superior temporal area, the visual latency was slower in STPp but the vestibular latency was faster. Heading preferences under combined stimulation in STPp were usually dominated by visual signals. Cross-modal enhancement was observed in STPp when both vestibular and visual cues were presented together at their heading preferences. ABSTRACT Human neuroimaging data implicated that the superior temporal polysensory area (STP) might be involved in vestibular-visual interaction during heading computations, but the heading selectivity has not been examined in the macaque. Here, we investigated the convergence of optic flow and vestibular signals in macaque STP by using a virtual-reality system and found that 6.3% of STP neurons showed multisensory responses, with visual and vestibular direction preferences either congruent or opposite in roughly equal proportion. The percentage of vestibular-tuned cells (18.3%) was much smaller than that of visual-tuned cells (30.4%) in STP. The vestibular tuning strength was usually weaker than the visual condition. The visual latency was significantly slower in STPp than in the dorsal medial superior temporal area (MSTd), but the vestibular latency was significantly faster than in MSTd. During the bimodal condition, STP cells' response was dominated by visual signals, with the visual heading preference not affected by the vestibular signals but the response amplitudes modulated by vestibular signals in a subadditive way.
Collapse
Affiliation(s)
- Bin Zhao
- Ministry of Education, Key Laboratory of Brain Functional Genomics (East China Normal University), Shanghai, 200062, China
| | - Yi Zhang
- Ministry of Education, Key Laboratory of Brain Functional Genomics (East China Normal University), Shanghai, 200062, China
| | - Aihua Chen
- Ministry of Education, Key Laboratory of Brain Functional Genomics (East China Normal University), Shanghai, 200062, China
| |
Collapse
|
10
|
Dlugaiczyk J. Rare Disorders of the Vestibular Labyrinth: of Zebras, Chameleons and Wolves in Sheep's Clothing. Laryngorhinootologie 2021; 100:S1-S40. [PMID: 34352900 PMCID: PMC8363216 DOI: 10.1055/a-1349-7475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The differential diagnosis of vertigo syndromes is a challenging issue, as many - and in particular - rare disorders of the vestibular labyrinth can hide behind the very common symptoms of "vertigo" and "dizziness". The following article presents an overview of those rare disorders of the balance organ that are of special interest for the otorhinolaryngologist dealing with vertigo disorders. For a better orientation, these disorders are categorized as acute (AVS), episodic (EVS) and chronic vestibular syndromes (CVS) according to their clinical presentation. The main focus lies on EVS sorted by their duration and the presence/absence of triggering factors (seconds, no triggers: vestibular paroxysmia, Tumarkin attacks; seconds, sound and pressure induced: "third window" syndromes; seconds to minutes, positional: rare variants and differential diagnoses of benign paroxysmal positional vertigo; hours to days, spontaneous: intralabyrinthine schwannomas, endolymphatic sac tumors, autoimmune disorders of the inner ear). Furthermore, rare causes of AVS (inferior vestibular neuritis, otolith organ specific dysfunction, vascular labyrinthine disorders, acute bilateral vestibulopathy) and CVS (chronic bilateral vestibulopathy) are covered. In each case, special emphasis is laid on the decisive diagnostic test for the identification of the rare disease and "red flags" for potentially dangerous disorders (e. g. labyrinthine infarction/hemorrhage). Thus, this chapter may serve as a clinical companion for the otorhinolaryngologist aiding in the efficient diagnosis and treatment of rare disorders of the vestibular labyrinth.
Collapse
Affiliation(s)
- Julia Dlugaiczyk
- Klinik für Ohren-, Nasen-, Hals- und Gesichtschirurgie
& Interdisziplinäres Zentrum für Schwindel und
neurologische Sehstörungen, Universitätsspital Zürich
(USZ), Universität Zürich (UZH), Zürich,
Schweiz
| |
Collapse
|
11
|
Agrawal S, Dickinson ES, Sustar A, Gurung P, Shepherd D, Truman JW, Tuthill JC. Central processing of leg proprioception in Drosophila. eLife 2020; 9:e60299. [PMID: 33263281 PMCID: PMC7752136 DOI: 10.7554/elife.60299] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
Proprioception, the sense of self-movement and position, is mediated by mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive feedback is crucial for accurate motor control, little is known about how downstream circuits transform limb sensory information to guide motor output. Here we investigate neural circuits in Drosophila that process proprioceptive information from the fly leg. We identify three cell types from distinct developmental lineages that are positioned to receive input from proprioceptor subtypes encoding tibia position, movement, and vibration. 13Bα neurons encode femur-tibia joint angle and mediate postural changes in tibia position. 9Aα neurons also drive changes in leg posture, but encode a combination of directional movement, high frequency vibration, and joint angle. Activating 10Bα neurons, which encode tibia vibration at specific joint angles, elicits pausing in walking flies. Altogether, our results reveal that central circuits integrate information across proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse behaviors, including reflexive control of limb posture and detection of leg vibration.
Collapse
Affiliation(s)
- Sweta Agrawal
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Evyn S Dickinson
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Anne Sustar
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - David Shepherd
- School of Natural Sciences, Bangor UniversityBangorUnited Kingdom
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| | - John C Tuthill
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
12
|
Keywan A, Dietrich H, Wuehr M. Subliminal Passive Motion Stimulation Improves Vestibular Perception. Neuroscience 2020; 441:1-7. [DOI: 10.1016/j.neuroscience.2020.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022]
|
13
|
Laurens J, Angelaki DE. Simple spike dynamics of Purkinje cells in the macaque vestibulo-cerebellum during passive whole-body self-motion. Proc Natl Acad Sci U S A 2020; 117:3232-3238. [PMID: 31988119 PMCID: PMC7022220 DOI: 10.1073/pnas.1915873117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Theories of cerebellar functions posit that the cerebellum implements internal models for online correction of motor actions and sensory estimation. As an example of such computations, an internal model resolves a sensory ambiguity where the peripheral otolith organs in the inner ear sense both head tilts and translations. Here we exploit the response dynamics of two functionally coupled Purkinje cell types in the vestibular part of the caudal vermis (lobules IX and X) to understand their role in this computation. We find that one population encodes tilt velocity, whereas the other, translation-selective, population encodes linear acceleration. We predict that an intermediate neuronal type should temporally integrate the output of tilt-selective cells into a tilt position signal.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77056
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77056;
- Center for Neural Science, New York University, New York, NY 10003
- Tandon School of Engineering, New York University, New York, NY 10003
| |
Collapse
|
14
|
Curthoys IS. Concepts and Physiological Aspects of the Otolith Organ in Relation to Electrical Stimulation. Audiol Neurootol 2019; 25:25-34. [PMID: 31553977 DOI: 10.1159/000502712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This paper discusses some of the concepts and major physiological issues in developing a means of electrically stimulating the otolithic system, with the final goal being the electrical stimulation of the otoliths in human patients. It contrasts the challenges of electrical stimulation of the otolith organs as compared to stimulation of the semicircular canals. Electrical stimulation may consist of trains of short-duration pulses (e.g., 0.1 ms duration at 400 Hz) by selective electrodes on otolith maculae or otolithic afferents, or unselective maintained DC stimulation by large surface electrodes on the mastoids - surface galvanic stimulation. SUMMARY Recent anatomical and physiological results are summarized in order to introduce some of the unique issues in electrical stimulation of the otoliths. The first challenge is that each otolithic macula contains receptors with opposite polarization (opposing preferred directions of stimulation), unlike the uniform polarization of receptors in each semicircular canal crista. The puzzle is that in response to the one linear acceleration in the one macula, some otolithic afferents have an increased activation whereas others have decreased activation. Key Messages: At the vestibular nucleus this opposite receptor hair cell polarization and consequent opposite afferent input allow enhanced response to the one linear acceleration, via a "push-pull" neural mechanism in a manner analogous to the enhancement of semicircular canal responses to angular acceleration. Within each otolithic macula there is not just one uniform otolithic neural input to the brain - there are very distinctly different channels of otolithic neural inputs transferring the neural data to the brainstem. As a simplification these channels are characterized as the sustained and transient systems. Afferents in each system have different responses to stimulus onset and maintained stimulation and likely different projections, and most importantly different thresholds for activation by electrical stimulation and different adaptation rates to maintained stimulation. The implications of these differences are considered.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney, Sydney, New South Wales, Australia,
| |
Collapse
|
15
|
Mackrous I, Carriot J, Jamali M, Cullen KE. Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity. Curr Biol 2019; 29:2698-2710.e4. [PMID: 31378613 DOI: 10.1016/j.cub.2019.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
As we go about our everyday activities, our brain computes accurate estimates of both our motion relative to the world and our orientation relative to gravity. However, how the brain then accounts for gravity as we actively move and interact with our environment is not yet known. Here, we provide evidence that, although during passive movements, individual cerebellar output neurons encode representations of head motion and orientation relative to gravity, these gravity-driven responses are cancelled when head movement is a consequence of voluntary generated movement. In contrast, the gravity-driven responses of primary otolith and semicircular canal afferents remain intact during both active and passive self-motion, indicating the attenuated responses of central neurons are not inherited from afferent inputs. Taken together, our results are consistent with the view that the cerebellum builds a dynamic prediction (e.g., internal model) of the sensory consequences of gravity during active self-motion, which in turn enables the preferential encoding of unexpected motion to ensure postural and perceptual stability.
Collapse
Affiliation(s)
- Isabelle Mackrous
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Jerome Carriot
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Mohsen Jamali
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Kathleen E Cullen
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada; Department of Biomedical Engineering, Johns Hopkins University, Rm. 720, Ross Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol 2019; 121:2237-2255. [DOI: 10.1152/jn.00035.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galvanic vestibular stimulation (GVS) plays an important role in the quest to understand sensory signal processing in the vestibular system under normal and pathological conditions. It has become a highly relevant tool to probe neuronal computations and to assist in the differentiation and treatment of vestibular syndromes. Following its accidental discovery, GVS became a diagnostic tool that generates eye movements in the absence of head/body motion. With the possibility to record extracellular and intracellular spikes, GVS became an indispensable method to activate or block the discharge in vestibular nerve fibers by cathodal and anodal currents, respectively. Bernie Cohen, in his attempt to decipher vestibular signal processing, has used this method in a number of hallmark studies that have added to our present knowledge, such as the link between selective electrical stimulation of semicircular canal nerves and the generation of directionally corresponding eye movements. His achievements paved the way for other major milestones including the differential recruitment order of vestibular fibers for cathodal and anodal currents, pronounced discharge adaptation of irregularly firing afferents, potential activation of hair cells, and fiber type-specific activation of central circuits. Previous disputes about the structural substrate for GVS are resolved by integrating knowledge of ion channel-related response dynamics of afferents, fiber type-specific innervation patterns, and central convergence and integration of semicircular canal and otolith signals. On the basis of solid knowledge of the methodology, specific waveforms of GVS are currently used in clinical diagnosis and patient treatment, such as vestibular implants and noisy galvanic stimulation.
Collapse
Affiliation(s)
- Julia Dlugaiczyk
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Hans Straka
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg, Germany
| |
Collapse
|
17
|
Canal–otolith interactions alter the perception of self-motion direction. Atten Percept Psychophys 2019; 81:1698-1714. [DOI: 10.3758/s13414-019-01691-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Mitchell DE, Kwan A, Carriot J, Chacron MJ, Cullen KE. Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways. eLife 2018; 7:e43019. [PMID: 30561328 PMCID: PMC6312400 DOI: 10.7554/elife.43019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
It is commonly assumed that the brain's neural coding strategies are adapted to the statistics of natural stimuli. Specifically, to maximize information transmission, a sensory neuron's tuning function should effectively oppose the decaying stimulus spectral power, such that the neural response is temporally decorrelated (i.e. 'whitened'). However, theory predicts that the structure of neuronal variability also plays an essential role in determining how coding is optimized. Here, we provide experimental evidence supporting this view by recording from neurons in early vestibular pathways during naturalistic self-motion. We found that central vestibular neurons displayed temporally whitened responses that could not be explained by their tuning alone. Rather, computational modeling and analysis revealed that neuronal variability and tuning were matched to effectively complement natural stimulus statistics, thereby achieving temporal decorrelation and optimizing information transmission. Taken together, our findings reveal a novel strategy by which neural variability contributes to optimized processing of naturalistic stimuli.
Collapse
Affiliation(s)
| | - Annie Kwan
- Department of PhysiologyMcGill UniversityMontrealCanada
| | | | | | - Kathleen E Cullen
- Department of PhysiologyMcGill UniversityMontrealCanada
- Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
19
|
Eron JN, Ogorodnikov D, Horn AKE, Yakushin SB. Adaptation of spatio-temporal convergent properties in central vestibular neurons in monkeys. Physiol Rep 2018; 6:e13750. [PMID: 30178612 PMCID: PMC6121125 DOI: 10.14814/phy2.13750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/29/2018] [Indexed: 02/04/2023] Open
Abstract
The spatio-temporal convergent (STC) response occurs in central vestibular cells when dynamic and static inputs are activated. The functional significance of STC behavior is not fully understood. Whether STC is a property of some specific central vestibular neurons, or whether it is a response that can be induced in any neuron at some frequencies is unknown. It is also unknown how the change in orientation of otolith polarization vector (orientation adaptation) affects STC behavior. A new complex model, that includes inputs with regular and irregular discharges from both canal and otolith afferents, was applied to experimental data to determine how many convergent inputs are sufficient to explain the STC behavior as a function of frequency and orientation adaptation. The canal-otolith and otolith-only neurons were recorded in the vestibular nuclei of three monkeys. About 42% (11/26 canal-otolith and 3/7 otolith-only) neurons showed typical STC responses at least at one frequency before orientation adaptation. After orientation adaptation in side-down head position for 2 h, some canal-otolith and otolith-only neurons altered their STC responses. Thus, STC is a property of weights of the regular and irregular vestibular afferent inputs to central vestibular neurons which appear and/or disappear based on stimulus frequency and orientation adaptation. This indicates that STC properties are more common for central vestibular neurons than previously assumed. While gravity-dependent adaptation is also critically dependent on stimulus frequency and orientation adaptation, we propose that STC behavior is also linked to the neural network responsible for localized contextual learning during gravity-dependent adaptation.
Collapse
Affiliation(s)
- Julia N. Eron
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Dmitri Ogorodnikov
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew York
- FNND LLCElmwood ParkNew Jersey
| | - Anja K. E. Horn
- Institute of Anatomy and Cell BiologyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Sergei B. Yakushin
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
20
|
Branoner F, Straka H. Semicircular Canal Influences on the Developmental Tuning of the Translational Vestibulo-Ocular Reflex. Front Neurol 2018; 9:404. [PMID: 29922219 PMCID: PMC5996107 DOI: 10.3389/fneur.2018.00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 12/27/2022] Open
Abstract
Vestibulo-ocular reflexes (VORs) rely on neuronal computations that transform vestibular sensory signals into spatio-temporally appropriate extraocular motor commands. The motoneuronal discharge for contractions of the superior oblique eye muscle during linear translation derives from a utricular epithelial sector that is spatially aligned with the pulling direction of this muscle. In Xenopus laevis, the alignment is gradually achieved during larval development and requires motion-related semicircular canal afferent activity. Here, we studied the origin of semicircular canal and utricular signals responsible for the establishment and maturation of the extraocular motor response vector. Experiments were conducted on semi-intact preparations of Xenopus tadpoles before and after unilateral transection of the VIIIth nerve and in preparations of animals in which semicircular canal formation was prevented on one side by the injection of hyaluronidase into the otic capsule prior to the establishment of the tubular structures. Unilateral VIIIth nerve sections revealed that the excitation underlying the contraction of the superior oblique eye muscle during horizontal linear acceleration and clockwise/counter-clockwise roll motion derives exclusively from the utricle and the posterior semicircular canal on the ipsilateral side. In contrast, the developmental constriction of the otolith response vector depends on signals from the posterior semicircular canal on the contralateral side. These latter signals suppress directionally incorrect components that derive from the utricular sector perpendicular to the superior oblique eye muscle. This directional tuning complies with a stabilization of spatially correct utricular inputs that are aligned with the extraocular motor target muscle. In addition, misaligned signals are concurrently suppressed by semicircular canal-related commissural pathways from the contralateral side and through local interneuronal inhibitory circuits within the ipsilateral vestibular nuclei.
Collapse
Affiliation(s)
- Francisco Branoner
- Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
21
|
Role of Rostral Fastigial Neurons in Encoding a Body-Centered Representation of Translation in Three Dimensions. J Neurosci 2018; 38:3584-3602. [PMID: 29487123 DOI: 10.1523/jneurosci.2116-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/01/2018] [Accepted: 02/20/2018] [Indexed: 11/21/2022] Open
Abstract
Many daily behaviors rely critically on estimates of our body motion. Such estimates must be computed by combining neck proprioceptive signals with vestibular signals that have been transformed from a head- to a body-centered reference frame. Recent studies showed that deep cerebellar neurons in the rostral fastigial nucleus (rFN) reflect these computations, but whether they explicitly encode estimates of body motion remains unclear. A key limitation in addressing this question is that, to date, cell tuning properties have only been characterized for a restricted set of motions across head-re-body orientations in the horizontal plane. Here we examined, for the first time, how 3D spatiotemporal tuning for translational motion varies with head-re-body orientation in both horizontal and vertical planes in the rFN of male macaques. While vestibular coding was profoundly influenced by head-re-body position in both planes, neurons typically reflected at most a partial transformation. However, their tuning shifts were not random but followed the specific spatial trajectories predicted for a 3D transformation. We show that these properties facilitate the linear decoding of fully body-centered motion representations in 3D with a broad range of temporal characteristics from small groups of 5-7 cells. These results demonstrate that the vestibular reference frame transformation required to compute body motion is indeed encoded by cerebellar neurons. We propose that maintaining partially transformed rFN responses with different spatiotemporal properties facilitates the creation of downstream body motion representations with a range of dynamic characteristics, consistent with the functional requirements for tasks such as postural control and reaching.SIGNIFICANCE STATEMENT Estimates of body motion are essential for many daily activities. Vestibular signals are important contributors to such estimates but must be transformed from a head- to a body-centered reference frame. Here, we provide the first direct demonstration that the cerebellum computes this transformation fully in 3D. We show that the output of these computations is reflected in the tuning properties of deep cerebellar rostral fastigial nucleus neurons in a specific distributed fashion that facilitates the efficient creation of body-centered translation estimates with a broad range of temporal properties (i.e., from acceleration to position). These findings support an important role for the rostral fastigial nucleus as a source of body translation estimates functionally relevant for behaviors ranging from postural control to perception.
Collapse
|
22
|
Newlands SD, Abbatematteo B, Wei M, Carney LH, Luan H. Convergence of linear acceleration and yaw rotation signals on non-eye movement neurons in the vestibular nucleus of macaques. J Neurophysiol 2018; 119:73-83. [PMID: 28978765 DOI: 10.1152/jn.00382.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs, and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a nonlinear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. NEW & NOTEWORTHY This is the first study to systematically explore the interaction of rotational and translational signals in the vestibular nuclei through independent manipulation. The results of this study demonstrate nonlinear integration leading to maximum response amplitude when the timing and direction of peak rotational and translational responses are coincident.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center , Rochester, New York.,Department of Neuroscience, University of Rochester Medical Center , Rochester, New York
| | - Ben Abbatematteo
- Department of Biomedical Engineering, University of Rochester , Rochester, New York
| | - Min Wei
- Department of Otolaryngology, University of Rochester Medical Center , Rochester, New York
| | - Laurel H Carney
- Department of Biomedical Engineering, University of Rochester , Rochester, New York.,Department of Neuroscience, University of Rochester Medical Center , Rochester, New York
| | - Hongge Luan
- Department of Otolaryngology, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
23
|
Zu Eulenburg P, Ruehl RM, Runge P, Dieterich M. Ageing-related changes in the cortical processing of otolith information in humans. Eur J Neurosci 2017; 46:2817-2825. [PMID: 29057523 DOI: 10.1111/ejn.13755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022]
Abstract
Acoustic short tone bursts (STB) trigger ocular and cervical vestibular-evoked myogenic potentials (oVEMPs/cVEMPs) by activating irregular otolith afferents. Simultaneously, STBs introduce an artificial net acceleration signal of otolith origin into the vestibular network. VEMP parameters as diagnostic otolith processing markers have been shown to decline after the age of thirty. To delineate the differential effects of healthy ageing on the cortical vestibular subnetwork processing otolith information, we measured cVEMPs and the differential effects of unilateral STB in three age groups (20-40, 40-60 and 60+; n = 42) using functional neuroimaging. STB evoked responses in the main vestibular hubs in the parieto-opercular cortex. Whereas cVEMP amplitudes declined linearly with age, analysis of the BOLD response size depicted a u-shaped curve. Vestibular perception of the otolith stimulus on the other hand remained unchanged with age. Therefore, we propose that the comparably larger BOLD responses past the age of sixty could reflect a mechanism of central sensitisation for otolith perception to counterbalance the concurrent peripheral vestibular and somatosensory function decline.
Collapse
Affiliation(s)
- Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Feodor-Lynen-Str. 19, Munich, D-81377, Germany.,Department of Neurology, University Hospital, Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neuroradiology, Johannes Gutenberg-University, Mainz, Germany
| | - Ria Maxine Ruehl
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Feodor-Lynen-Str. 19, Munich, D-81377, Germany.,Department of Neurology, University Hospital, Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pia Runge
- Department of Neuroradiology, Johannes Gutenberg-University, Mainz, Germany
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Feodor-Lynen-Str. 19, Munich, D-81377, Germany.,Department of Neurology, University Hospital, Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
24
|
Yakushin SB, Raphan T, Cohen B. Coding of Velocity Storage in the Vestibular Nuclei. Front Neurol 2017; 8:386. [PMID: 28861030 PMCID: PMC5561016 DOI: 10.3389/fneur.2017.00386] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/20/2017] [Indexed: 11/15/2022] Open
Abstract
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Theodore Raphan
- Department of Computer and Information Science, Brooklyn College (CUNY), Brooklyn, NY, United States
| | - Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
25
|
McCall AA, Miller DM, Yates BJ. Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes. Front Neurol 2017; 8:112. [PMID: 28396651 PMCID: PMC5366978 DOI: 10.3389/fneur.2017.00112] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
This review considers the integration of vestibular and other signals by the central nervous system pathways that participate in balance control and blood pressure regulation, with an emphasis on how this integration may modify posture-related responses in accordance with behavioral context. Two pathways convey vestibular signals to limb motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both pathways receive direct inputs from the cerebral cortex and cerebellum, and also integrate vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the responses of vestibular nucleus neurons to particular stimuli. This evidence shows that supratentorial regions modify the activity of the vestibular system, but the functional importance of descending influences on vestibulospinal reflexes acting on the limbs is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet little is known about the transformation of vestibular signals that occurs in the spinal cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also produce vestibulosympathetic responses that serve to maintain stable blood pressure. Vestibulosympathetic reflexes are mediated, at least in part, through a specialized group of reticulospinal neurons in the rostral ventrolateral medulla that project to sympathetic preganglionic neurons in the spinal cord. However, other pathways may also contribute to these responses, including those that dually participate in motor control and regulation of sympathetic nervous system activity. Vestibulosympathetic reflexes differ in conscious and decerebrate animals, indicating that supratentorial regions alter these responses. However, as with vestibular reflexes acting on the limbs, little is known about the physiological significance of descending control of vestibulosympathetic pathways.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Derek M Miller
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
26
|
Kim G, Kim KS, Lee S. The integration of neural information by a passive kinetic stimulus and galvanic vestibular stimulation in the lateral vestibular nucleus. Med Biol Eng Comput 2017; 55:1621-1633. [PMID: 28176264 DOI: 10.1007/s11517-017-1618-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/25/2017] [Indexed: 02/07/2023]
Abstract
Despite an easy control and the direct effects on vestibular neurons, the clinical applications of galvanic vestibular stimulation (GVS) have been restricted because of its unclear activities as input. On the other hand, some critical conclusions have been made in the peripheral and the central processing of neural information by kinetic stimuli with different motion frequencies. Nevertheless, it is still elusive how the neural responses to simultaneous GVS and kinetic stimulus are modified during transmission and integration at the central vestibular area. To understand how the neural information was transmitted and integrated, we examined the neuronal responses to GVS, kinetic stimulus, and their combined stimulus in the vestibular nucleus. The neuronal response to each stimulus was recorded, and its responding features (amplitude and baseline) were extracted by applying the curve fitting based on a sinusoidal function. Twenty-five (96.2%) comparisons of the amplitudes showed that the amplitudes decreased during the combined stimulus (p < 0.001). However, the relations in the amplitudes (slope = 0.712) and the baselines (slope = 0.747) were linear. The neuronal effects by the different stimuli were separately estimated; the changes of the amplitudes were mainly caused by the kinetic stimulus and those of the baselines were largely influenced by GVS. Therefore, the slopes in the comparisons implied the neural sensitivity to the applied stimuli. Using the slopes, we found that the reduced amounts of the neural information were transmitted. Overall, the comparisons of the responding features demonstrated the linearity and the subadditivity in the neural transmission.
Collapse
Affiliation(s)
- Gyutae Kim
- Institute for Information and Electronics Research, Inha University, High-Tech Center #716, 100 Inharo, Namgu, Incheon, 402-751, Republic of Korea.
| | - Kyu-Sung Kim
- Institute for Information and Electronics Research, Inha University, High-Tech Center #716, 100 Inharo, Namgu, Incheon, 402-751, Republic of Korea.,Department of Otolaryngology, School of Medicine, Inha University, 27 Inhang-ro, Jung-Gu, Incheon, 400-711, Republic of Korea
| | - Sangmin Lee
- Institute for Information and Electronics Research, Inha University, High-Tech Center #716, 100 Inharo, Namgu, Incheon, 402-751, Republic of Korea.,School of Electronic/Electrical Engineering, Inha University, High-Tech Center #704, 100 Inharo, Namgu, Incheon, 402-751, Republic of Korea
| |
Collapse
|
27
|
Laurens J, Liu S, Yu XJ, Chan R, Dickman D, DeAngelis GC, Angelaki DE. Transformation of spatiotemporal dynamics in the macaque vestibular system from otolith afferents to cortex. eLife 2017; 6:e20787. [PMID: 28075326 PMCID: PMC5226653 DOI: 10.7554/elife.20787] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/22/2016] [Indexed: 01/27/2023] Open
Abstract
Sensory signals undergo substantial recoding when neural activity is relayed from sensors through pre-thalamic and thalamic nuclei to cortex. To explore how temporal dynamics and directional tuning are sculpted in hierarchical vestibular circuits, we compared responses of macaque otolith afferents with neurons in the vestibular and cerebellar nuclei, as well as five cortical areas, to identical three-dimensional translational motion. We demonstrate a remarkable spatio-temporal transformation: otolith afferents carry spatially aligned cosine-tuned translational acceleration and jerk signals. In contrast, brainstem and cerebellar neurons exhibit non-linear, mixed selectivity for translational velocity, acceleration, jerk and position. Furthermore, these components often show dissimilar spatial tuning. Moderate further transformation of translation signals occurs in the cortex, such that similar spatio-temporal properties are found in multiple cortical areas. These results suggest that the first synapse represents a key processing element in vestibular pathways, robustly shaping how self-motion is represented in central vestibular circuits and cortical areas.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiong-Jie Yu
- Department of Neuroscience, Baylor College of Medicine, Houston, United States,Zhejiang University Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, China,Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Raymond Chan
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Gregory C DeAngelis
- Deptartment of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, United States,
| |
Collapse
|
28
|
Crane BT. Perception of combined translation and rotation in the horizontal plane in humans. J Neurophysiol 2016; 116:1275-85. [PMID: 27334952 DOI: 10.1152/jn.00322.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022] Open
Abstract
Thresholds and biases of human motion perception were determined for yaw rotation and sway (left-right) and surge (fore-aft) translation, independently and in combination. Stimuli were 1 Hz sinusoid in acceleration with a peak velocity of 14°/s or cm/s. Test stimuli were adjusted based on prior responses, whereas the distracting stimulus was constant. Seventeen human subjects between the ages of 20 and 83 completed the experiments and were divided into 2 groups: younger and older than 50. Both sway and surge translation thresholds significantly increased when combined with yaw rotation. Rotation thresholds were not significantly increased by the presence of translation. The presence of a yaw distractor significantly biased perception of sway translation, such that during 14°/s leftward rotation, the point of subjective equality (PSE) occurred with sway of 3.2 ± 0.7 (mean ± SE) cm/s to the right. Likewise, during 14°/s rightward motion, the PSE was with sway of 2.9 ± 0.7 cm/s to the left. A sway distractor did not bias rotation perception. When subjects were asked to report the direction of translation while varying the axis of yaw rotation, the PSE at which translation was equally likely to be perceived in either direction was 29 ± 11 cm anterior to the midline. These results demonstrated that rotation biased translation perception, such that it is minimized when rotating about an axis anterior to the head. Since the combination of translation and rotation during ambulation is consistent with an axis anterior to the head, this may reflect a mechanism by which movements outside the pattern that occurs during ambulation are perceived.
Collapse
Affiliation(s)
- Benjamin T Crane
- Department of Otolaryngology, University of Rochester, Rochester, New York; Department of Neurobiology and Anatomy, University of Rochester, Rochester, New York; and Department of Bioengineering, University of Rochester, Rochester, New York
| |
Collapse
|
29
|
Cheng Z, Gu Y. Distributed Representation of Curvilinear Self-Motion in the Macaque Parietal Cortex. Cell Rep 2016; 15:1013-1023. [PMID: 27117412 DOI: 10.1016/j.celrep.2016.03.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/10/2015] [Accepted: 03/24/2016] [Indexed: 11/29/2022] Open
Abstract
Information about translations and rotations of the body is critical for complex self-motion perception during spatial navigation. However, little is known about the nature and function of their convergence in the cortex. We measured neural activity in multiple areas in the macaque parietal cortex in response to three different types of body motion applied through a motion platform: translation, rotation, and combined stimuli, i.e., curvilinear motion. We found a continuous representation of motion types in each area. In contrast to single-modality cells preferring either translation-only or rotation-only stimuli, convergent cells tend to be optimally tuned to curvilinear motion. A weighted summation model captured the data well, suggesting that translation and rotation signals are integrated subadditively in the cortex. Interestingly, variation in the activity of convergent cells parallels behavioral outputs reported in human psychophysical experiments. We conclude that representation of curvilinear self-motion perception is widely distributed in the primate sensory cortex.
Collapse
Affiliation(s)
- Zhixian Cheng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
30
|
Holstein GR, Friedrich VLJ, Martinelli GP. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons. Front Neuroanat 2016; 10:7. [PMID: 26903817 PMCID: PMC4744852 DOI: 10.3389/fnana.2016.00007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first demonstration of two disparate chemoanatomic VSR pathways.
Collapse
Affiliation(s)
- Gay R. Holstein
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Anatomy/Functional Morphology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | | | | |
Collapse
|
31
|
Abstract
The relative simplicity of the neural circuits that mediate vestibular reflexes is well suited for linking systems and cellular levels of analyses. Notably, a distinctive feature of the vestibular system is that neurons at the first central stage of sensory processing in the vestibular nuclei are premotor neurons; the same neurons that receive vestibular-nerve input also send direct projections to motor pathways. For example, the simplicity of the three-neuron pathway that mediates the vestibulo-ocular reflex leads to the generation of compensatory eye movements within ~5ms of a head movement. Similarly, relatively direct pathways between the labyrinth and spinal cord control vestibulospinal reflexes. A second distinctive feature of the vestibular system is that the first stage of central processing is strongly multimodal. This is because the vestibular nuclei receive inputs from a wide range of cortical, cerebellar, and other brainstem structures in addition to direct inputs from the vestibular nerve. Recent studies in alert animals have established how extravestibular signals shape these "simple" reflexes to meet the needs of current behavioral goal. Moreover, multimodal interactions at higher levels, such as the vestibular cerebellum, thalamus, and cortex, play a vital role in ensuring accurate self-motion and spatial orientation perception.
Collapse
Affiliation(s)
- K E Cullen
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception. J Neurosci 2015; 35:3555-65. [PMID: 25716854 DOI: 10.1523/jneurosci.3540-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼ 70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life.
Collapse
|
33
|
Neuronal thresholds and choice-related activity of otolith afferent fibers during heading perception. Proc Natl Acad Sci U S A 2015; 112:6467-72. [PMID: 25941358 DOI: 10.1073/pnas.1507402112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How activity of sensory neurons leads to perceptual decisions remains a challenge to understand. Correlations between choices and single neuron firing rates have been found early in vestibular processing, in the brainstem and cerebellum. To investigate the origins of choice-related activity, we have recorded from otolith afferent fibers while animals performed a fine heading discrimination task. We find that afferent fibers have similar discrimination thresholds as central cells, and the most sensitive fibers have thresholds that are only twofold or threefold greater than perceptual thresholds. Unlike brainstem and cerebellar nuclei neurons, spike counts from afferent fibers do not exhibit trial-by-trial correlations with perceptual decisions. This finding may reflect the fact that otolith afferent responses are poorly suited for driving heading perception because they fail to discriminate self-motion from changes in orientation relative to gravity. Alternatively, if choice probabilities reflect top-down inference signals, they are not relayed to the vestibular periphery.
Collapse
|
34
|
Abstract
Evidence accumulated over 30 years, from experiments on animals and human subjects, has conclusively demonstrated that inputs from the vestibular otolith organs contribute to the control of blood pressure during movement and changes in posture. This review considers the effects of gravity on the body axis, and the consequences of postural changes on blood distribution in the body. It then separately considers findings collected in experiments on animals and human subjects demonstrating that the vestibular system regulates blood distribution in the body during movement. Vestibulosympathetic reflexes differ from responses triggered by unloading of cardiovascular receptors such as baroreceptors and cardiopulmonary receptors, as they can be elicited before a change in blood distribution occurs in the body. Dissimilarities in the expression of vestibulosympathetic reflexes in humans and animals are also described. In particular, there is evidence from experiments in animals, but not humans, that vestibulosympathetic reflexes are patterned, and differ between body regions. Results from neurophysiological and neuroanatomical studies in animals are discussed that identify the neurons that mediate vestibulosympathetic responses, which include cells in the caudal aspect of the vestibular nucleus complex, interneurons in the lateral medullary reticular formation, and bulbospinal neurons in the rostral ventrolateral medulla. Recent findings showing that cognition can modify the gain of vestibulosympathetic responses are also presented, and neural pathways that could mediate adaptive plasticity in the responses are proposed, including connections of the posterior cerebellar vermis with the vestibular nuclei and brainstem nuclei that regulate blood pressure.
Collapse
Affiliation(s)
- Bill J Yates
- Departments of Otolaryngology and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
35
|
Branoner F, Straka H. Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis. Dev Neurobiol 2014; 75:1051-67. [PMID: 25266079 DOI: 10.1002/dneu.22234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 02/03/2023]
Abstract
Gaze stabilization during head/body movements is achieved to a large extent by vestibular-evoked compensatory eye movements. These reflexes derive from semicircular canal and otolith organs and depend on the transformation of the respective sensory signals into extraocular motor commands. To elicit directionally and dynamically appropriate compensatory eye movements, extraocular motoneurons require spatiotemporally specific inputs from semicircular canals and regions of the utricular epithelium with matching directional sensitivity. The ontogenetic establishment and maturation of the directional tuning of otolith inputs in extraocular motoneurons was studied in Xenopus laevis tadpoles. In young larvae at stage 46-48, superior oblique (SO) extraocular motoneurons receive omnidirectional utricular signals during horizontal translational motion, indicating an absence of spatial tuning. In contrast, in older larvae beyond stage 49 these motoneurons were activated by directionally more restricted otolith inputs with an increasingly enhanced spatial tuning until stage 53. This developmental process limited the origin of otolith signals to a utricular epithelial sector with a hair cell sensitivity that is coaligned with the pulling direction of the SO eye muscle. The maturation of the otolith response vector was abolished by enzymatic prevention of semicircular canal formation in postembryonic tadpoles at stage 44, suggesting that functionally intact semicircular canals are causally responsible for the observed directional tuning of utricular responses. A likely mechanism by which semicircular canals might influence the tuning of the otolith responses includes stabilization of coactivated and centrally converging sensory signals from semicircular canal and spatially aligned epithelial utricular regions during natural head/body motion.
Collapse
Affiliation(s)
- Francisco Branoner
- Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| |
Collapse
|
36
|
Newlands SD, Lin N, Wei M. Responses of non-eye movement central vestibular neurons to sinusoidal horizontal translation in compensated macaques after unilateral labyrinthectomy. J Neurophysiol 2014; 112:9-21. [PMID: 24717349 DOI: 10.1152/jn.00748.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
After vestibular labyrinth injury, behavioral deficits partially recover through the process of vestibular compensation. The present study was performed to improve our understanding of the physiology of the macaque vestibular system in the compensated state (>7 wk) after unilateral labyrinthectomy (UL). Three groups of vestibular nucleus neurons were included: pre-UL control neurons, neurons ipsilateral to the lesion, and neurons contralateral to the lesion. The firing responses of neurons sensitive to linear acceleration in the horizontal plane were recorded during sinusoidal horizontal translation directed along six different orientations (30° apart) at 0.5 Hz and 0.2 g peak acceleration (196 cm/s(2)). This data defined the vector of best response for each neuron in the horizontal plane, along which sensitivity, symmetry, detection threshold, and variability of firing were determined. Additionally, the responses of the same cells to translation over a series of frequencies (0.25-5.0 Hz) either in the interaural or naso-occipital orientation were obtained to define the frequency response characteristics in each group. We found a decrease in sensitivity, increase in threshold, and alteration in orientation of best responses in the vestibular nuclei after UL. Additionally, the phase relationship of the best neural response to translational stimulation changed with UL. The symmetry of individual neuron responses in the excitatory and inhibitory directions was unchanged by UL. Bilateral central utricular neurons still demonstrated two-dimension tuning after UL, consistent with spatio-temporal convergence from a single vestibular end-organ. These neuronal data correlate with known behavioral deficits after unilateral vestibular compromise.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
| | - Nan Lin
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
| | - Min Wei
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
37
|
Multimodal integration of self-motion cues in the vestibular system: active versus passive translations. J Neurosci 2014; 33:19555-66. [PMID: 24336720 DOI: 10.1523/jneurosci.3051-13.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ability to keep track of where we are going as we navigate through our environment requires knowledge of our ongoing location and orientation. In response to passively applied motion, the otolith organs of the vestibular system encode changes in the velocity and direction of linear self-motion (i.e., heading). When self-motion is voluntarily generated, proprioceptive and motor efference copy information is also available to contribute to the brain's internal representation of current heading direction and speed. However to date, how the brain integrates these extra-vestibular cues with otolith signals during active linear self-motion remains unknown. Here, to address this question, we compared the responses of macaque vestibular neurons during active and passive translations. Single-unit recordings were made from a subgroup of neurons at the first central stage of sensory processing in the vestibular pathways involved in postural control and the computation of self-motion perception. Neurons responded far less robustly to otolith stimulation during self-generated than passive head translations. Yet, the mechanism underlying the marked cancellation of otolith signals did not affect other characteristics of neuronal responses (i.e., baseline firing rate, tuning ratio, orientation of maximal sensitivity vector). Transiently applied perturbations during active motion further established that an otolith cancellation signal was only gated in conditions where proprioceptive sensory feedback matched the motor-based expectation. Together our results have important implications for understanding the brain's ability to ensure accurate postural and motor control, as well as perceptual stability, during active self-motion.
Collapse
|
38
|
Taylor RL, Xing M, Black DA, Halmagyi GM, Welgampola MS. Ocular vestibular evoked myogenic potentials: The effect of head and body tilt in the roll plane. Clin Neurophysiol 2014; 125:627-34. [DOI: 10.1016/j.clinph.2013.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
39
|
Meng H, Blázquez PM, Dickman JD, Angelaki DE. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition. J Physiol 2013; 592:171-88. [PMID: 24127616 DOI: 10.1113/jphysiol.2013.259614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways.
Collapse
Affiliation(s)
- Hui Meng
- D. Angelaki: Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
40
|
Shaikh AG, Palla A, Marti S, Olasagasti I, Optican LM, Zee DS, Straumann D. Role of cerebellum in motion perception and vestibulo-ocular reflex-similarities and disparities. CEREBELLUM (LONDON, ENGLAND) 2013; 12:97-107. [PMID: 22777507 PMCID: PMC3510326 DOI: 10.1007/s12311-012-0401-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vestibular velocity storage enhances the efficacy of the angular vestibulo-ocular reflex (VOR) during relatively low-frequency head rotations. This function is modulated by GABA-mediated inhibitory cerebellar projections. Velocity storage also exists in perceptual pathway and has similar functional principles as VOR. However, it is not known whether the neural substrate for perception and VOR overlap. We propose two possibilities. First, there is the same velocity storage for both VOR and perception; second, there are nonoverlapping neural networks: one might be involved in perception and the other for the VOR. We investigated these possibilities by measuring VOR and perceptual responses in healthy human subjects during whole-body, constant-velocity rotation steps about all three dimensions (yaw, pitch, and roll) before and after 10 mg of 4-aminopyridine (4-AP). 4-AP, a selective blocker of inward rectifier potassium conductance, can lead to increased synchronization and precision of Purkinje neuron discharge and possibly enhance the GABAergic action. Hence 4-AP could reduce the decay time constant of the perceived angular velocity and VOR. We found that 4-AP reduced the decay time constant, but the amount of reduction in the two processes, perception and VOR, was not the same, suggesting the possibility of nonoverlapping or partially overlapping neural substrates for VOR and perception. We also noted that, unlike the VOR, the perceived angular velocity gradually built up and plateau prior to decay. Hence, the perception pathway may have additional mechanism that changes the dynamics of perceived angular velocity beyond the velocity storage. 4-AP had no effects on the duration of build-up of perceived angular velocity, suggesting that the higher order processing of perception, beyond the velocity storage, might not occur under the influence of mechanism that could be influenced by 4-AP.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44106-5040, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation. Neuroscience 2012; 223:183-99. [PMID: 22864184 DOI: 10.1016/j.neuroscience.2012.07.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022]
Abstract
The pedunculopontine nucleus (PPN) and central mesencephalic reticular formation (cMRF) both send projections and receive input from areas with known vestibular responses. Noting their connections with the basal ganglia, the locomotor disturbances that occur following lesions of the PPN or cMRF, and the encouraging results of PPN deep brain stimulation in Parkinson's disease patients, both the PPN and cMRF have been linked to motor control. In order to determine the existence of and characterize vestibular responses in the PPN and cMRF, we recorded single neurons from both structures during vertical and horizontal rotation, translation, and visual pursuit stimuli. The majority of PPN cells (72.5%) were vestibular-only (VO) cells that responded exclusively to rotation and translation stimuli but not visual pursuit. Visual pursuit responses were much more prevalent in the cMRF (57.1%) though close to half of cMRF cells were VO cells (41.1%). Directional preferences also differed between the PPN, which was preferentially modulated during nose-down pitch, and cMRF, which was preferentially modulated during ipsilateral yaw rotation. Finally, amplitude responses were similar between the PPN and cMRF during rotation and pursuit stimuli, but PPN responses to translation were of higher amplitude than cMRF responses. Taken together with their connections to the vestibular circuit, these results implicate the PPN and cMRF in the processing of vestibular stimuli and suggest important roles for both in responding to motion perturbations like falls and turns.
Collapse
|
42
|
McCall AA, Yates BJ. Compensation following bilateral vestibular damage. Front Neurol 2011; 2:88. [PMID: 22207864 PMCID: PMC3246292 DOI: 10.3389/fneur.2011.00088] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/12/2011] [Indexed: 01/22/2023] Open
Abstract
Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH) produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that non-labyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh Pittsburgh, PA, USA
| | | |
Collapse
|
43
|
Kolesnikova OV, Raphan T, Cohen B, Yakushin SB. Orientation adaptation of eye movement-related vestibular neurons due to prolonged head tilt. Ann N Y Acad Sci 2011; 1233:214-8. [PMID: 21950996 DOI: 10.1111/j.1749-6632.2011.06176.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sixteen neurons, including vestibular-only (VO), eye-head velocity (EHV), and position-vestibular-pause (PVP) neurons sensitive to head tilt were recorded in the rostromedial and in superior vestibular nuclei. Projection of the otolith polarization vector to the horizontal plane (response vector orientation [RVO]) was determined before and after prolonged head orientation in side-down position. The RVO of VO neurons shifted toward alignment with the axis of gravity when the head was in the position of adaptation. PVP neurons had similar changes in RVO. There were also changes in RVO in some EHV neurons, but generally in directions not related to gravity. Modeling studies have suggested that the tendency to align RVOs with gravity leads to tuning of gravity-dependent angular vestibular ocular reflex (aVOR) gain changes to the position of adaptation. Thus, coding of orientation in PVP neurons would contribute significantly to the gravity-dependent adaptation of the aVOR.
Collapse
Affiliation(s)
- Olga V Kolesnikova
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
44
|
Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J Neurosci 2011; 31:12036-52. [PMID: 21849564 DOI: 10.1523/jneurosci.0395-11.2011] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Convergence of vestibular and visual motion information is important for self-motion perception. One cortical area that combines vestibular and optic flow signals is the ventral intraparietal area (VIP). We characterized unisensory and multisensory responses of macaque VIP neurons to translations and rotations in three dimensions. Approximately one-half of VIP cells show significant directional selectivity in response to optic flow, one-half show tuning to vestibular stimuli, and one-third show multisensory responses. Visual and vestibular direction preferences of multisensory VIP neurons could be congruent or opposite. When visual and vestibular stimuli were combined, VIP responses could be dominated by either input, unlike the medial superior temporal area (MSTd) where optic flow tuning typically dominates or the visual posterior sylvian area (VPS) where vestibular tuning dominates. Optic flow selectivity in VIP was weaker than in MSTd but stronger than in VPS. In contrast, vestibular tuning for translation was strongest in VPS, intermediate in VIP, and weakest in MSTd. To characterize response dynamics, direction-time data were fit with a spatiotemporal model in which temporal responses were modeled as weighted sums of velocity, acceleration, and position components. Vestibular responses in VIP reflected balanced contributions of velocity and acceleration, whereas visual responses were dominated by velocity. Timing of vestibular responses in VIP was significantly faster than in MSTd, whereas timing of optic flow responses did not differ significantly among areas. These findings suggest that VIP may be proximal to MSTd in terms of vestibular processing but hierarchically similar to MSTd in terms of optic flow processing.
Collapse
|
45
|
McArthur KL, Zakir M, Haque A, Dickman JD. Spatial and temporal characteristics of vestibular convergence. Neuroscience 2011; 192:361-71. [PMID: 21756981 DOI: 10.1016/j.neuroscience.2011.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022]
Abstract
In all species studied, afferents from semicircular canals and otolith organs converge on central neurons in the brainstem. However, the spatial and temporal relationships between converging inputs and how these contribute to vestibular behaviors is not well understood. In the current study, we used discrete rotational and translational motion stimuli to characterize canal- and otolith-driven response components of convergent non-eye movement (NEM) neurons in the vestibular nuclear complex of alert pigeons. When compared to afferent responses, convergent canal signals had similar gain and phase ranges but exhibited greater spatial variability in their axes of preferred rotation. Convergent otolith signals also had similar mean gain and phase values to the afferent population but were spatially well-matched with the corresponding canal signals, cell-by-cell. However, neither response component alone nor a simple linear combination of these components was sufficient to predict actual net responses during combined canal-otolith stimulation. We discuss these findings in the context of previous studies of pigeon vestibular behaviors, and we compare our findings to similar studies in other species.
Collapse
Affiliation(s)
- K L McArthur
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
46
|
Holstein GR, Friedrich VL, Kang T, Kukielka E, Martinelli GP. Direct projections from the caudal vestibular nuclei to the ventrolateral medulla in the rat. Neuroscience 2011; 175:104-17. [PMID: 21163335 PMCID: PMC3029471 DOI: 10.1016/j.neuroscience.2010.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/23/2010] [Accepted: 12/08/2010] [Indexed: 02/07/2023]
Abstract
While the basic pathways mediating vestibulo-ocular, -spinal, and -collic reflexes have been described in detail, little is known about vestibular projections to central autonomic sites. Previous studies have primarily focused on projections from the caudal vestibular region to solitary, vagal and parabrachial nuclei, but have noted a sparse innervation of the ventrolateral medulla. Since a direct pathway from the vestibular nuclei to the rostral ventrolateral medulla would provide a morphological substrate for rapid modifications in blood pressure, heart rate and respiration with changes in posture and locomotion, the present study examined anatomical evidence for this pathway using anterograde and retrograde tract tracing and immunofluorescence detection in brainstem sections of the rat medulla. The results provide anatomical evidence for direct pathways from the caudal vestibular nuclear complex to the rostral and caudal ventrolateral medullary regions. The projections are conveyed by fine and highly varicose axons that ramify bilaterally, with greater terminal densities present ipsilateral to the injection site and more rostrally in the ventrolateral medulla. In the rostral ventrolateral medulla, these processes are highly branched and extremely varicose, primarily directed toward the somata and proximal dendrites of non-catecholaminergic neurons, with minor projections to the distal dendrites of catecholaminergic cells. In the caudal ventrolateral medulla, the axons of vestibular nucleus neurons are more modestly branched with fewer varicosities, and their endings are contiguous with both the perikarya and dendrites of catecholamine-containing neurons. These data suggest that vestibular neurons preferentially target the rostral ventrolateral medulla, and can thereby provide a morphological basis for a short latency vestibulo-sympathetic pathway.
Collapse
Affiliation(s)
- G R Holstein
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
47
|
Yakushin SB, Dai M, Raphan T, Suzuki JI, Arai Y, Cohen B. Spatial orientation of the angular vestibulo-ocular reflex (aVOR) after semicircular canal plugging and canal nerve section. Exp Brain Res 2011; 210:583-94. [PMID: 21340443 DOI: 10.1007/s00221-011-2586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
We investigated spatial responses of the aVOR to small and large accelerations in six canal-plugged and lateral canal nerve-sectioned monkeys. The aim was to determine whether there was spatial adaptation after partial and complete loss of all inputs in a canal plane. Impulses of torques generated head thrusts of ≈ 3,000°/s². Smaller accelerations of ≈ 300°/s² initiated the steps of velocity (60°/s). Animals were rotated about a spatial vertical axis while upright (0°) or statically tilted fore-aft up to ± 90°. Temporal aVOR yaw and roll gains were computed at every head orientation and were fit with a sinusoid to obtain the spatial gains and phases. Spatial gains peaked at ≈ 0° for yaw and ≈ 90° for roll in normal animals. After bilateral lateral canal nerve section, the spatial yaw and roll gains peaked when animals were tilted back ≈ 50°, to bring the intact vertical canals in the plane of rotation. Yaw and roll gains were identical in the lateral canal nerve-sectioned monkeys tested with both low- and high-acceleration stimuli. The responses were close to normal for high-acceleration thrusts in canal-plugged animals, but were significantly reduced when these animals were given step stimuli. Thus, high accelerations adequately activated the plugged canals, whereas yaw and roll spatial aVOR gains were produced only by the intact vertical canals after total loss of lateral canal input. We conclude that there is no spatial adaptation of the aVOR even after complete loss of specific semicircular canal input.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Fetsch CR, Rajguru SM, Karunaratne A, Gu Y, Angelaki DE, Deangelis GC. Spatiotemporal properties of vestibular responses in area MSTd. J Neurophysiol 2010; 104:1506-22. [PMID: 20631212 PMCID: PMC2944682 DOI: 10.1152/jn.91247.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 07/10/2010] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that many neurons in the primate dorsal medial superior temporal area (MSTd) show spatial tuning during inertial motion and that these responses are vestibular in origin. Given their well-studied role in processing visual self-motion cues (i.e., optic flow), these neurons may be involved in the integration of visual and vestibular signals to facilitate robust perception of self-motion. However, the temporal structure of vestibular responses in MSTd has not been characterized in detail. Specifically, it is not known whether MSTd neurons encode velocity, acceleration, or some combination of motion parameters not explicitly encoded by vestibular afferents. In this study, we have applied a frequency-domain analysis to single-unit responses during translation in three dimensions (3D). The analysis quantifies the stimulus-driven temporal modulation of each response as well as the degree to which this modulation reflects the velocity and/or acceleration profile of the stimulus. We show that MSTd neurons signal a combination of velocity and acceleration components with the velocity component being stronger for most neurons. These two components can exist both within and across motion directions, although their spatial tuning did not show a systematic relationship across the population. From these results, vestibular responses in MSTd appear to show characteristic features of spatiotemporal convergence, similar to previous findings in the brain stem and thalamus. The predominance of velocity encoding in this region may reflect the suitability of these signals to be integrated with visual signals regarding self-motion perception.
Collapse
Affiliation(s)
- Christopher R Fetsch
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
49
|
Angelaki DE, Yakusheva TA, Green AM, Dickman JD, Blazquez PM. Computation of egomotion in the macaque cerebellar vermis. THE CEREBELLUM 2010; 9:174-82. [PMID: 20012388 DOI: 10.1007/s12311-009-0147-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identically to translational (inertial) accelerations and changes in orientation relative to gravity. Based on theoretical and behavioral evidence, this sensory ambiguity is resolved using rotational cues from the semicircular canals. Recordings from the cerebellar cortex have identified a neural correlate of the brain's ability to resolve this ambiguity in the simple spike activities of nodulus/uvula Purkinje cells. This computation, which likely involves the cerebellar circuitry and its reciprocal connections with the vestibular nuclei, results from a remarkable convergence of spatially- and temporally-aligned otolith-driven and semicircular canal-driven signals. Such convergence requires a spatio-temporal transformation of head-centered canal-driven signals into an estimate of head reorientation relative to gravity. This signal must then be subtracted from the otolith-driven estimate of net acceleration to compute inertial motion. At present, Purkinje cells in the nodulus/uvula appear to encode the output of this computation. However, how the required spatio-temporal matching takes place within the cerebellar circuitry and what role complex spikes play in spatial orientation and disorientation remains unknown. In addition, the role of visual cues in driving and/or modifying simple and complex spike activity, a process potentially critical for long-term adaptation, constitutes another important direction for future studies.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
50
|
Liu S, Dickman JD, Angelaki DE. Response dynamics and tilt versus translation discrimination in parietoinsular vestibular cortex. Cereb Cortex 2010; 21:563-73. [PMID: 20624839 DOI: 10.1093/cercor/bhq123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The parietoinsular vestibular cortex (PIVC) is a large area in the lateral sulcus with neurons that respond to vestibular stimulation. Here we compare the properties of PIVC cells with those of neurons in brain stem, cerebellum, and thalamus. Most PIVC cells modulated during both translational and rotational head motion. Translation acceleration gains showed a modest decrease as stimulus frequency increased, with a steeper slope than that reported previously for thalamic and cerebellar nuclei neurons. Response dynamics during yaw rotation were similar to those reported for vestibular neurons in brain stem and thalamus: velocity gains were relatively flat through the mid-frequency range, increased at high frequencies, and decreased at low frequencies. Tilt dynamics were more variable: PIVC neurons responsive only to rotation had gains that decreased with increased frequency, whereas neurons responsive during both translation and rotation (convergent neurons) actually increased their modulation magnitude at high frequencies. Using combinations of translation and tilt, most PIVC neurons were better correlated with translational motion; only 14% were better correlated with net acceleration. Thus, although yaw rotation responses in PIVC appear little processed compared with other central vestibular neurons, translation and tilt responses suggest a further processing of linear acceleration signals in thalamocortical circuits.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|