1
|
Rajan R, Christian-Hinman CA. Sex-Dependent Changes in Gonadotropin-Releasing Hormone Neuron Voltage-Gated Potassium Currents in a Mouse Model of Temporal Lobe Epilepsy. eNeuro 2024; 11:ENEURO.0324-24.2024. [PMID: 39375030 PMCID: PMC11493494 DOI: 10.1523/eneuro.0324-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common focal epilepsy in adults, and people with TLE exhibit higher rates of reproductive endocrine dysfunction. Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate reproductive function in mammals by regulating gonadotropin secretion from the anterior pituitary. Previous research demonstrated GnRH neuron hyperexcitability in both sexes in the intrahippocampal kainic acid (IHKA) mouse model of TLE. Fast-inactivating A-type (I A) and delayed rectifier K-type (I K) K+ currents play critical roles in modulating neuronal excitability, including in GnRH neurons. Here, we tested the hypothesis that GnRH neuron hyperexcitability is associated with reduced I A and I K conductances. At 2 months after IHKA or control saline injection, when IHKA mice exhibit chronic epilepsy, we recorded GnRH neuron excitability, I A, and I K using whole-cell patch-clamp electrophysiology. GnRH neurons from both IHKA male and diestrus female GnRH-GFP mice exhibited hyperexcitability compared with controls. In IHKA males, although maximum I A current density was increased, I K recovery from inactivation was significantly slower, consistent with a hyperexcitability phenotype. In IHKA females, however, both I A and I K were unchanged. Sex differences were not observed in I A or I K properties in controls, but IHKA mice exhibited sex effects in I A properties. These results indicate that although the emergent phenotype of increased GnRH neuron excitability is similar in IHKA males and diestrus females, the underlying mechanisms are distinct. This study thus highlights sex-specific changes in voltage-gated K+ currents in GnRH neurons in a mouse model of TLE and suggesting potential sex differences in GnRH neuron ion channel properties.
Collapse
Affiliation(s)
- Remya Rajan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
2
|
G S B Lima PL, Nobrega PR, Freua F, Braga-Neto P, Paiva ARB, Guimarães TG, Kok F. Myoclonus improvement after seizures in progressive myoclonic epilepsy type 7: a case report. BMC Neurol 2024; 24:169. [PMID: 38783211 PMCID: PMC11112770 DOI: 10.1186/s12883-024-03625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Progressive Myoclonic Epilepsy (PME) is a group of rare diseases that are difficult to differentiate from one another based on phenotypical characteristics. CASE REPORT We report a case of PME type 7 due to a pathogenic variant in KCNC1 with myoclonus improvement after epileptic seizures. DISCUSSION Myoclonus improvement after seizures may be a clue to the diagnosis of Progressive Myoclonic Epilepsy type 7.
Collapse
Affiliation(s)
| | - Paulo R Nobrega
- Division of Neurology, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Centro Universitário Christus, Fortaleza, Ceara, Brazil
| | - Fernando Freua
- Neurogenetics Center, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | - Pedro Braga-Neto
- Division of Neurology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Anderson R B Paiva
- Neurogenetics Center, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | - Thiago Gonçalves Guimarães
- Movement Disorders Center, Department of Neurology, University of Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 5th Floor, Room 5084, Cerqueira Cesar, Sao Paulo, Sao Paulo, 05403-900, Brazil.
| | - Fernando Kok
- Neurogenetics Center, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Zinchenko VP, Teplov IY, Kosenkov AM, Gaidin SG, Kairat BK, Tuleukhanov ST. Participation of calcium-permeable AMPA receptors in the regulation of epileptiform activity of hippocampal neurons. Front Synaptic Neurosci 2024; 16:1349984. [PMID: 38577639 PMCID: PMC10987725 DOI: 10.3389/fnsyn.2024.1349984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Epileptiform activity is the most striking result of hyperexcitation of a group of neurons that can occur in different brain regions and then spread to other sites. Later it was shown that these rhythms have a cellular correlate in vitro called paroxysmal depolarization shift (PDS). In 13-15 DIV neuron-glial cell culture, inhibition of the GABA(A) receptors induces bursts of action potential in the form of clasters PDS and oscillations of intracellular Ca2+ concentration ([Ca2+]i). We demonstrate that GABAergic neurons expressing calcium-permeable AMPA receptors (CP-AMPARs) as well as Kv7-type potassium channels regulate hippocampal glutamatergic neurons' excitability during epileptiform activity in culture. Methods A combination of whole-cell patch-clamp in current clamp mode and calcium imaging microscopy was used to simultaneously register membrane potential and [Ca2+]i level. To identify GABAergic cell cultures were fixed and stained with antibodies against glutamate decarboxylase GAD 65/67 and neuron-specific enolase (NSE) after vital [Ca2+]i imaging. Results and discussion It was shown that CP-AMPARs are involved in the regulation of the PDS clusters and [Ca2+]i pulses accompanied them. Activation of CP-AMPARs of GABAergic neurons is thought to cause the release of GABA, which activates the GABA(B) receptors of other GABAergic interneurons. It is assumed that activation of these GABA(B) receptors leads to the release of beta-gamma subunits of Gi protein, which activate potassium channels, resulting in hyperpolarization and inhibition of these interneurons. The latter causes disinhibition of glutamatergic neurons, the targets of these interneurons. In turn, the CP-AMPAR antagonist, NASPM, has the opposite effect. Measurement of membrane potential in GABAergic neurons by the patch-clamp method in whole-cell configuration demonstrated that NASPM suppresses hyperpolarization in clusters and individual PDSs. It is believed that Kv7-type potassium channels are involved in the control of hyperpolarization during epileptiform activity. The blocker of Kv7 channels, XE 991, mimicked the effect of the CP-AMPARs antagonist on PDS clusters. Both drugs increased the duration of the PDS cluster. In turn, the Kv7 activator, retigabine, decreased the duration of the PDS cluster and Ca2+ pulse. In addition, retigabine led to deep posthyperpolarization at the end of the PDS cluster. The Kv7 channel is believed to be involved in the formation of PDS, as the channel blocker reduced the rate of hyperpolarization in the PDS almost three times. Thus, GABAergic neurons expressing CP-AMPARs, regulate the membrane potential of innervated glutamatergic neurons by modulating the activity of postsynaptic potassium channels of other GABAergic neurons.
Collapse
Affiliation(s)
- Valery Petrovich Zinchenko
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Ilia Yu. Teplov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Artem Mikhailovich Kosenkov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Sergei Gennadievich Gaidin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Bakytzhan Kairatuly Kairat
- Laboratory of Biophysics, Chronobiology and Biomedicine, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Sultan Tuleukhanovich Tuleukhanov
- Laboratory of Biophysics, Chronobiology and Biomedicine, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
4
|
Laryushkin DP, Maiorov SA, Zinchenko VP, Mal'tseva VN, Gaidin SG, Kosenkov AM. Of the Mechanisms of Paroxysmal Depolarization Shifts: Generation and Maintenance of Bicuculline-Induced Paroxysmal Activity in Rat Hippocampal Cell Cultures. Int J Mol Sci 2023; 24:10991. [PMID: 37446169 DOI: 10.3390/ijms241310991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the generation of PDS and dependence of the PDS pattern on neuronal membrane potential. We have shown that significant depolarization or hyperpolarization (by more than ±50 mV) of a single neuron does not change the number of individual PDSs in the cluster, indicating the involvement of an external stimulus in PDS induction. Based on this data, we have suggested reliable protocols for stimulating single PDS or PDS clusters. Furthermore, we have found that AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are necessary for PDS generation since AMPAR antagonist NBQX completely suppresses bicuculline-induced paroxysmal activity. In turn, antagonists of NMDA (N-methyl-D-aspartate) and kainate receptors (D-AP5 and UBP310, respectively) caused a decrease in the amplitude of the first action potential in PDSs and in the amplitude of the oscillations of intracellular Ca2+ concentration occurring alongside the PDS cluster generation. The effects of the NMDAR (NMDA receptor) and KAR (kainate receptor) antagonists indicate that these receptors are involved only in the modulation of paroxysmal activity. We have also shown that agonists of some Gi-coupled receptors, such as A1 adenosine (A1Rs) or cannabinoid receptors (CBRs) (N6-cyclohexyladenosine and WIN 55,212-2, respectively), completely suppressed PDS generation, while the A1R agonist even prevented it. We hypothesized that the dynamics of extracellular glutamate concentration govern paroxysmal activity. Fine-tuning of neuronal activity via action on Gi-coupled receptors or iGluRs paves the way for the development of new approaches for epilepsy pharmacotherapy.
Collapse
Affiliation(s)
- Denis P Laryushkin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei A Maiorov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Valery P Zinchenko
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Valentina N Mal'tseva
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei G Gaidin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Artem M Kosenkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
5
|
Kv1.1 channels inhibition in the rat motor cortex recapitulates seizures associated with anti-LGI1 encephalitis. Prog Neurobiol 2022; 213:102262. [DOI: 10.1016/j.pneurobio.2022.102262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/03/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022]
|
6
|
Romero-Sosa JL, Motanis H, Buonomano DV. Differential Excitability of PV and SST Neurons Results in Distinct Functional Roles in Inhibition Stabilization of Up States. J Neurosci 2021; 41:7182-7196. [PMID: 34253625 PMCID: PMC8387123 DOI: 10.1523/jneurosci.2830-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022] Open
Abstract
Up states are the best studied example of an emergent neural dynamic regime. Computational models based on a single class of inhibitory neurons indicate that Up states reflect bistable dynamic systems in which positive feedback is stabilized by strong inhibition and predict a paradoxical effect in which increased drive to inhibitory neurons results in decreased inhibitory activity. To date, however, computational models have not incorporated empirically defined properties of parvalbumin (PV) and somatostatin (SST) neurons. Here we first experimentally characterized the frequency-current (F-I) curves of pyramidal (Pyr), PV, and SST neurons from mice of either sex, and confirmed a sharp difference between the threshold and slopes of PV and SST neurons. The empirically defined F-I curves were incorporated into a three-population computational model that simulated the empirically derived firing rates of pyramidal, PV, and SST neurons. Simulations revealed that the intrinsic properties were sufficient to predict that PV neurons are primarily responsible for generating the nontrivial fixed points representing Up states. Simulations and analytical methods demonstrated that while the paradoxical effect is not obligatory in a model with two classes of inhibitory neurons, it is present in most regimes. Finally, experimental tests validated predictions of the model that the Pyr ↔ PV inhibitory loop is stronger than the Pyr ↔ SST loop.SIGNIFICANCE STATEMENT Many cortical computations, such as working memory, rely on the local recurrent excitatory connections that define cortical circuit motifs. Up states are among the best studied examples of neural dynamic regimes that rely on recurrent excitatory excitation. However, this positive feedback must be held in check by inhibition. To address the relative contribution of PV and SST neurons, we characterized the intrinsic input-output differences between these classes of inhibitory neurons and, using experimental and theoretical methods, show that the higher threshold and gain of PV leads to a dominant role in network stabilization.
Collapse
Affiliation(s)
- Juan L Romero-Sosa
- Department of Neurobiology, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, California 90095
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| | - Helen Motanis
- Department of Neurobiology, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California 90095
| | - Dean V Buonomano
- Department of Neurobiology, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, California 90095
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
7
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. GABAergic interneurons in epilepsy: More than a simple change in inhibition. Epilepsy Behav 2021; 121:106935. [PMID: 32035792 DOI: 10.1016/j.yebeh.2020.106935] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
The pathophysiology of epilepsy has been historically grounded on hyperexcitability attributed to the oversimplified imbalance between excitation (E) and inhibition (I) in the brain. The decreased inhibition is mostly attributed to deficits in gamma-aminobutyric acid-containing (GABAergic) interneurons, the main source of inhibition in the central nervous system. However, the cell diversity, the wide range of spatiotemporal connectivity, and the distinct effects of the neurotransmitter GABA especially during development, must be considered to critically revisit the concept of hyperexcitability caused by decreased inhibition as a key characteristic in the development of epilepsy. Here, we will discuss that behind this known mechanism, there is a heterogeneity of GABAergic interneurons with distinct functions and sources, which have specific roles in controlling the neural network activity within the recruited microcircuit and altered network during the epileptogenic process. This article is part of the Special Issue "NEWroscience 2018.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre 90046-900, RS, Brazil.
| |
Collapse
|
8
|
Impairment of Sharp-Wave Ripples in a Murine Model of Dravet Syndrome. J Neurosci 2019; 39:9251-9260. [PMID: 31537705 DOI: 10.1523/jneurosci.0890-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022] Open
Abstract
Dravet syndrome (DS) is a severe early-onset epilepsy associated with heterozygous loss-of-function mutations in SCN1A Animal models of DS with global Scn1a haploinsufficiency recapitulate the DS phenotype, including seizures, premature death, and impaired spatial memory performance. Spatial memory requires hippocampal sharp-wave ripples (SPW-Rs), which consist of high-frequency field potential oscillations (ripples, 100-260 Hz) superimposed on a slower SPW. Published in vitro electrophysiologic recordings in DS mice demonstrate reduced firing of GABAergic inhibitory neurons, which are essential for the formation of SPW-R complexes. Here, in vivo electrophysiologic recordings of hippocampal local field potential in both male and female mice demonstrate that Scn1a haploinsufficiency slows intrinsic ripple frequency and reduces the rate of SPW-R occurrence. In DS mice, peak ripple-band power is shifted to lower frequencies, average intertrough intervals of individually detected ripples are slower, and the rate of SPW-R generation is reduced, while SPW amplitude remains unaffected. These alterations in SPW-R properties, in combination with published reductions in interneuron function in DS, suggest a direct link between reduced inhibitory neuron excitability and impaired SPW-R function. A simple interconnected, conductance-based in silico interneuron network model was used to determine whether reduced sodium conductance is sufficient to slow ripple frequency, and stimulation with a modeled SPW demonstrates that reduced sodium conductance alone is sufficient to slow oscillatory frequencies. These findings forge a potential mechanistic link between impaired SPW-R generation and Scn1a mutation in DS mice, expanding the set of disorders in which SPW-R dysfunction contributes to impaired memory.SIGNIFICANCE STATEMENT Disruption of sharp-wave ripples, a characteristic hippocampal rhythm coordinated by the precise timing of GABAergic interneurons, impairs spatial learning and memory. Prior in vitro patch-clamp recordings in brain slices from genetic mouse models of Dravet syndrome (DS) reveal reduced sodium current and excitability in GABAergic interneurons but not excitatory cells, suggesting a causal role for impaired interneuron activity in seizures and cognitive impairment. Here, heterozygous Scn1a mutation in DS mice reduces hippocampal sharp-wave ripple occurrence and slows internal ripple frequency in vivo and a simple in silico model demonstrates reduction in interneuron function alone is sufficient to slow model oscillations. Together, these findings provide a plausible pathophysiologic mechanism for Scn1a gene mutation to impair spatial memory.
Collapse
|
9
|
Miri ML, Vinck M, Pant R, Cardin JA. Altered hippocampal interneuron activity precedes ictal onset. eLife 2018; 7:40750. [PMID: 30387711 PMCID: PMC6245730 DOI: 10.7554/elife.40750] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Although failure of GABAergic inhibition is a commonly hypothesized mechanism underlying seizure disorders, the series of events that precipitate a rapid shift from healthy to ictal activity remain unclear. Furthermore, the diversity of inhibitory interneuron populations poses a challenge for understanding local circuit interactions during seizure initiation. Using a combined optogenetic and electrophysiological approach, we examined the activity of identified mouse hippocampal interneuron classes during chemoconvulsant seizure induction in vivo. Surprisingly, synaptic inhibition from parvalbumin- (PV) and somatostatin-expressing (SST) interneurons remained intact throughout the preictal period and early ictal phase. However, these two sources of inhibition exhibited cell-type-specific differences in their preictal firing patterns and sensitivity to input. Our findings suggest that the onset of ictal activity is not associated with loss of firing by these interneurons or a failure of synaptic inhibition but is instead linked with disruptions of the respective roles these interneurons play in the hippocampal circuit.
Collapse
Affiliation(s)
- Mitra L Miri
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Rima Pant
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University, New Haven, United States
| |
Collapse
|
10
|
Effects of anti-epileptic drugs on spreading depolarization-induced epileptiform activity in mouse hippocampal slices. Sci Rep 2017; 7:11884. [PMID: 28928441 PMCID: PMC5605655 DOI: 10.1038/s41598-017-12346-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Epilepsy and spreading depolarization (SD) are both episodic brain disorders and often exist together in the same individual. In CA1 pyramidal neurons of mouse hippocampal slices, induction of SD evoked epileptiform activities, including the ictal-like bursts, which occurred during the repolarizing phase of SD, and the subsequent generation of paroxysmal depolarization shifts (PDSs), which are characterized by mild depolarization plateau with overriding spikes. The duration of the ictal-like activity was correlated with both the recovery time and the depolarization potential of SD, whereas the parameters of PDSs were not significantly correlated with the parameters of SD. Moreover, we systematically evaluated the effects of multiple anti-epileptic drugs (AEDs) on SD-induced epileptiform activity. Among the drugs that are known to inhibit voltage-gated sodium channels, carbamazepine, phenytoin, valproate, lamotrigine, and zonisamide reduced the frequency of PDSs and the overriding firing bursts in 20–25 min after the induction of SD. The GABA uptake inhibitor tiagabine exhibited moderate effects and partially limited the incidence of PDSs after SD. AEDs including gabapentin, levetiracetam, ethosuximide, felbamate, and vigabatrin, had no significant effect on SD-induced epileptic activity. Taken together, these results demonstrate the effects of AEDs on SD and the related epileptiform activity at the cellular level.
Collapse
|
11
|
The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nat Commun 2016; 7:11098. [PMID: 27020798 PMCID: PMC4820627 DOI: 10.1038/ncomms11098] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/19/2016] [Indexed: 11/26/2022] Open
Abstract
The extensive distribution and simultaneous termination of seizures across cortical areas has led to the hypothesis that seizures are caused by large-scale coordinated networks spanning these areas. This view, however, is difficult to reconcile with most proposed mechanisms of seizure spread and termination, which operate on a cellular scale. We hypothesize that seizures evolve into self-organized structures wherein a small seizing territory projects high-intensity electrical signals over a broad cortical area. Here we investigate human seizures on both small and large electrophysiological scales. We show that the migrating edge of the seizing territory is the source of travelling waves of synaptic activity into adjacent cortical areas. As the seizure progresses, slow dynamics in induced activity from these waves indicate a weakening and eventual failure of their source. These observations support a parsimonious theory for how large-scale evolution and termination of seizures are driven from a small, migrating cortical area. Epileptic brains display inhibitory restraint as manifested by the spread of synchronized activities being delayed in timing. Here, Elliot Smith and colleagues show fast-moving traveling wave that originates from the edge of ictal wavefront with subsequent depolarization and multiunit firing in the seizing brain regions in epileptic patients.
Collapse
|
12
|
Chauvette S, Soltani S, Seigneur J, Timofeev I. In vivo models of cortical acquired epilepsy. J Neurosci Methods 2016; 260:185-201. [PMID: 26343530 PMCID: PMC4744568 DOI: 10.1016/j.jneumeth.2015.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
The neocortex is the site of origin of several forms of acquired epilepsy. Here we provide a brief review of experimental models that were recently developed to study neocortical epileptogenesis as well as some major results obtained with these methods. Most of neocortical seizures appear to be nocturnal and it is known that neuronal activities reveal high levels of synchrony during slow-wave sleep. Therefore, we start the review with a description of mechanisms of neuronal synchronization and major forms of synchronized normal and pathological activities. Then, we describe three experimental models of seizures and epileptogenesis: ketamine-xylazine anesthesia as feline seizure triggered factor, cortical undercut as cortical penetrating wound model and neocortical kindling. Besides specific technical details describing these models we also provide major features of pathological brain activities recorded during epileptogenesis and seizures. The most common feature of all models of neocortical epileptogenesis is the increased duration of network silent states that up-regulates neuronal excitability and eventually leads to epilepsy.
Collapse
Affiliation(s)
- Sylvain Chauvette
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3
| | - Sara Soltani
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Josée Seigneur
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3
| | - Igor Timofeev
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada.
| |
Collapse
|
13
|
Akiyama T, Akiyama M, Kobayashi K, Okanishi T, Boelman CG, Nita DA, Ochi A, Go CY, Snead OC, Rutka JT, Drake JM, Chuang S, Otsubo H. Spatial relationship between fast and slow components of ictal activities and interictal epileptiform discharges in epileptic spasms. Clin Neurophysiol 2015; 126:1684-91. [DOI: 10.1016/j.clinph.2014.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
|
14
|
Sato Y, Doesburg SM, Wong SM, Okanishi T, Anderson R, Nita DA, Ochi A, Otsubo H. Dynamic changes of interictal post-spike slow waves toward seizure onset in focal cortical dysplasia type II. Clin Neurophysiol 2015; 126:1670-6. [DOI: 10.1016/j.clinph.2014.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/06/2014] [Accepted: 11/15/2014] [Indexed: 12/01/2022]
|
15
|
Abstract
All brain normal or pathological activities occur in one of the states of vigilance: wake, slow-wave sleep, or REM sleep. Neocortical seizures preferentially occur during slow-wave sleep. We provide a description of neuronal behavior and mechanisms mediating such a behavior within neocortex taking place in natural states of vigilance as well as during seizures pointing to similarities and differences exhibited during sleep and seizures. A concept of epileptic focus is described using a model of cortical undercut, because in that model, the borders of the focus are well defined. In this model, as in other models of acquired epilepsy, the main factor altering excitability is deafferentation, which upregulates neuronal excitability that promotes generation of seizures. Periods of disfacilitation recorded during slow-wave sleep further upregulate neuronal excitability. It appears that the state of neurons and neuronal network in the epileptic focus produced by deafferentation are such that seizures cannot be generated there. Instead, seizures always start around the perimeter of the undercut cortex. Therefore, we define these areas as the seizure focus. In this zone, neuronal connectivity and excitability are moderately enhanced, lowering the threshold for seizure generation.
Collapse
|
16
|
González-Ramírez LR, Ahmed OJ, Cash SS, Wayne CE, Kramer MA. A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination. PLoS Comput Biol 2015; 11:e1004065. [PMID: 25689136 PMCID: PMC4331426 DOI: 10.1371/journal.pcbi.1004065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/29/2014] [Indexed: 11/18/2022] Open
Abstract
Epilepsy--the condition of recurrent, unprovoked seizures--manifests in brain voltage activity with characteristic spatiotemporal patterns. These patterns include stereotyped semi-rhythmic activity produced by aggregate neuronal populations, and organized spatiotemporal phenomena, including waves. To assess these spatiotemporal patterns, we develop a mathematical model consistent with the observed neuronal population activity and determine analytically the parameter configurations that support traveling wave solutions. We then utilize high-density local field potential data recorded in vivo from human cortex preceding seizure termination from three patients to constrain the model parameters, and propose basic mechanisms that contribute to the observed traveling waves. We conclude that a relatively simple and abstract mathematical model consisting of localized interactions between excitatory cells with slow adaptation captures the quantitative features of wave propagation observed in the human local field potential preceding seizure termination.
Collapse
Affiliation(s)
- Laura R. González-Ramírez
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Omar J. Ahmed
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - C. Eugene Wayne
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Mark A. Kramer
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
17
|
Richard CD, Tanenbaum A, Audit B, Arneodo A, Khalil A, Frankel WN. SWDreader: a wavelet-based algorithm using spectral phase to characterize spike-wave morphological variation in genetic models of absence epilepsy. J Neurosci Methods 2014; 242:127-40. [PMID: 25549550 DOI: 10.1016/j.jneumeth.2014.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spike-wave discharges (SWD) found in neuroelectrical recordings are pathognomonic to absence epilepsy. The characteristic spike-wave morphology of the spike-wave complex (SWC) constituents of SWDs can be mathematically described by a subset of possible spectral power and phase values. Morlet wavelet transform (MWT) generates time-frequency representations well-suited to identifying this SWC-associated subset. NEW METHOD MWT decompositions of SWDs reveal spectral power concentrated at harmonic frequencies. The phase relationships underlying SWC morphology were identified by calculating the differences between phase values at SWD fundamental frequency from the 2nd, 3rd, and 4th harmonics, then using the three phase differences as coordinates to generate a density distribution in a {360°×360°×360°} phase difference space. Strain-specific density distributions were generated from SWDs of mice carrying the Gria4, Gabrg2, or Scn8a mutations to determine whether SWC morphological variants reliably mapped to the same regions of the distribution, and if distribution values could be used to detect SWD. COMPARISON WITH EXISTING METHODS To the best of our knowledge, this algorithm is the first to employ spectral phase to quantify SWC morphology, making it possible to computationally distinguish SWC morphological subtypes and detect SWDs. RESULTS/CONCLUSIONS Proof-of-concept testing of the SWDfinder algorithm shows: (1) a major pattern of variation in SWC morphology maps to one axis of the phase difference distribution, (2) variability between the strain-specific distributions reflects differences in the proportions of SWC subtypes generated during SWD, and (3) regularities in the spectral power and phase profiles of SWCs can be used to detect waveforms possessing SWC-like morphology.
Collapse
Affiliation(s)
- C D Richard
- The Jackson Laboratory, Bar Harbor, ME 04609 USA; Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA.
| | - A Tanenbaum
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO 63130 USA; CompuMAINE Lab, Department of Mathematics, University of Maine, Orono, ME 04469 USA
| | - B Audit
- Laboratoire de Physique, CNRS UMR 5672, Université de Lyon, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | - A Arneodo
- Laboratoire de Physique, CNRS UMR 5672, Université de Lyon, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | - A Khalil
- The Jackson Laboratory, Bar Harbor, ME 04609 USA; Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA; CompuMAINE Lab, Department of Mathematics, University of Maine, Orono, ME 04469 USA
| | - W N Frankel
- The Jackson Laboratory, Bar Harbor, ME 04609 USA; Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA; Tufts University School of Medicine, Sackler School, Boston, MA 02111 USA
| |
Collapse
|
18
|
Sato Y, Doesburg SM, Wong SM, Ochi A, Otsubo H. Dynamic preictal relations in FCD type II: potential for early seizure detection in focal epilepsy. Epilepsy Res 2014; 110:26-31. [PMID: 25616452 DOI: 10.1016/j.eplepsyres.2014.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/02/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
Abstract
In focal epilepsy, power imbalance between spike-related high frequency oscillations (HFOs) with 80-200 Hz and post-spike slow waves (PSS) in the spike and slow waves selectively occurs within the seizure onset zone (SOZ) before seizure onset. The aim of this study was to elucidate when this preictal power imbalance could occur in the SOZ. We analyzed intracranial EEG data from 6 patients with focal cortical dysplasia. During preictal 3-min period, which was divided into three intervals: 0-1 min, 1-2 min 2-3 min before seizure onset, we performed correlation (Spearman's coefficient) and simple linear regression analyses comparing power of spike-related HFOs and PSS. We analyzed 719 ± 57 (mean ± SD) spike and slow waves per patient, which were obtained from three seizures. In the SOZ, the positive correlation between spike-related HFO and PSS power was drastically reduced during preictal 3-min period, and the slope of regression line (ΔPSS power/ΔHFO power) decreased significantly during 0-1 min before seizure onset (p < 0.05, Steel-Dwass test). The present results indicate that the preictal dynamics of HFO and PSS power in the SOZ may have utility for early seizure detection.
Collapse
Affiliation(s)
- Yosuke Sato
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Sam M Doesburg
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| | - Simeon M Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Lemieux M, Chauvette S, Timofeev I. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation. J Neurophysiol 2014; 113:768-79. [PMID: 25392176 DOI: 10.1152/jn.00858.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During slow-wave sleep, neurons of the thalamocortical network are engaged in a slow oscillation (<1 Hz), which consists of an alternation between the active and the silent states. Several studies have provided insights on the transition from the silent, which are essentially periods of disfacilitation, to the active states. However, the conditions leading to the synchronous onset of the silent state remain elusive. We hypothesized that a synchronous input to local inhibitory neurons could contribute to the transition to the silent state in the cat suprasylvian gyrus during natural sleep and under ketamine-xylazine anesthesia. After partial and complete deafferentation of the cortex, we found that the silent state onset was more variable among remote sites. We found that the transition to the silent state was preceded by a reduction in excitatory postsynaptic potentials and firing probability in cortical neurons. We tested the impact of chloride-mediated inhibition in the silent-state onset. We uncovered a long-duration (100-300 ms) inhibitory barrage occurring about 250 ms before the silent state onset in 3-6% of neurons during anesthesia and in 12-15% of cases during natural sleep. These inhibitory activities caused a decrease in cortical firing that reduced the excitatory drive in the neocortical network. That chain reaction of disfacilitation ends up on the silent state. Electrical stimuli could trigger a network silent state with a maximal efficacy in deep cortical layers. We conclude that long-range afferents to the neocortex and chloride-mediated inhibition play a role in the initiation of the silent state.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Canada; and
| | - Sylvain Chauvette
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Canada; and
| | - Igor Timofeev
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Canada; and Department of Psychiatry and Neuroscience, Université Laval, Quebec, Canada
| |
Collapse
|
20
|
Zhou FW, Roper SN. TRPC3 mediates hyperexcitability and epileptiform activity in immature cortex and experimental cortical dysplasia. J Neurophysiol 2013; 111:1227-37. [PMID: 24353305 DOI: 10.1152/jn.00607.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal hyperexcitability plays an important role in epileptogenesis. Conditions of low extracellular calcium (Ca) or magnesium (Mg) can induce hyperexcitability and epileptiform activity with unclear mechanisms. Transient receptor potential canonical type 3 (TRPC3) channels play a pivotal role in neuronal excitability and are activated in low-Ca and/or low-Mg conditions to depolarize neurons. TRPC3 staining was highly enriched in immature, but very weak in mature, control cortex, whereas it was strong in dysplastic cortex at all ages. Depolarization and susceptibility to epileptiform activity increased with decreasing Ca and Mg. Combinations of low Ca and low Mg induced larger depolarization in pyramidal neurons and greater susceptibility to epileptiform activity in immature and dysplastic cortex than in mature and control cortex, respectively. Intracellular application of anti-TRPC3 antibody to block TRPC3 channels and bath application of the selective TRPC3 inhibitor Pyr3 greatly diminished depolarization in immature control and both immature and mature dysplastic cortex with strong TRPC3 expression. Epileptiform activity was initiated in low Ca and low Mg when synaptic activity was blocked, and Pyr3 completely suppressed this activity. In conclusion, TRPC3 primarily mediates low Ca- and low Mg-induced depolarization and epileptiform activity, and the enhanced expression of TRPC3 could make dysplastic and immature cortex more hyperexcitable and more susceptible to epileptiform activity.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Neurosurgery and McKnight Brain Institute, University of Florida, Gainesville, Florida
| | | |
Collapse
|
21
|
Yaron-Jakoubovitch A, Koch C, Segev I, Yarom Y. The unimodal distribution of sub-threshold, ongoing activity in cortical networks. Front Neural Circuits 2013; 7:116. [PMID: 23874270 PMCID: PMC3708135 DOI: 10.3389/fncir.2013.00116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/16/2013] [Indexed: 11/13/2022] Open
Abstract
The characterization of the subthreshold, ongoing activity in cortical neurons has been the focus of numerous studies. This activity, described as spontaneous slow waves in membrane potential, has been observed in a span of species in diverse cortical and subcortical areas. We here characterized membrane potential fluctuations in motor and the frontal association cortices cortical neurons of ketamine–xylazine anesthetized rats. We recorded from 95 neurons from a range of cortical depths to unravel the network and cellular mechanisms that shape the subthreshold ongoing spontaneous activity of these neurons. We define a unitary event that generates the subthreshold ongoing activity: giant synaptic potentials (GSPs). These events have a duration of 87 ± 50 ms and an amplitude of 19 ± 6.4 mV. They occur at a frequency of 3.7 ± 0.8 Hz and involve an increase in conductance change of 22 ± 21%. GSPs are mainly due to excitatory activity that occurs throughout all cortical layers, unaffected by the intrinsic properties of the cells. Indeed, blocking the GABAA receptors, a procedure that had a profound effect on cortical activity, did not alter these unitary events. We propose that this unitary event is composed of individual, excitatory synaptic potentials that appear at different levels of synchrony and that the level of synchrony determines the shape of the subthreshold activity.
Collapse
Affiliation(s)
- Anat Yaron-Jakoubovitch
- Department of Neurobiology, The Hebrew University Jerusalem, Israel ; The Interdisciplinary Centre for Neural Computation, The Edmond and Lily Safra Center for Brain Sciences The Hebrew University Jerusalem, Israel
| | | | | | | |
Collapse
|
22
|
Saikosaponin a Enhances Transient Inactivating Potassium Current in Rat Hippocampal CA1 Neurons. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:413092. [PMID: 23554830 PMCID: PMC3608310 DOI: 10.1155/2013/413092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/01/2013] [Indexed: 11/18/2022]
Abstract
Saikosaponin a (SSa), a main constituent of the Chinese herb Bupleurum chinense DC., has been demonstrated to have antiepileptic activity. Recent studies have shown that SSa could inhibit NMDA receptor current and persistent sodium current. However, the effects of SSa on potassium (K+) currents remain unclear. In this study, we tested the effect of SSa on 4AP-induced epileptiform discharges and K+ currents in CA1 neurons of rat hippocampal slices. We found that SSa significantly inhibited epileptiform discharges frequency and duration in hippocampal CA1 neurons in the 4AP seizure model in a dose-dependent manner with an IC50
of 0.7 μM. SSa effectively increased the amplitude of ITotal
and IA, significantly negative-shifted the activation curve, and positive-shifted steady-state curve of IA. However, SSa induced no significant changes in the amplitude and activation curve of IK. In addition, SSa significantly increased the amplitude of 4AP-sensitive K+ current, while there was no significant change in the amplitude of TEA-sensitive K+ current. Together, our data indicate that SSa inhibits epileptiform discharges induced by 4AP in a dose-dependent manner and that SSa exerts selectively enhancing effects on IA. These increases in IA may contribute to the anticonvulsant mechanisms of SSa.
Collapse
|
23
|
Yan B, Li P. The emergence of abnormal hypersynchronization in the anatomical structural network of human brain. Neuroimage 2013; 65:34-51. [DOI: 10.1016/j.neuroimage.2012.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 11/29/2022] Open
|
24
|
Boucetta S, Crochet S, Chauvette S, Seigneur J, Timofeev I. Extracellular Ca2+ fluctuations in vivo affect afterhyperpolarization potential and modify firing patterns of neocortical neurons. Exp Neurol 2012; 245:5-14. [PMID: 23262121 DOI: 10.1016/j.expneurol.2012.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/15/2012] [Accepted: 12/06/2012] [Indexed: 12/23/2022]
Abstract
Neocortical neurons can be classified in four major electrophysiological types according to their pattern of discharge: regular-spiking (RS), intrinsically-bursting (IB), fast-rhythmic-bursting (FRB), and fast-spiking (FS). Previously, we have shown that these firing patterns are not fixed and can change as a function of membrane potential and states of vigilance. Other studies have reported that extracellular calcium concentration ([Ca(2+)]o) fluctuates as a function of the phase of the cortical slow oscillation. In the present study we investigated how spontaneous and induced changes in [Ca(2+)]o affect the properties of action potentials (APs) and firing patterns in cortical neurons in vivo. Intracellular recordings were performed in cats anesthetized with ketamine-xylazine during spontaneous [Ca(2+)]o fluctuation and while changing [Ca(2+)]o with reverse microdialysis. When [Ca(2+)]o fluctuated spontaneously according to the phase of the slow oscillation, we found an increase of the firing threshold and a decrease of the afterhyperpolarization (AHP) amplitude during the depolarizing (active, up) phase of the slow oscillation and some neurons also changed their firing pattern as compared with the hyperpolarizing (silent, down) phase. Induced changes in [Ca(2+)]o significantly affected the AP properties in all neurons. The AHP amplitude was increased in high calcium conditions and decreased in low calcium conditions, in particular the earliest components. Modulation of spike AHP resulted in notable modulation of intrinsic firing pattern and some RS neurons revealed burst firing when [Ca(2+)]o was decreased. We also found an increase in AHP amplitude in high [Ca(2+)]o with in vitro preparation. We suggest that during spontaneous network oscillations in vivo, the dynamic changes of firing patterns depend partially on fluctuations of the [Ca(2+)]o.
Collapse
Affiliation(s)
- Sofiane Boucetta
- Department of Psychiatry and Neurosciences, Laval University, Québec, Canada G1V 0A6.
| | | | | | | | | |
Collapse
|
25
|
Zhang Y, Yan B, Wang M, Hu J, Lu H, Li P. Linking brain behavior to underlying cellular mechanisms via large-scale brain modeling and simulation. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Reato D, Cammarota M, Parra LC, Carmignoto G. Computational model of neuron-astrocyte interactions during focal seizure generation. Front Comput Neurosci 2012; 6:81. [PMID: 23091457 PMCID: PMC3467689 DOI: 10.3389/fncom.2012.00081] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to epileptiform activity by increasing neuronal excitability through a Ca2+-dependent release of glutamate. The underlying mechanism remains, however, unclear. In this study, we implemented a parsimonious network model of neurons and astrocytes. The model consists of excitatory and inhibitory neurons described by Izhikevich's neuron dynamics. The experimentally observed Ca2+ change in astrocytes in response to neuronal activity was modeled with linear equations. We considered that glutamate is released from astrocytes above certain intracellular Ca2+ concentrations thus providing a non-linear positive feedback signal to neurons. Propagating seizure-like ictal discharges (IDs) were reliably evoked in our computational model by repeatedly exciting a small area of the network, which replicates experimental results in a slice model of focal ID in entorhinal cortex. We found that the threshold of focal ID generation was lowered when an excitatory feedback-loop between astrocytes and neurons was included. Simulations show that astrocytes can contribute to ID generation by directly affecting the excitatory/inhibitory balance of the neuronal network. Our model can be used to obtain mechanistic insights into the distinct contributions of the different signaling pathways to the generation and propagation of focal IDs.
Collapse
Affiliation(s)
- Davide Reato
- Department of Biomedical Engineering, The City College of the City University of New York New York, NY, USA
| | | | | | | |
Collapse
|
27
|
van Putten MJ. The N20 in post-anoxic coma: Are you listening? Clin Neurophysiol 2012; 123:1460-4. [DOI: 10.1016/j.clinph.2011.10.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/04/2011] [Accepted: 10/15/2011] [Indexed: 10/14/2022]
|
28
|
Tryba AK, Kaczorowski CC, Ben-Mabrouk F, Elsen FP, Lew SM, Marcuccilli CJ. Rhythmic intrinsic bursting neurons in human neocortex obtained from pediatric patients with epilepsy. Eur J Neurosci 2011; 34:31-44. [PMID: 21722205 DOI: 10.1111/j.1460-9568.2011.07746.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neocortical oscillations result from synchronized activity of a synaptically coupled network and can be strongly influenced by the intrinsic firing properties of individual neurons. As such, the intrinsic electroresponsive properties of individual neurons may have important implications for overall network function. Rhythmic intrinsic bursting (rIB) neurons are of particular interest, as they are poised to initiate and/or strongly influence network oscillations. Although neocortical rIB neurons have been recognized in multiple species, the current study is the first to identify and characterize rIB neurons in the human neocortex. Using whole-cell current-clamp recordings, rIB neurons (n = 12) are identified in human neocortical tissue resected from pediatric patients with intractable epilepsy. In contrast to human regular spiking neurons (n = 12), human rIB neurons exhibit rhythmic bursts of action potentials at frequencies of 0.1-4 Hz. These bursts persist after blockade of fast excitatory neurotransmission and voltage-gated calcium channels. However, bursting is eliminated by subsequent application of the persistent sodium current (I(NaP)) blocker, riluzole. In the presence of riluzole (either 10 or 20 μm), human rIB neurons no longer burst, but fire tonically like regular spiking neurons. These data demonstrate that I(NaP) plays a critical role in intrinsic oscillatory activity observed in rIB neurons in the human neocortex. It is hypothesized that aberrant changes in I(NaP) expression and/or function may ultimately contribute to neurological diseases that are linked to abnormal network activity, such as epilepsy.
Collapse
Affiliation(s)
- Andrew K Tryba
- Department of Physiology, The Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Yan B, Li P. An integrative view of mechanisms underlying generalized spike-and-wave epileptic seizures and its implication on optimal therapeutic treatments. PLoS One 2011; 6:e22440. [PMID: 21811612 PMCID: PMC3141053 DOI: 10.1371/journal.pone.0022440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/24/2011] [Indexed: 12/27/2022] Open
Abstract
Many types of epileptic seizures are characterized by generalized spike-and-wave discharges. In the past, notable effort has been devoted to understanding seizure dynamics and various hypotheses have been proposed to explain the underlying mechanisms. In this paper, by taking an integrative view of the underlying mechanisms, we demonstrate that epileptic seizures can be generated by many different combinations of synaptic strengths and intrinsic membrane properties. This integrative view has important medical implications: the specific state of a patient characterized by a set of biophysical characteristics ultimately determines the optimal therapeutic treatment. Through the same view, we further demonstrate the potentiation effect of rational polypharmacy in the treatment of epilepsy and provide a new angle to resolve the debate on polypharmacy. Our results underscore the need for personalized medicine and demonstrate that computer modeling and simulation may play an important role in assisting the clinicians in selecting the optimal treatment on an individual basis.
Collapse
Affiliation(s)
- Boyuan Yan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, United States of America.
| | | |
Collapse
|
30
|
Timofeev I. Neuronal plasticity and thalamocortical sleep and waking oscillations. PROGRESS IN BRAIN RESEARCH 2011; 193:121-44. [PMID: 21854960 DOI: 10.1016/b978-0-444-53839-0.00009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma.
Collapse
Affiliation(s)
- Igor Timofeev
- The Centre de recherche Université Laval Robert-Giffard (CRULRG), Laval University, Québec, Canada.
| |
Collapse
|
31
|
Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model. Neuroimage 2010; 55:920-32. [PMID: 21195779 DOI: 10.1016/j.neuroimage.2010.12.074] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/15/2010] [Accepted: 12/24/2010] [Indexed: 12/24/2022] Open
Abstract
Generalised epileptic seizures are frequently accompanied by sudden, reversible transitions from low amplitude, irregular background activity to high amplitude, regular spike-wave discharges (SWD) in the EEG. The underlying mechanisms responsible for SWD generation and for the apparently spontaneous transitions to SWD and back again are still not fully understood. Specifically, the role of spatial cortico-cortical interactions in ictogenesis is not well studied. We present a macroscopic, neural mass model of a cortical column which includes two distinct time scales of inhibition. This model can produce both an oscillatory background and a pathological SWD rhythm. We demonstrate that coupling two of these cortical columns can lead to a bistability between out-of-phase, low amplitude background dynamics and in-phase, high amplitude SWD activity. Stimuli can cause state-dependent transitions from background into SWD. In an extended local area of cortex, spatial heterogeneities in a model parameter can lead to spontaneous reversible transitions from a desynchronised background to synchronous SWD due to intermittency. The deterministic model is therefore capable of producing absence seizure-like events without any time dependent adjustment of model parameters. The emergence of such mechanisms due to spatial coupling demonstrates the importance of spatial interactions in modelling ictal dynamics, and in the study of ictogenesis.
Collapse
|
32
|
Abstract
PURPOSE Seizures are associated with a reduction in extracellular Ca²(+) concentration ([Ca²(+) ](o) ) and an increase in extracellular K(+) concentration ([K(+) ](o) ). The long-range synchrony observed between distant electrodes during seizures is weak. We hypothesized that changes in extracellular ionic conditions during seizures are sufficient to alter synaptic neuronal responses and synchrony in the neocortex. METHODS We obtained in vivo and in vitro electrophysiologic recordings combined with microstimulation from cat/rat neocortical neurons during seizures and seizure-like ionic conditions. In vitro the [K(+) ](o) was 2.8, 6.25, 8.0, and 12 mm and the [Ca²(+) ](o) was 1.2 and 0.6 mm. KEY FINDINGS During seizures recorded in vivo, we observed abolition of evoked synaptic responses. In vitro, the membrane potential of both regular-spiking and fast-spiking neurons was depolarized in high [K(+) ](o) conditions and hyperpolarized in high [Ca²(+) ](o) conditions. During high [K(+) ](o) conditions, changes in [Ca²(+) ](o) did not affect membrane potential. The synaptic responsiveness of both regular-spiking and fast-spiking neurons was reduced during seizure-like ionic conditions. A reduction in [Ca²(+) ](o) to 0.6 mm increased failure rates but did not abolish responses. However, an increase in [K(+) ](o) to 12 mm abolished postsynaptic responses, which depended on a blockade in axonal spike propagation. SIGNIFICANCE We conclude that concomitant changes in [K(+) ](o) and [Ca²(+) ](o) observed during seizures contribute largely to the alterations of synaptic neuronal responses and to the decrease in long-range synchrony during neocortical seizures.
Collapse
Affiliation(s)
- Josée Seigneur
- Robert-Giffard Research Center, Laval University, Québec, Canada
| | | |
Collapse
|
33
|
Chen S, Su H, Yue C, Remy S, Royeck M, Sochivko D, Opitz T, Beck H, Yaari Y. An increase in persistent sodium current contributes to intrinsic neuronal bursting after status epilepticus. J Neurophysiol 2010; 105:117-29. [PMID: 20980543 DOI: 10.1152/jn.00184.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Brain damage causes multiple changes in synaptic function and intrinsic properties of surviving neurons, leading to the development of chronic epilepsy. In the widely used pilocarpine-status epilepticus (SE) rat model of temporal lobe epilepsy (TLE), a major alteration is the marked increase in the fraction of intrinsically bursting CA1 pyramidal cells. Here we have differentiated between two types of bursting phenotypes: 1) bursting in response to threshold-straddling excitatory current pulses (low-threshold bursting) and 2) bursting only in response to suprathreshold stimuli (high-threshold bursting). Low-threshold bursting prevailed in 46.5% of SE-experienced neurons sampled 1-4 wk after pilocarpine-SE, but was rarely seen in control neurons (1.9%). As previously shown, it appeared to be driven predominantly by a T-type Ca(2+) current (I(CaT)) in the apical dendrites. After blocking low-threshold bursting with Ni(2+), the same neurons still manifested a high-threshold bursting phenotype. Another 40.1% of SE-experienced neurons displayed only a high-threshold bursting phenotype and the remaining 13.4% of these neurons were nonbursters. Altogether, high-threshold bursting prevailed in 86.6% of SE-experienced neurons, but only in 33.0% of control neurons. Several lines of evidence indicated that high-threshold bursting is driven by persistent Na(+) current (I(NaP)) at or near the soma. Congruently, I(NaP) was 1.5-fold larger in SE-experienced versus control neurons. We conclude that an increase in I(NaP), conjointly with an increase in I(CaT), strongly contributes to the predominance of bursting phenotypes in CA1 pyramidal cells early after pilocarpine-SE and thus likely plays a role in the development of a chronic epileptic condition in this TLE model.
Collapse
Affiliation(s)
- Shmuel Chen
- Department of Medical Neurobiology, Hebrew University-Hadassah School of Medicine, P.O. Box 12272, Jerusalem 91121, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Functional, metabolic, and synaptic changes after seizures as potential targets for antiepileptic therapy. Epilepsy Behav 2010; 19:105-13. [PMID: 20705520 DOI: 10.1016/j.yebeh.2010.06.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 01/11/2023]
Abstract
Little is known about how the brain limits seizure duration and terminates seizures. Depending on severity and duration, a single seizure is followed by various functional, metabolic, and synaptic changes that may form targets for novel therapeutic strategies. It is long known that most seizures are followed by a period of postictal refractoriness during which the threshold for induction of additional seizures is increased. The endogenous anticonvulsant mechanisms involved in this phenomenon may be relevant for both spontaneous seizure arrest and increase of seizure threshold after seizure arrest. Postictal refractoriness has been extensively studied in various seizure and epilepsy models, including electrically and chemically induced seizures, kindling, and genetic animal models of epilepsy. During kindling development, two antagonistic processes occur simultaneously, one responsible for kindling-like events and the other for terminating ictus and postictal refractoriness. Frequently occurring seizures may lead to an accumulation of postictal refractoriness that may last weeks. The mechanisms involved in seizure termination and postictal refractoriness include changes in ionic microenvironment, in pH, and in various endogenous neuromodulators such as adenosine and neuropeptides. In animal models, the anticonvulsant efficacy of several antiepileptic drugs (AEDs) is increased during postictal refractoriness, which is a logical consequence of the interaction between endogenous anticonvulsant processes and the mechanism of AEDs. As discussed in this review, enhanced understanding of these endogenous processes may lead to novel targets for AED development.
Collapse
|
35
|
Fransén E, Tigerholm J. Role of A-type potassium currents in excitability, network synchronicity, and epilepsy. Hippocampus 2010; 20:877-87. [PMID: 19777555 DOI: 10.1002/hipo.20694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A-type potassium current (K(A)). Epileptogenic activity comprises a rich repertoire of characteristics, one of which is synchronized activity of principal cells as revealed by occurrences of for instance fast ripples. Synchronized activity of this kind is particularly efficient in driving target cells into spiking. In the recipient cell, this synchronized input generates large brief compound excitatory postsynaptic potentials (EPSPs). The fast activation and inactivation of K(A) lead us to hypothesize a potential role in suppression of such EPSPs. In this work, using computational modeling, we have studied the activation of K(A) by synaptic inputs of different levels of synchronicity. We find that K(A) participates particularly in suppressing inputs of high synchronicity. We also show that the selective suppression stems from the current's ability to become activated by potentials with high slopes. We further show that K(A) suppresses input mimicking the activity of a fast ripple. Finally, we show that the degree of selectivity of K(A) can be modified by changes to its kinetic parameters, changes of the type that are produced by the modulatory action of KChIPs and DPPs. We suggest that the wealth of modulators affecting K(A) might be explained by a need to control cellular excitability in general and suppression of responses to synchronicity in particular. Wealso suggest that compounds changing K(A)-kinetics may be used to pharmacologically improve epileptic status.
Collapse
Affiliation(s)
- Erik Fransén
- Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden.
| | | |
Collapse
|
36
|
Modulation of nickel-induced bursting with 4-aminopyridine in leech retzius nerve cells. ARCH BIOL SCI 2010. [DOI: 10.2298/abs1004035p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Paroxysmal depolarization shift has been identified as a characteristic
feature of the cellular basis of epilepsy. On Na+-dependent bursting, 1
mmol/l 4-aminopyridine (4-AP) produced a two-phase effect - a significant
depolarization accompanied by an increase in the frequency of bursting,
followed by repolarization along with a diminished frequency of bursting.
Neither 1 ?mol/l apamin nor 150 nmol/l charybdotoxin (ChTX) elicited any
significant effect on either bursting or standard conditions. Our results
suggest that 4-AP affects the bursting indirectly by altering the
excitability of the cell. The lack of effects of apamin and ChTX is probably
due to channel insensitivity to these blockers in leech.
Collapse
|
37
|
Pinato G, Pegoraro S, Iacono G, Ruaro ME, Torre V. Calcium control of gene regulation in rat hippocampal neuronal cultures. J Cell Physiol 2009; 220:727-47. [PMID: 19441076 DOI: 10.1002/jcp.21820] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Blockage of GABA-A receptors in hippocampal neuronal cultures triggers synchronous bursts of spikes initiating neuronal plasticity, partly mediated by changes of gene expression. By using specific pharmacological blockers, we have investigated which sources of Ca2+ entry primarily control changes of gene expression induced by 20 microM gabazine applied for 30 min (GabT). Intracellular Ca2+ transients were monitored with Ca2+ imaging while recording electrical activity with patch clamp microelectrodes. Concomitant transcription profiles were obtained using Affymetrix oligonucleotide microarrays and confirmed with quantitative RT-PCR. Blockage of NMDA receptors with 2-amino-5-phosphonovaleric acid (APV) did not reduce significantly somatic Ca2+ transients, which, on the contrary, were reduced by selective blockage of L, N, and P/Q types voltage gated calcium channels (VGCCs). Therefore, we investigated changes of gene expression in the presence of blockers of NMDA receptors and L, N, and P/Q VGCCs. Our results show that: (i) among genes upregulated by GabT, there are genes selectively dependent on NMDA activation, genes selectively dependent on L-type VGCCs and genes dependent on the activation of both channels; (ii) the majority of genes requires the concomitant activation of NMDA receptors and Ca2+ entry through VGCCs; (iii) blockage of N and P/Q VGCCs has an effect similar but not identical to blockage of L-type VGCCs.
Collapse
|
38
|
Holmes GL. Commentary on Hewapathirane et al. (in vivo imaging of seizure activity in a novel developmental seizure model) seizure-induced brain damage: from tadpoles to children. Exp Neurol 2008; 213:7-9. [PMID: 18639873 DOI: 10.1016/j.expneurol.2008.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/10/2008] [Accepted: 05/13/2008] [Indexed: 12/29/2022]
Affiliation(s)
- Gregory L Holmes
- Department of Neurology, Dartmouth Medical School, Hanover, New Hampshire, USA.
| |
Collapse
|
39
|
Abstract
Although often overshadowed by factors influencing seizure initiation, seizure termination is a critical step in the return to the interictal state. Understanding the mechanisms contributing to seizure termination could potentially identify novel targets for anticonvulsant drug development and may also highlight the pathophysiological processes contributing to seizure initiation. In this article, we review known physiological mechanisms contributing to seizure termination and discuss additional mechanisms that are likely to be relevant even though specific data are not yet available. This review is organized according to successively increasing "size scales"-from membranes to synapses to networks to circuits. We first discuss mechanisms of seizure termination acting at the shortest distances and affecting the excitable membranes of neurons in the seizure onset zone. Next we consider the contributions of ensembles of neurons and glia interacting at intermediate distances within the region of the seizure onset zone. Lastly, we consider the contribution of brain nuclei, such as the substantia nigra pars reticulata (SNR), that are capable of modulating seizures and exert their influence over the seizure onset zone (and neighboring areas) from a relatively great-in neuroanatomical terms-distance. It is our hope that the attention to the mechanisms contributing to seizure termination will stimulate novel avenues of epilepsy research and will contribute to improved patient care.
Collapse
Affiliation(s)
- Fred A Lado
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, NY 10461, USA.
| | | |
Collapse
|
40
|
Bazhenov M, Timofeev I, Fröhlich F, Sejnowski TJ. Cellular and network mechanisms of electrographic seizures. DRUG DISCOVERY TODAY. DISEASE MODELS 2008; 5:45-57. [PMID: 19190736 PMCID: PMC2633479 DOI: 10.1016/j.ddmod.2008.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epileptic seizures constitute a complex multiscale phenomenon that is characterized by synchronized hyperexcitation of neurons in neuronal networks. Recent progress in understanding pathological seizure dynamics provides crucial insights into underlying mechanisms and possible new avenues for the development of novel treatment modalities. Here we review some recent work that combines in vivo experiments and computational modeling to unravel the pathophysiology of seizures of cortical origin. We particularly focus on how activity-dependent changes in extracellular potassium concentration affects the intrinsic dynamics of neurons involved in cortical seizures characterized by spike/wave complexes and fast runs.
Collapse
Affiliation(s)
- Maxim Bazhenov
- The Salk Institute for Biological Studies, La Jolla, CA 92037
| | | | | | | |
Collapse
|
41
|
Kager H, Wadman WJ, Somjen GG. Seizure-like afterdischarges simulated in a model neuron. J Comput Neurosci 2007; 22:105-28. [PMID: 17053996 DOI: 10.1007/s10827-006-0001-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 07/17/2006] [Accepted: 08/14/2006] [Indexed: 02/04/2023]
Abstract
To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a "glial-endothelial" buffer system. Ion channels for Na+, K+, Ca2+ and Cl- ion antiport 3Na/Ca, and "active" ion pumps were represented in the neuron membrane. The glia had "leak" conductances and an ion pump. Fluxes, concentration changes and cell swelling were computed. The neuron was stimulated by injecting current. Afterdischarge (AD) followed stimulation if depolarization due to rising interstitial K+ concentration ([K+]o) activated persistent Na+ current (INa.P). AD was either simple or self-regenerating; either regular (tonic) or burst-type (clonic); and always self-limiting. Self-regenerating AD required sufficient INa.P to ensure re-excitation. Burst firing depended on activation of dendritic Ca2+ currents and Ca-dependent K+ current. Varying glial buffer function influenced [K+]o accumulation and afterdischarge duration. Variations in Na+ and K+ currents influenced the threshold and the duration of AD. The data show that high [K+]o and intrinsic membrane currents can produce the feedback of self-regenerating afterdischarges without synaptic input. The simulated discharge resembles neuron behavior during paroxysmal firing in living brain tissue.
Collapse
Affiliation(s)
- H Kager
- SILS-Center for NeuroScience, University of Amsterdam, Kruislaan 320, 1098 SM, Amsterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Johnson HA, Buonomano DV. Development and plasticity of spontaneous activity and Up states in cortical organotypic slices. J Neurosci 2007; 27:5915-25. [PMID: 17537962 PMCID: PMC6672255 DOI: 10.1523/jneurosci.0447-07.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical computations are an emergent property of neural dynamics. To understand how neural dynamics emerges within local cortical networks, we characterized the development and underlying mechanisms of spontaneous dynamics in cortical organotypic slices. We observed not only a quantitative increase in the levels of spontaneous dynamics, but a qualitative transition from brief bursts of activity to well defined Up states during the first 4 weeks in vitro. Analysis of cellular and synaptic properties indicates that these changes are driven by increasing excitatory drive accompanied by changes in the balance of excitation and inhibition. Examination of the structure of spontaneous dynamics revealed no evidence of precisely repeating patterns. Slices exposed to chronic patterned stimulation exhibited decreased levels of spontaneous activity, suggesting homeostatic control of the levels of network activity. Together, these results suggest that Up states reflect a fundamental mode of network dynamics that emerges through the orchestrated regulation of multiple cellular and synaptic properties in parallel.
Collapse
Affiliation(s)
- Hope A. Johnson
- Departments of Neurobiology and Psychology and Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Dean V. Buonomano
- Departments of Neurobiology and Psychology and Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
43
|
Trasande CA, Ramirez JM. Activity deprivation leads to seizures in hippocampal slice cultures: is epilepsy the consequence of homeostatic plasticity? J Clin Neurophysiol 2007; 24:154-64. [PMID: 17414971 DOI: 10.1097/wnp.0b013e318033787f] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY Neural networks operate robustly despite destabilizing factors, ranging from gene product turnover to circuit refinement, throughout life. Maintaining functional robustness of neuronal networks critically depends upon forms of homeostatic plasticity including synaptic scaling. Synaptic strength and intrinsic excitability have been shown to "scale" (up or down) in response to altered ambient activity levels, and this has led to the general idea that homeostatic plasticity operates along a continuum. After 48 hours of activity deprivation, cultured hippocampal networks exhibited a homeostatic-type reconfiguration that was discrete: a switch from spontaneous spiking to oscillatory bursting. Blockade of fast glutamatergic and GABAergic transmission abolished spontaneous network bursting, but the majority of neurons exhibited intrinsic bursting in response to current injection, which was not the case in control tissue. This de novo intrinsic bursting could be blocked by cadmium chloride, suggesting that this bursting involves calcium mechanisms. Immunohistochemistry confirmed that activity-deprived slice cultures exhibited a widespread upregulation of voltage-dependent calcium channels compared with controls. Calcium imaging studies from activity-deprived slices demonstrated that spontaneous bursting was not a local behavior, but rather a global, synchronous phenomenon, reminiscent of seizure activity. These data suggest that the input/output transformation of individual neurons undergoing homeostatic remodeling is more complex than simple scaling. Network consequences of this transformation include network destabilization of epileptic proportions. Spontaneous activity plays a critical role in actively maintaining homeostatic balance in networks, which is lost after activity deprivation.
Collapse
Affiliation(s)
- Caitlin Aptowicz Trasande
- Committee on Neurobiology, Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
44
|
Kemenes I, Straub VA, Nikitin ES, Staras K, O'Shea M, Kemenes G, Benjamin PR. Role of delayed nonsynaptic neuronal plasticity in long-term associative memory. Curr Biol 2006; 16:1269-79. [PMID: 16824916 DOI: 10.1016/j.cub.2006.05.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/17/2006] [Accepted: 05/18/2006] [Indexed: 02/05/2023]
Abstract
BACKGROUND It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. RESULTS By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. CONCLUSIONS We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.
Collapse
Affiliation(s)
- Ildikó Kemenes
- Sussex Centre for Neuroscience, Department of Biological and Environmental Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
van Drongelen W, Koch H, Elsen FP, Lee HC, Mrejeru A, Doren E, Marcuccilli CJ, Hereld M, Stevens RL, Ramirez JM. Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. J Neurophysiol 2006; 96:2564-77. [PMID: 16870839 DOI: 10.1152/jn.00446.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most types of electrographic epileptiform activity can be characterized by isolated or repetitive bursts in brain electrical activity. This observation is our motivation to determine mechanisms that underlie bursting behavior of neuronal networks. Here we show that the persistent sodium (Na(P)) current in mouse neocortical slices is associated with cellular bursting and our data suggest that these cells are capable of driving networks into a bursting state. This conclusion is supported by the following observations. 1) Both low concentrations of tetrodotoxin (TTX) and riluzole reduce and eventually stop network bursting while they simultaneously abolish intrinsic bursting properties and sensitivity levels to electrical stimulation in individual intrinsically bursting cells. 2) The sensitivity levels of regular spiking neurons are not significantly affected by riluzole or TTX at the termination of network bursting. 3) Propagation of cellular bursting in a neuronal network depended on excitatory connectivity and disappeared on bath application of CNQX (20 microM) + CPP (10 microM). 4) Voltage-clamp measurements show that riluzole (20 microM) and very low concentrations of TTX (50 nM) attenuate Na(P) currents in the neural membrane within a 1-min interval after bath application of the drug. 5) Recordings of synaptic activity demonstrate that riluzole at this concentration does not affect synaptic properties. 6) Simulations with a neocortical network model including different types of pyramidal cells, inhibitory interneurons, neurons with and without Na(P) currents, and recurrent excitation confirm the essence of our experimental observations that Na(P) conductance can be a critical factor sustaining slow population bursting.
Collapse
Affiliation(s)
- Wim van Drongelen
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637-1470, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Žiburkus J, Cressman JR, Barreto E, Schiff. SJ. Interneuron and pyramidal cell interplay during in vitro seizure-like events. J Neurophysiol 2006; 95:3948-54. [PMID: 16554499 PMCID: PMC1469233 DOI: 10.1152/jn.01378.2005] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excitatory and inhibitory (EI) interactions shape network activity. However, little is known about the EI interactions in pathological conditions such as epilepsy. To investigate EI interactions during seizure-like events (SLEs), we performed simultaneous dual and triple whole cell and extracellular recordings in pyramidal cells and oriens interneurons in rat hippocampal CA1. We describe a novel pattern of interleaving EI activity during spontaneous in vitro SLEs generated by the potassium channel blocker 4-aminopyridine in the presence of decreased magnesium. Interneuron activity was increased during interictal periods. During ictal discharges interneurons entered into long-lasting depolarization block (DB) with suppression of spike generation; simultaneously, pyramidal cells produced spike trains with increased frequency (6-14 Hz) and correlation. After this period of runaway excitation, interneuron postictal spiking resumed and pyramidal cells became progressively quiescent. We performed correlation measures of cell-pair interactions using either the spikes alone or the subthreshold postsynaptic interspike signals. EE spike correlation was notably increased during interneuron DB, whereas subthreshold EE correlation decreased. EI spike correlations increased at the end of SLEs, whereas II subthreshold correlations increased during DB. Our findings underscore the importance of complex cell-type-specific neuronal interactions in the formation of seizure patterns.
Collapse
Affiliation(s)
- Jokūbas Žiburkus
- Center for Neural Dynamics, Krasnow Institute
- Contact information Jokūbas Žiburkus, George Mason University, MS2A1, Krasnow Institute, Center for Neural Dynamics, Fairfax, VA 22030, Tel. 703-993-4372/4332, Fax. 703-993-4440, e-mail:
| | | | - Ernest Barreto
- Center for Neural Dynamics, Krasnow Institute
- Department of Physics and Astronomy
- Program in Neuroscience and
| | - Steven J. Schiff.
- Center for Neural Dynamics, Krasnow Institute
- Program in Neuroscience and
- Department of Psychology, George Mason University, MS2A1, Fairfax, VA 22030
| |
Collapse
|
47
|
Aracri P, Colombo E, Mantegazza M, Scalmani P, Curia G, Avanzini G, Franceschetti S. Layer-specific properties of the persistent sodium current in sensorimotor cortex. J Neurophysiol 2006; 95:3460-8. [PMID: 16467432 DOI: 10.1152/jn.00588.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the characteristics of the persistent sodium current (I(NaP)) in pyramidal neurons of layers II/III and V in slices of rat sensorimotor cortex using whole cell patch-clamp recordings. In both layers, I(NaP) began activating around -60 mV and was half-activated at -43 mV. The I(NaP) peak amplitude and density were significantly higher in layer V. The voltage-dependent I(NaP) steady-state inactivation occurred at potentials that were significantly more positive in layer V (V(1/2): -42.3 +/- 1.1 mV) than in layer II/III (V(1/2): -46.8 +/- 1.6 mV). In both layers, a current fraction corresponding to about 25% of the maximal peak amplitude did not inactivate. The time course of I(NaP) inactivation and recovery from inactivation could be fitted with a biexponential function. In layer V pyramidal neurons the faster time constant of development of inactivation had variable values, ranging from 158.0 to 1,133.8 ms, but it was on average significantly slower than that in layer II/III (425.9 +/- 80.5 vs. 145.8 +/- 18.2 ms). In both layers, I(NaP) did not completely inactivate even with very long conditioning depolarizations (40 s at -10 mV). Recovery from inactivation was similar in the two layers. Layer V intrinsically bursting and regular spiking nonadapting neurons showed particularly prolonged depolarized plateau potentials when Ca2+ and K+ currents were blocked and slower early phase of I(NaP) development of inactivation. The biexponential kinetics characterizing the time-dependent inactivation of I(NaP) in layers II/III and V indicates a complex inactivating process that is incomplete, allowing a residual "persistent" current fraction that does not inactivate. Moreover, our data indicate that I(NaP) has uneven inactivation properties in pyramidal neurons of different layers of rat sensorimotor cortex. The higher current density, the rightward shifted voltage dependency of inactivation as well the slower kinetics of inactivation characterizing I(NaP) in layer V with respect to layer II/III pyramidal neurons may play a significant role in their ability to fire recurrent action potential bursts, as well in the high susceptibility to generate epileptic events.
Collapse
Affiliation(s)
- P Aracri
- C. Besta National Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Fröhlich F, Bazhenov M, Timofeev I, Sejnowski TJ. Maintenance and termination of neocortical oscillations by dynamic modulation of intrinsic and synaptic excitability. THALAMUS & RELATED SYSTEMS 2005; 3:147-156. [PMID: 20556224 PMCID: PMC2885743 DOI: 10.1017/s147292880700015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mechanisms underlying seizure cessation remain elusive. The Lennox-Gastaut syndrome, a severe childhood epileptic disorder, is characterized by episodes of seizure with alternating epochs of spike-wave and fast run discharges. In a detailed computational model that incorporates extracellular potassium dynamics, we studied the dynamics of these state transitions between slow and fast oscillations. We show that dynamic modulation of synaptic transmission can cause termination of paroxysmal activity. An activity-dependent shift in the balance between synaptic excitation and inhibition towards more excitation caused seizure termination by favoring the slow oscillatory state, which permits recovery of baseline extracellular potassium concentration. We found that slow synaptic depression and change in chloride reversal potential can have similar effects on the seizure dynamics. Our results indicate a novel role for synaptic dynamics during epileptic neural activity patterns.
Collapse
Affiliation(s)
- Flavio Fröhlich
- The Salk Institute, Computational Neurobiology Laboratory, La Jolla, CA, 92037
| | | | | | | |
Collapse
|
50
|
Abstract
A key goal in functional neuroimaging is to use signals that are related to local changes in metabolism and blood flow to track the neuronal correlates of mental activity. Recent findings indicate that the dendritic processing of excitatory synaptic inputs correlates more closely than the generation of spikes with brain imaging signals. The correlation is often nonlinear and context-sensitive, and cannot be generalized for every condition or brain region. The vascular signals are mainly produced by increases in intracellular calcium in neurons and possibly astrocytes, which activate important enzymes that produce vasodilators to generate increments in flow and the positive blood oxygen level dependent signal. Our understanding of the cellular mechanisms of functional imaging signals places constraints on the interpretation of the data.
Collapse
Affiliation(s)
- Martin Lauritzen
- Department of Clinical Neurophysiology, Glostrup Hospital, DK-2600 Glostrup, Denmark.
| |
Collapse
|