1
|
Yaeger DB, Coddington EJ. Calcium-induced calcium release activates spontaneous miniature outward currents in newt medullary reticular formation neurons. J Neurophysiol 2018; 120:3140-3154. [PMID: 29897864 DOI: 10.1152/jn.00616.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurons in the medullary reticular formation are involved in the control of postural and locomotor behaviors in all vertebrates. Reticulospinal neurons in this brain region provide one of the major descending projections to the spinal cord. Although neurons in the newt medullary reticular formation have been extensively studied using in vivo extracellular recordings, little is known of their intrinsic biophysical properties or of the underlying circuitry of this region. Using whole cell patch-clamp recordings in brain slices containing the rostromedial reticular formation from adult male newts, we observed spontaneous miniature outward currents (SMOCs) in ~2/3 of neurons. Although SMOCs superficially resembled inhibitory postsynaptic currents (IPSCs), they had slower risetimes and decay times than spontaneous IPSCs. SMOCs required intracellular Ca2+ release from ryanodine receptors and were also dependent on the influx of extracellular Ca2+. SMOCs were unaffected by apamin but were partially blocked by iberiotoxin and charybdotoxin, indicating that SMOCs were mediated by big-conductance Ca2+-activated K+ channels. Application of the sarco/endoplasmic Ca2+ ATPase inhibitor cyclopiazonic acid blocked the generation of SMOCs and also increased neural excitability. Neurons with SMOCs had significantly broader action potentials, slower membrane time constants, and higher input resistance than neurons without SMOCs. Thus, SMOCs may serve as a mechanism to regulate action potential threshold in a majority of neurons within the newt medullary reticular formation. NEW & NOTEWORTHY The medullary reticular formation exerts a powerful influence on sensorimotor integration and subsequent motor behavior, yet little is known about the neurons involved. In this study, we identify a transient potassium current that regulates action potential threshold in a majority of medullary reticular neurons.
Collapse
|
2
|
SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron. J Neurosci 2017; 37:10738-10747. [PMID: 28982705 DOI: 10.1523/jneurosci.1243-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 11/21/2022] Open
Abstract
Reliable and precise signal transmission is essential in circuits of the auditory brainstem to encode timing with submillisecond accuracy. Globular bushy cells reliably and faithfully transfer spike signals to the principal neurons of the medial nucleus of the trapezoid body (MNTB) through the giant glutamatergic synapse, the calyx of Held. Thus, the MNTB works as a relay nucleus that preserves the temporal pattern of firing at high frequency. Using whole-cell patch-clamp recordings, we observed a K+ conductance mediated by small-conductance calcium-activated potassium (SK) channels in the MNTB neurons from rats of either sex. SK channels were activated by intracellular Ca2+ sparks and mediated spontaneous transient outward currents in developing MNTB neurons. SK channels were also activated by Ca2+ influx through voltage-gated Ca2+ channels and synaptically activated NMDA receptors. Blocking SK channels with apamin depolarized the resting membrane potential, reduced resting conductance, and affected the responsiveness of MNTB neurons to signal inputs. Moreover, SK channels were activated by action potentials and affected the spike afterhyperpolarization. Blocking SK channels disrupted the one-to-one signal transmission from presynaptic calyces to postsynaptic MNTB neurons and induced extra postsynaptic action potentials in response to presynaptic firing. These data reveal that SK channels play crucial roles in regulating the resting properties and maintaining reliable signal transmission of MNTB neurons.SIGNIFICANCE STATEMENT Reliable and precise signal transmission is required in auditory brainstem circuits to localize the sound source. The calyx of Held synapse in the mammalian medial nucleus of the trapezoid body (MNTB) plays an important role in sound localization. We investigated the potassium channels that shape the reliability of signal transfer across the calyceal synapse and observed a potassium conductance mediated by small-conductance calcium-activated potassium (SK) channels in rat MNTB principal neurons. We found that SK channels are tonically activated and contribute to the resting membrane properties of MNTB neurons. Interestingly, SK channels are transiently activated by calcium sparks and calcium influx during action potentials and control the one-to-one signal transmission from presynaptic calyces to postsynaptic MNTB neurons.
Collapse
|
3
|
Comparisons of Neuronal and Excitatory Network Properties between the Rat Brainstem Nuclei that Participate in Vertical and Horizontal Gaze Holding. eNeuro 2017; 4:eN-NWR-0180-17. [PMID: 28966973 PMCID: PMC5616193 DOI: 10.1523/eneuro.0180-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Gaze holding is primarily controlled by neural structures including the prepositus hypoglossi nucleus (PHN) for horizontal gaze and the interstitial nucleus of Cajal (INC) for vertical and torsional gaze. In contrast to the accumulating findings of the PHN, there is no report regarding the membrane properties of INC neurons or the local networks in the INC. In this study, to verify whether the neural structure of the INC is similar to that of the PHN, we investigated the neuronal and network properties of the INC using whole-cell recordings in rat brainstem slices. Three types of afterhyperpolarization (AHP) profiles and five firing patterns observed in PHN neurons were also observed in INC neurons. However, the overall distributions based on the AHP profile and the firing patterns of INC neurons were different from those of PHN neurons. The application of burst stimulation to a nearby site of a recorded INC neuron induced an increase in the frequency of spontaneous EPSCs. The duration of the increased EPSC frequency of INC neurons was not significantly different from that of PHN neurons. The percent of duration reduction induced by a Ca2+-permeable AMPA (CP-AMPA) receptor antagonist was significantly smaller in the INC than in the PHN. These findings suggest that local excitatory networks that activate sustained EPSC responses also exist in the INC, but their activation mechanisms including the contribution of CP-AMPA receptors differ between the INC and the PHN.
Collapse
|
4
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
5
|
Saito Y, Zhang Y, Yanagawa Y. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model. Eur J Neurosci 2015; 41:1036-48. [PMID: 25808645 DOI: 10.1111/ejn.12878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 11/28/2022]
Abstract
Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan; Department of Neurophysiology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | | | | |
Collapse
|
6
|
Zhang Y, Kaneko R, Yanagawa Y, Saito Y. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors. Eur J Neurosci 2014; 39:1294-313. [PMID: 24593297 DOI: 10.1111/ejn.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/11/2013] [Accepted: 01/10/2014] [Indexed: 02/02/2023]
Abstract
Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | |
Collapse
|
7
|
Abstract
New concepts on potassium channel function in neuroinflammation suggest that they regulate mechanisms of microglial activation, including intracellular calcium homeostasis, morphological alterations, pro-inflammatory cytokine release, antigen presentation, and phagocytosis. Although little is known about voltage independent potassium channels in microglia, special attention emerges on small (SK/KCNN1-3/K(Ca)2) and intermediate (IK/KCNN4/K(Ca)3.1)-conductance calcium-activated potassium channels as regulators of microglial activation in the field of research on neuroinflammation and neurodegeneration. In particular, recent findings suggested that SK/K(Ca)2 channels, by regulating calcium homeostasis, may elicit a dual mechanism of action with protective properties in neurons and inhibition of inflammatory responses in microglia. Thus, modulating SK/K(Ca)2 channels and calcium signaling may provide novel therapeutic strategies in neurological disorders, where neuronal cell death and inflammatory responses concomitantly contribute to disease progression. Here, we review the particular role of SK/K(Ca)2 channels for [Ca(2+)](i) regulation in microglia and neurons, and we discuss the potential impact for further experimental approaches addressing novel therapeutic strategies in neurological diseases, where neuronal cell death and neuroinflammatory processes are prominent.
Collapse
Affiliation(s)
- Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg Marburg, Germany
| | | |
Collapse
|
8
|
Saito Y, Yanagawa Y. Ca(2+)-activated ion currents triggered by ryanodine receptor-mediated Ca(2+) release control firing of inhibitory neurons in the prepositus hypoglossi nucleus. J Neurophysiol 2012; 109:389-404. [PMID: 23100137 DOI: 10.1152/jn.00617.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous miniature outward currents (SMOCs) are known to exist in smooth muscles and peripheral neurons, and evidence for the presence of SMOCs in central neurons has been accumulating. SMOCs in central neurons are induced through Ca(2+)-activated K(+) (K(Ca)) channels, which are activated through Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum via ryanodine receptors (RyRs). Previously, we found that some neurons in the prepositus hypoglossi nucleus (PHN) showed spontaneous outward currents (SOCs). In the present study, we used whole cell recordings in slice preparations of the rat brain stem to investigate the following: 1) the ionic mechanisms of SOCs, 2) the types of neurons exhibiting frequent SOCs, and 3) the effect of Ca(2+)-activated conductance on neuronal firing. Pharmacological analyses revealed that SOCs were induced via the activation of small-conductance-type K(Ca) (SK) channels and RyRs, indicating that SOCs correspond to SMOCs. An analysis of the voltage responses to current pulses of the fluorescence-expressing inhibitory neurons of transgenic rats revealed that inhibitory neurons frequently exhibited SOCs. Abolition of SOCs via blockade of SK channels enhanced the frequency of spontaneous firing of inhibitory PHN neurons. However, abolition of SOCs via blockade of RyRs reduced the firing frequency and hyperpolarized the membrane potential. Similar reductions in firing frequency and hyperpolarization were also observed when Ca(2+)-activated nonselective cation (CAN) channels were blocked. These results suggest that, in inhibitory neurons in the PHN, Ca(2+) release via RyRs activates SK and CAN channels, and these channels regulate spontaneous firing in a complementary manner.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | |
Collapse
|
9
|
Affiliation(s)
- John P. Adelman
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239;
| | - James Maylie
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon 97239;
| | - Pankaj Sah
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia;
| |
Collapse
|
10
|
Abstract
All cells use changes in intracellular calcium concentration ([Ca(2+)](i)) to regulate cell signalling events. In neurons, with their elaborate dendritic and axonal arborizations, there are clear examples of both localized and widespread Ca(2+) signals. [Ca(2+)](i) changes that are generated by Ca(2+) entry through voltage- and ligand-gated channels are the best characterized. In addition, the release of Ca(2+) from intracellular stores can result in increased [Ca(2+)](i); the signals that trigger this release have been less well-studied, in part because they are not usually associated with specific changes in membrane potential. However, recent experiments have revealed dramatic widespread Ca(2+) waves and localized spark-like events, particularly in dendrites. Here we review emerging data on the nature of these signals and their functions.
Collapse
|