1
|
Errante A, Rossi Sebastiano A, Castellani N, Rozzi S, Fogassi L, Garbarini F. Shared body representation constraints in human and non-human primates behavior. Cortex 2024; 181:179-193. [PMID: 39550836 DOI: 10.1016/j.cortex.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/30/2024] [Accepted: 10/06/2024] [Indexed: 11/19/2024]
Abstract
Previous studies indicated that the sense of body ownership (i.e., the feeling that our body parts belong to us; SBO) can be experimentally modulated in humans. Here, we focused on SBO from an across-species perspective, by investigating whether similar bottom-up and top-down constraints that consent to build SBO in humans also operate to build it in monkeys. To this aim, one monkey and a cohort of humans (N = 20) performed a paradigm combining the well-known rubber hand illusion (RHI), able to induce a fake hand embodiment, and a hand-identification reaching task, borrowed from the clinical evaluation of patients with SBO disorders. This task consisted of reaching one's own hand with the other, while presenting a fake hand in different conditions controlling for bottom-up (synchronicity of the visuo-tactile stimulation) and top-down (congruency of the fake hand position relative to the monkey's body) SBO constraints. Spatiotemporal kinematic features of such self-directed movements were measured. Our results show that, when the monkey aimed at the own hand, the trajectory of self-directed movements was attracted by the position of the hand believed to be one's own (i.e., the fake hand), as in humans. Interestingly, such an effect was present only when both bottom-up and top-down constraints were met. Moreover, in the monkey, besides displacement of movement trajectory, also other kinematic parameters (velocity peak, deceleration phase) showed sensitivity to the embodiment effect. Overall, if replicated in a larger sample of monkeys, these results should support the view that human and non-human primates share similar body representation constraints and that they are able to modulate the motor behavior in both species.
Collapse
Affiliation(s)
- A Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - N Castellani
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy; MoMiLab, IMT School for Advanced Studies, Lucca, Italy
| | - S Rozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - L Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - F Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| |
Collapse
|
2
|
Mazzeo A, Uliano M, Mucci P, Penzotti M, Angelini L, Cini F, Craighero L, Controzzi M. Human manipulation strategy when changing object deformability and task properties. Sci Rep 2024; 14:15819. [PMID: 38982184 PMCID: PMC11233673 DOI: 10.1038/s41598-024-65551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Robotic literature widely addresses deformable object manipulation, but few studies analyzed human manipulation accounting for different levels of deformability and task properties. We asked participants to grasp and insert rigid and deformable objects into holes with varying tolerances and depths, and we analyzed the grasping behavior, the reaching velocity profile, and completion times. Results indicated that the more deformable the object is, the nearer the grasping point is to the extremity to be inserted. For insertions in the long hole, the selection of the grasping point is a trade-off between task accuracy and the number of re-grasps required to complete the insertion. The compliance of the deformable object facilitates the alignment between the object and the hole. The reaching velocity profile when increasing deformability recalls the one observed when task accuracy and precision decrease. Identifying human strategy allows the implementation of human-inspired high-level reasoning algorithms for robotic manipulation.
Collapse
Affiliation(s)
- A Mazzeo
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - M Uliano
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - P Mucci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - M Penzotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - L Angelini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - F Cini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - L Craighero
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - M Controzzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
3
|
Guerra S, Castiello U, Bonato B, Dadda M. Handedness in Animals and Plants. BIOLOGY 2024; 13:502. [PMID: 39015821 PMCID: PMC7616222 DOI: 10.3390/biology13070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Structural and functional asymmetries are traceable in every form of life, and some lateralities are homologous. Functionally speaking, the division of labour between the two halves of the brain is a basic characteristic of the nervous system that arose even before the appearance of vertebrates. The most well-known expression of this specialisation in humans is hand dominance, also known as handedness. Even if hand/limb/paw dominance is far more commonly associated with the presence of a nervous system, it is also observed in its own form in aneural organisms, such as plants. To date, little is known regarding the possible functional significance of this dominance in plants, and many questions remain open (among them, whether it reflects a generalised behavioural asymmetry). Here, we propose a comparative approach to the study of handedness, including plants, by taking advantage of the experimental models and paradigms already used to study laterality in humans and various animal species. By taking this approach, we aim to enrich our knowledge of the concept of handedness across natural kingdoms.
Collapse
Affiliation(s)
- Silvia Guerra
- Department of General Psychology (DPG), University of Padova, 35131 Padova, Italy; (U.C.); (B.B.); (M.D.)
| | | | | | | |
Collapse
|
4
|
Greene P, Bastian AJ, Schieber MH, Sarma SV. Optimal reaching subject to computational and physical constraints reveals structure of the sensorimotor control system. Proc Natl Acad Sci U S A 2024; 121:e2319313121. [PMID: 38551834 PMCID: PMC10998569 DOI: 10.1073/pnas.2319313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 04/02/2024] Open
Abstract
Optimal feedback control provides an abstract framework describing the architecture of the sensorimotor system without prescribing implementation details such as what coordinate system to use, how feedback is incorporated, or how to accommodate changing task complexity. We investigate how such details are determined by computational and physical constraints by creating a model of the upper limb sensorimotor system in which all connection weights between neurons, feedback, and muscles are unknown. By optimizing these parameters with respect to an objective function, we find that the model exhibits a preference for an intrinsic (joint angle) coordinate representation of inputs and feedback and learns to calculate a weighted feedforward and feedback error. We further show that complex reaches around obstacles can be achieved by augmenting our model with a path-planner based on via points. The path-planner revealed "avoidance" neurons that encode directions to reach around obstacles and "placement" neurons that make fine-tuned adjustments to via point placement. Our results demonstrate the surprising capability of computationally constrained systems and highlight interesting characteristics of the sensorimotor system.
Collapse
Affiliation(s)
- Patrick Greene
- Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD21218
| | - Amy J. Bastian
- Kennedy Krieger Institute, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Marc H. Schieber
- Department of Neurology, University of Rochester, Rochester, NY14642
| | - Sridevi V. Sarma
- Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD21218
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine & Whiting School of Engineering, Baltimore, MD21218
| |
Collapse
|
5
|
Rouzitalab A, Boulay CB, Park J, Sachs AJ. Intracortical brain-computer interfaces in primates: a review and outlook. Biomed Eng Lett 2023; 13:375-390. [PMID: 37519868 PMCID: PMC10382423 DOI: 10.1007/s13534-023-00286-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 08/01/2023] Open
Abstract
Brain-computer interfaces (BCI) translate brain signals into artificial output to restore or replace natural central nervous system (CNS) functions. Multiple processes, including sensorimotor integration, decision-making, motor planning, execution, and updating, are involved in any movement. For example, a BCI may be better able to restore naturalistic motor behaviors if it uses signals from multiple brain areas and decodes natural behaviors' cognitive and motor aspects. This review provides an overview of the preliminary information necessary to plan a BCI project focusing on intracortical implants in primates. Since the brain structure and areas of non-human primates (NHP) are similar to humans, exploring the result of NHP studies will eventually benefit human BCI studies. The different types of BCI systems based on the target cortical area, types of signals, and decoding methods will be discussed. In addition, various successful state-of-the-art cases will be reviewed in more detail, focusing on the general algorithm followed in the real-time system. Finally, an outlook for improving the current BCI research studies will be debated.
Collapse
Affiliation(s)
- Alireza Rouzitalab
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5 Canada
- The Ottawa Hospital Research Institute, Ottawa, ON Canada
| | | | - Jeongwon Park
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5 Canada
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV 89557 USA
| | - Adam J. Sachs
- The Ottawa Hospital Research Institute, Ottawa, ON Canada
- The University of Ottawa Brain and Mind Research Institute, Ottawa, ON Canada
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, ON Canada
| |
Collapse
|
6
|
Shaw L, Wang KH, Mitchell J. Fast prediction in marmoset reach-to-grasp movements for dynamic prey. Curr Biol 2023; 33:2557-2565.e4. [PMID: 37279754 PMCID: PMC10330526 DOI: 10.1016/j.cub.2023.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Primates have evolved sophisticated, visually guided reaching behaviors for interacting with dynamic objects, such as insects, during foraging.1,2,3,4,5 Reaching control in dynamic natural conditions requires active prediction of the target's future position to compensate for visuo-motor processing delays and to enhance online movement adjustments.6,7,8,9,10,11,12 Past reaching research in non-human primates mainly focused on seated subjects engaged in repeated ballistic arm movements to either stationary targets or targets that instantaneously change position during the movement.13,14,15,16,17 However, those approaches impose task constraints that limit the natural dynamics of reaching. A recent field study in marmoset monkeys highlights predictive aspects of visually guided reaching during insect prey capture among wild marmoset monkeys.5 To examine the complementary dynamics of similar natural behavior within a laboratory context, we developed an ecologically motivated, unrestrained reach-to-grasp task involving live crickets. We used multiple high-speed video cameras to capture the movements of common marmosets (Callithrix jacchus) and crickets stereoscopically and applied machine vision algorithms for marker-free object and hand tracking. Contrary to estimates under traditional constrained reaching paradigms, we find that reaching for dynamic targets can operate at incredibly short visuo-motor delays around 80 ms, rivaling the speeds that are typical of the oculomotor systems during closed-loop visual pursuit.18 Multivariate linear regression modeling of the kinematic relationships between the hand and cricket velocity revealed that predictions of the expected future location can compensate for visuo-motor delays during fast reaching. These results suggest a critical role of visual prediction facilitating online movement adjustments for dynamic prey.
Collapse
Affiliation(s)
- Luke Shaw
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kuan Hong Wang
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jude Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14611, USA.
| |
Collapse
|
7
|
Izawa J, Higo N, Murata Y. Accounting for the valley of recovery during post-stroke rehabilitation training via a model-based analysis of macaque manual dexterity. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1042912. [PMID: 36644290 PMCID: PMC9838193 DOI: 10.3389/fresc.2022.1042912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Background True recovery, in which a stroke patient regains the same precise motor skills observed in prestroke conditions, is the fundamental goal of rehabilitation training. However, a transient drop in task performance during rehabilitation training after stroke, observed in human clinical outcome as well as in both macaque and squirrel monkey retrieval data, might prevent smooth transitions during recovery. This drop, i.e., recovery valley, often occurs during the transition from compensatory skill to precision skill. Here, we sought computational mechanisms behind such transitions and recovery. Analogous to motor skill learning, we considered that the motor recovery process is composed of spontaneous recovery and training-induced recovery. Specifically, we hypothesized that the interaction of these multiple skill update processes might determine profiles of the recovery valley. Methods A computational model of motor recovery was developed based on a state-space model of motor learning that incorporates a retention factor and interaction terms for training-induced recovery and spontaneous recovery. The model was fit to previously reported macaque motor recovery data where the monkey practiced precision grip skills after a lesion in the sensorimotor area in the cortex. Multiple computational models and the effects of each parameter were examined by model comparisons based on information criteria and sensitivity analyses of each parameter. Result Both training-induced and spontaneous recoveries were necessary to explain the behavioral data. Since these two factors contributed following logarithmic function, the training-induced recovery were effective only after spontaneous biological recovery had developed. In the training-induced recovery component, the practice of the compensation also contributed to recovery of the precision grip skill as if there is a significant generalization effect of learning between these two skills. In addition, a retention factor was critical to explain the recovery profiles. Conclusions We found that spontaneous recovery, training-induced recovery, retention factors, and interaction terms are crucial to explain recovery and recovery valley profiles. This simulation-based examination of the model parameters provides suggestions for effective rehabilitation methods to prevent the recovery valley, such as plasticity-promoting medications, brain stimulation, and robotic rehabilitation technologies.
Collapse
Affiliation(s)
- Jun Izawa
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan,Correspondence: Jun Izawa Yumi Murata
| | - Noriyuki Higo
- Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yumi Murata
- Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan,Correspondence: Jun Izawa Yumi Murata
| |
Collapse
|
8
|
Yan Y, Sobinov AR, Bensmaia SJ. Prehension kinematics in humans and macaques. J Neurophysiol 2022; 127:1669-1678. [PMID: 35642848 DOI: 10.1152/jn.00522.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Non-human primates, especially rhesus macaques, have been a dominant model to study sensorimotor control of the upper limbs. Indeed, human and macaques have similar hands and homologous neural circuits to mediate manual behavior. However, few studies have systematically and quantitatively compared the manual behaviors of the two species. Such comparison is critical for assessing the validity of using the macaque sensorimotor system as a model of its human counterpart. In this study, we systematically compared the prehensile behaviors of humans and rhesus macaques using an identical experimental setup. We found human and macaque prehension kinematics to be generally similar with a few subtle differences. While the structure of the pre-shaping hand postures is similar in humans and macaques, human postures are more object-specific and human joints are less intercorrelated. Conversely, monkeys demonstrate more stereotypical pre-shaping behaviors that are common across all objects and more variability in their postures across repeated presentations of the same object. Despite these subtle differences in manual behavior between humans and monkeys, our results bolster the use of the macaque model to understand the neural mechanisms of manual dexterity in humans.
Collapse
Affiliation(s)
- Yuke Yan
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Matić A, Valerjev P, Gomez-Marin A. Hierarchical Control of Visually-Guided Movements in a 3D-Printed Robot Arm. Front Neurorobot 2021; 15:755723. [PMID: 34776921 PMCID: PMC8589028 DOI: 10.3389/fnbot.2021.755723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The control architecture guiding simple movements such as reaching toward a visual target remains an open problem. The nervous system needs to integrate different sensory modalities and coordinate multiple degrees of freedom in the human arm to achieve that goal. The challenge increases due to noise and transport delays in neural signals, non-linear and fatigable muscles as actuators, and unpredictable environmental disturbances. Here we examined the capabilities of hierarchical feedback control models proposed by W. T. Powers, so far only tested in silico. We built a robot arm system with four degrees of freedom, including a visual system for locating the planar position of the hand, joint angle proprioception, and pressure sensing in one point of contact. We subjected the robot to various human-inspired reaching and tracking tasks and found features of biological movement, such as isochrony and bell-shaped velocity profiles in straight-line movements, and the speed-curvature power law in curved movements. These behavioral properties emerge without trajectory planning or explicit optimization algorithms. We then applied static structural perturbations to the robot: we blocked the wrist joint, tilted the writing surface, extended the hand with a tool, and rotated the visual system. For all of them, we found that the arm in machina adapts its behavior without being reprogrammed. In sum, while limited in speed and precision (by the nature of the do-it-yourself inexpensive components we used to build the robot from scratch), when faced with the noise, delays, non-linearities, and unpredictable disturbances of the real world, the embodied control architecture shown here balances biological realism with design simplicity.
Collapse
Affiliation(s)
- Adam Matić
- Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante, Spain
| | - Pavle Valerjev
- Department of Psychology, University of Zadar, Zadar, Croatia
| | - Alex Gomez-Marin
- Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante, Spain
| |
Collapse
|
10
|
Wang Q, Guerra S, Ceccarini F, Bonato B, Castiello U. Sowing the seeds of intentionality: Motor intentions in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1949818. [PMID: 34346847 PMCID: PMC8525965 DOI: 10.1080/15592324.2021.1949818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Motor intention/intentionality has been investigated from a wide variety of perspectives: some researchers have, for example, been focusing on the purely physical and mechanical aspects underlying the control of action, while others have been concentrating on subjective intentionality. Basically, all approaches ranging from the neuroscientific to phenomenological-inspired ones have been used to investigate motor intentions. The current study set out to examine motor intentions in connection to plant behavior utilizing the final goal of plant action as the definition of its motor intention. Taking a wide-angle approach, the first part of the review is dedicated to examining philosophical and psychological studies on motor intentions. Recent data demonstrating that plant behavior does indeed seem goal-directed will then be reviewed as we ponder the possibility of purposeful or intentional plant responses to stimuli and stress conditions in their environment. The article will draw to a close as we examine current theories attempting to explain plants' overt behavior and corresponding covert representations.
Collapse
Affiliation(s)
- Qiuran Wang
- Department of General Psychology, University of Padua, Padua, Italy
| | - Silvia Guerra
- Department of General Psychology, University of Padua, Padua, Italy
| | | | - Bianca Bonato
- Department of General Psychology, University of Padua, Padua, Italy
| | | |
Collapse
|
11
|
Blood Analysis of Laboratory Macaca mulatta Used for Neuroscience Research: Investigation of Long-Term and Cumulative Effects of Implants, Fluid Control, and Laboratory Procedures. eNeuro 2021; 8:ENEURO.0284-21.2021. [PMID: 34556556 PMCID: PMC8528508 DOI: 10.1523/eneuro.0284-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
The nonhuman primate (NHP) constitutes an extraordinarily important model in neuroscience research for understanding the neuronal underpinnings of perceptual, motor, cognitive, and executive functions of the primate brain, and to study the physiological causes, effects, and potential treatments of brain disorders. Because of their cognitive capabilities, NHPs receive special attention in animal welfare regulations around the world, and their well-being is a benchmark for the evaluation, monitoring, and refinement of experimental procedures. As a consequence, many typical neuroscientific procedures are considered only mildly severe by animal welfare boards. There is, however, an ongoing debate about possible long-term and cumulative effects. Because of a lack of longitudinal data, it is unclear whether mildly severe procedures may cause more significant harm on the long-term, and to what extent they may impact animal well-being and healthiness over time. We here make use of a database of blood samples drawn over a period of 15 years from 39 rhesus monkeys (Macaca mulatta) to address the issue of long-term, cumulative effects of neuroscientific procedures. A careful analysis of indicative primate blood markers for chronic inflammation, hydration status, and stress levels, their comparison to baseline values from both the same animals and the literature, and evaluation of additional hematologic, physiological, and behavioral parameters did not provide support for the notion of long-term, cumulative effects on the monkeys’ healthiness and well-being. The results may serve the community as a reference for the severity assessment of neuroscientific experiments involving NHPs.
Collapse
|
12
|
Diomedi S, Vaccari FE, Galletti C, Hadjidimitrakis K, Fattori P. Motor-like neural dynamics in two parietal areas during arm reaching. Prog Neurobiol 2021; 205:102116. [PMID: 34217822 DOI: 10.1016/j.pneurobio.2021.102116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The classical view on motor control makes a clear distinction between the role of motor cortex in controlling muscles and parietal cortex in processing movement plans and goals. However, the strong parieto-frontal connections argue against such clear-cut separation of function. Modern dynamical approaches revealed that population activity in motor cortex can be captured by a limited number of patterns, called neural states that are preserved across diverse motor behaviors. Whether such dynamics are also present in parietal cortex is unclear. Here, we studied neural dynamics in the primate parietal cortex during arm movements and found three main states temporally coupled to the planning, execution and target holding epochs. Strikingly, as reported recently in motor cortex, execution was subdivided into distinct, arm acceleration- and deceleration-related, states. These results suggest that dynamics across parieto-frontal areas are highly consistent and hint that parietal population activity largely reflects timing constraints while motor actions unfold.
Collapse
Affiliation(s)
- S Diomedi
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - F E Vaccari
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - C Galletti
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - K Hadjidimitrakis
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| | - P Fattori
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| |
Collapse
|
13
|
Can Plants Move Like Animals? A Three-Dimensional Stereovision Analysis of Movement in Plants. Animals (Basel) 2021; 11:ani11071854. [PMID: 34206479 PMCID: PMC8300309 DOI: 10.3390/ani11071854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Intrigued by the ability of climbing peas to detect and grasp structures such as garden reeds, we adapted a method classically used to investigate the grasping movement of animals to the study of grasping movements in plants. We used time-lapse photography to document the behavior of pea plants, grown in the vicinity of a support pole. Using this footage, we analyzed the kinematics of tendrils growth and found that their approach and grasp exhibited movement signatures comparable to those characterizing the reach-to-grasp movement of animals. Through our method it may be possible to demonstrate that plants may be more sentient than we give them credit for: namely, they may possess the ability to act intentionally. Abstract In this article we adapt a methodology customarily used to investigate movement in animals to study the movement of plants. The targeted movement is circumnutation, a helical organ movement widespread among plants. It is variable due to a different magnitude of the trajectory (amplitude) exhibited by the organ tip, duration of one cycle (period), circular, elliptical, pendulum-like or irregular shape and the clockwise and counterclockwise direction of rotation. The acquisition setup consists of two cameras used to obtain a stereoscopic vision for each plant. Cameras switch to infrared recording mode for low light level conditions, allowing continuous motion acquisition during the night. A dedicated software enables semi-automatic tracking of key points of the plant and reconstructs the 3D trajectory of each point along the whole movement. Three-dimensional trajectories for different points undergo a specific processing to compute those features suitable to describe circumnutation (e.g., maximum speed, circumnutation center, circumnutation length, etc.). By applying our method to the approach-to-grasp movement exhibited by climbing plants (Pisum sativum L.) it appears clear that the plants scale movement kinematics according to the features of the support in ways that are adaptive, flexible, anticipatory and goal-directed, reminiscent of how animals would act.
Collapse
|
14
|
Betti S, Deceuninck M, Sartori L, Castiello U. Action Observation and Effector Independency. Front Hum Neurosci 2019; 13:416. [PMID: 32038195 PMCID: PMC6988794 DOI: 10.3389/fnhum.2019.00416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022] Open
Abstract
The finding of reasonably consistent spatial and temporal productions of actions across different body parts has been used to argue in favor of the existence of a high-order representation of motor programs. In these terms, a generalized motor program consists of an abstract memory structure apt to specify a class of non-specific instructions used to guide a broad range of movements (e.g., “grasp,” “bite”). Although a number of studies, using a variety of tasks, have assessed the issue of effector independence in terms of action execution, little is known regarding the issue of effector independence within an action observation context. Here corticospinal excitability (CSE) of the right hand’s first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles was assessed by means of single-pulse transcranial magnetic stimulation (spTMS) during observation of a grasping action performed by the hand, the foot, the mouth, the elbow, or the knee. The results indicate that observing a grasping action performed with different body parts activates the effector typically adopted to execute that action, i.e., the hand. We contend that, as far as grasping is concerned, motor activations by action observation are evident in the muscles typically used to perform the observed action, even when the action is executed with another effector. Nevertheless, some exceptions call for a deeper analysis of motor coding.
Collapse
Affiliation(s)
- Sonia Betti
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marie Deceuninck
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Luisa Sartori
- Department of General Psychology, University of Padova, Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Guerra S, Peressotti A, Peressotti F, Bulgheroni M, Baccinelli W, D'Amico E, Gómez A, Massaccesi S, Ceccarini F, Castiello U. Flexible control of movement in plants. Sci Rep 2019; 9:16570. [PMID: 31719580 PMCID: PMC6851115 DOI: 10.1038/s41598-019-53118-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022] Open
Abstract
Although plants are essentially sessile in nature, these organisms are very much in tune with their environment and are capable of a variety of movements. This may come as a surprise to many non-botanists, but not to Charles Darwin, who reported that plants do produce movements. Following Darwin's specific interest on climbing plants, this paper will focus on the attachment mechanisms by the tendrils. We draw attention to an unsolved problem in available literature: whether during the approach phase the tendrils of climbing plants consider the structure of the support they intend to grasp and plan the movement accordingly ahead of time. Here we report the first empirical evidence that this might be the case. The three-dimensional (3D) kinematic analysis of a climbing plant (Pisum sativum L.) demonstrates that the plant not only perceives the support, but it scales the kinematics of tendrils' aperture according to its thickness. When the same support is represented in two-dimensions (2D), and thus unclimbable, there is no evidence for such scaling. In these circumstances the tendrils' kinematics resemble those observed for the condition in which no support was offered. We discuss these data in light of the evidence suggesting that plants are equipped with sensory mechanisms able to provide the necessary information to plan and control a movement.
Collapse
Affiliation(s)
- Silvia Guerra
- Dipartimento di Psicologia Generale, Università degli studi di Padova, Padova, Italy
| | - Alessandro Peressotti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli studi di Udine, Udine, Italy
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione, Università degli studi di Padova, Padova, Italy
| | | | | | | | | | - Stefano Massaccesi
- Dipartimento di Psicologia Generale, Università degli studi di Padova, Padova, Italy
| | - Francesco Ceccarini
- Dipartimento di Psicologia Generale, Università degli studi di Padova, Padova, Italy
| | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|