1
|
Barrios JP, Wang WC, England R, Reifenberg E, Douglass AD. Hypothalamic Dopamine Neurons Control Sensorimotor Behavior by Modulating Brainstem Premotor Nuclei in Zebrafish. Curr Biol 2020; 30:4606-4618.e4. [PMID: 33007241 DOI: 10.1016/j.cub.2020.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023]
Abstract
Dopamine (DA)-producing neurons are critically involved in the production of motor behaviors in multiple circuits that are conserved from basal vertebrates to mammals. Although there is increasing evidence that DA neurons in the hypothalamus play a locomotor role, their precise contributions to behavior and the circuit mechanisms by which they are achieved remain unclear. Here, we demonstrate that tyrosine-hydroxylase-2-expressing (th2+) DA neurons in the zebrafish hypothalamus fire phasic bursts of activity to acutely promote swimming and modulate audiomotor behaviors on fast timescales. Their anatomy and physiology reveal two distinct functional DA modules within the hypothalamus. The first comprises an interconnected set of cerebrospinal-fluid-contacting DA nuclei surrounding the 3rd ventricle, which lack distal projections outside of the hypothalamus and influence locomotion through unknown means. The second includes neurons in the preoptic nucleus, which send long-range projections to targets throughout the brain, including the mid- and hindbrain, where they activate premotor circuits involved in swimming and sensorimotor integration. These data suggest a broad regulation of motor behavior by DA neurons within multiple hypothalamic nuclei and elucidate a novel functional mechanism for the preoptic DA neurons in the initiation of movement.
Collapse
Affiliation(s)
- Joshua P Barrios
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Wei-Chun Wang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Roman England
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Erica Reifenberg
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Mao Z, Bo Q, Li W, Wang Z, Ma X, Wang C. Prepulse inhibition in patients with bipolar disorder: a systematic review and meta-analysis. BMC Psychiatry 2019; 19:282. [PMID: 31510965 PMCID: PMC6737635 DOI: 10.1186/s12888-019-2271-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 09/03/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Prepulse inhibition (PPI) is a measurement method for the sensory gating process, which helps the brain adapt to complex environments. PPI may be reduced in patients with bipolar disorder (BD). This study investigated PPI deficits in BD and pooled the effect size of PPI in patients with BD. METHODS We conducted a literature search on PPI in patients with BD from inception to July 27, 2019 in PubMed, Embase, Cochrane Library databases, and Chinese databases. No age, sex, and language restriction were set. The calculation formula was PPI = 100 - [100*((prepulse - pulse amplitude) / pulse amplitude)]. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of studies. RESULTS Ten eligible papers were identified, of which five studies including a total of 141 euthymic patients and 132 healthy controls (HC) were included in the meta-analysis. Compared with HC, euthymic patients with BD had significantly lower PPI at the 60 ms interstimulus interval (ISI) between pulse and prepulse (P = 0.476, I2 = 0.0%, SMD = - 0.32, 95% CI = - 0.54 - -0.10). Sensitivity analysis shows no significant change in the combined effect value after removing any single study. There was no publication bias using the Egger's test at 60 ms (P = 0.606). The meta-analysis of PPI at the 60 ms ISI could have significant clinical heterogeneity in mood episode state, as well as lack of data on BD I or II subtypes. CONCLUSIONS Euthymic patients with BD show PPI deficits at the 60 ms, suggesting a deficit in the early sensory gate underlying PPI. The PPI inhibition rate at a 60 ms interval is a stable index. More research is needed in the future to confirm this outcome, and to delve deeper into the mechanisms behind deficits.
Collapse
Affiliation(s)
- Zhen Mao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Weidi Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Zhimin Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
3
|
do Carmo Silva RX, Lima-Maximino MG, Maximino C. The aversive brain system of teleosts: Implications for neuroscience and biological psychiatry. Neurosci Biobehav Rev 2018; 95:123-135. [DOI: 10.1016/j.neubiorev.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
|
4
|
Park C, Clements KN, Issa FA, Ahn S. Effects of Social Experience on the Habituation Rate of Zebrafish Startle Escape Response: Empirical and Computational Analyses. Front Neural Circuits 2018; 12:7. [PMID: 29459823 PMCID: PMC5807392 DOI: 10.3389/fncir.2018.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
While the effects of social experience on nervous system function have been extensively investigated in both vertebrate and invertebrate systems, our understanding of how social status differentially affects learning remains limited. In the context of habituation, a well-characterized form of non-associative learning, we investigated how the learning processes differ between socially dominant and subordinate in zebrafish (Danio rerio). We found that social status and frequency of stimulus inputs influence the habituation rate of short latency C-start escape response that is initiated by the Mauthner neuron (M-cell). Socially dominant animals exhibited higher habituation rates compared to socially subordinate animals at a moderate stimulus frequency, but low stimulus frequency eliminated this difference of habituation rates between the two social phenotypes. Moreover, habituation rates of both dominants and subordinates were higher at a moderate stimulus frequency compared to those at a low stimulus frequency. We investigated a potential mechanism underlying these status-dependent differences by constructing a simplified neurocomputational model of the M-cell escape circuit. The computational study showed that the change in total net excitability of the model M-cell was able to replicate the experimental results. At moderate stimulus frequency, the model M-cell with lower total net excitability, that mimicked a dominant-like phenotype, exhibited higher habituation rates. On the other hand, the model with higher total net excitability, that mimicked the subordinate-like phenotype, exhibited lower habituation rates. The relationship between habituation rates and characteristics (frequency and amplitude) of the repeated stimulus were also investigated. We found that habituation rates are decreasing functions of amplitude and increasing functions of frequency while these rates depend on social status (higher for dominants and lower for subordinates). Our results show that social status affects habituative learning in zebrafish, which could be mediated by a summative neuromodulatory input to the M-cell escape circuit, which enables animals to readily learn to adapt to changes in their social environment.
Collapse
Affiliation(s)
- Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Katie N Clements
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| |
Collapse
|
5
|
Medan V, Mäki-Marttunen T, Sztarker J, Preuss T. Differential processing in modality-specific Mauthner cell dendrites. J Physiol 2017; 596:667-689. [PMID: 29148564 DOI: 10.1113/jp274861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/11/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS The present study examines dendritic integrative processes that occur in many central neurons but have been challenging to study in vivo in the vertebrate brain. The Mauthner cell of goldfish receives auditory and visual information via two separate dendrites, providing a privileged scenario for in vivo examination of dendritic integration. The results show differential attenuation properties in the Mauthner cell dendrites arising at least partly from differences in cable properties and the nonlinear behaviour of the respective dendritic membranes. In addition to distinct modality-dependent membrane specialization in neighbouring dendrites of the Mauthner cell, we report cross-modal dendritic interactions via backpropagating postsynaptic potentials. Broadly, the results of the present study provide an exceptional example for the processing power of single neurons. ABSTRACT Animals process multimodal information for adaptive behavioural decisions. In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that, we studied the Mauthner cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We investigated whether electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. The results obtained show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked postsynaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction because auditory evoked PSPs invade the ventral dendrite (VD), as well as the opposite where visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical, with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. The results obtained in the present study suggest modality-dependent membrane specialization in M-cell dendrites suited for processing stimuli of different time domains and, more broadly, provide a compelling example of information processing in single neurons.
Collapse
Affiliation(s)
- Violeta Medan
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Tuomo Mäki-Marttunen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Clinical Medicine, University of Oslo, OUS, Nydalen, Oslo, Norway.,Simula Research Laboratory, Lysaker, Norway
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Thomas Preuss
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| |
Collapse
|
6
|
Bronson DR, Preuss T. Cellular Mechanisms of Cortisol-Induced Changes in Mauthner-Cell Excitability in the Startle Circuit of Goldfish. Front Neural Circuits 2017; 11:68. [PMID: 29033795 PMCID: PMC5625080 DOI: 10.3389/fncir.2017.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Predator pressure and olfactory cues (alarm substance) have been shown to modulate Mauthner cell (M-cell) initiated startle escape responses (C-starts) in teleost fish. The regulation of such adaptive responses to potential threats is thought to involve the release of steroid hormones such as cortisol. However, the mechanism by which cortisol may regulate M-cell excitability is not known. Here, we used intrasomatic, in vivo recordings to elucidate the acute effects of cortisol on M-cell membrane properties and sound evoked post-synaptic potentials (PSPs). Cortisol tonically decreased threshold current in the M-cell within 10 min before trending towards baseline excitability over an hour later, which may indicate the involvement of non-genomic mechanisms. Consistently, current ramp injection experiments showed that cortisol increased M-cell input resistance in the depolarizing membrane, i.e., by a voltage-dependent postsynaptic mechanism. Cortisol also increases the magnitude of sound-evoked M-cell PSPs by reducing the efficacy of local feedforward inhibition (FFI). Interestingly, another pre-synaptic inhibitory network mediating prepulse inhibition (PPI) remained unaffected. Together, our results suggest that cortisol rapidly increases M-cell excitability via a post-synaptic effector mechanism, likely a chloride conductance, which, in combination with its dampening effect on FFI, will modulate information processing to reach threshold. Given the central role of the M-cell in initiating startle, these results are consistent with a role of cortisol in mediating the expression of a vital behavior.
Collapse
Affiliation(s)
- Daniel R Bronson
- The Graduate Center, City University of New York, New York, NY, United States
| | - Thomas Preuss
- Hunter College, City University of New York, New York, NY, United States
| |
Collapse
|
7
|
Socially induced plasticity in sensorimotor gating in the African cichlid fish Astatotilapia burtoni. Behav Brain Res 2017; 332:32-39. [DOI: 10.1016/j.bbr.2017.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
|
8
|
Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making. J Neurosci 2017; 37:2137-2148. [PMID: 28093472 DOI: 10.1523/jneurosci.1548-16.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022] Open
Abstract
In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish (Danio rerio) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response.SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability.
Collapse
|
9
|
Mäki-Marttunen T, Halnes G, Devor A, Witoelar A, Bettella F, Djurovic S, Wang Y, Einevoll GT, Andreassen OA, Dale AM. Functional Effects of Schizophrenia-Linked Genetic Variants on Intrinsic Single-Neuron Excitability: A Modeling Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:49-59. [PMID: 26949748 DOI: 10.1016/j.bpsc.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recent genome-wide association studies have identified a large number of genetic risk factors for schizophrenia (SCZ) featuring ion channels and calcium transporters. For some of these risk factors, independent prior investigations have examined the effects of genetic alterations on the cellular electrical excitability and calcium homeostasis. In the present proof-of-concept study, we harnessed these experimental results for modeling of computational properties on layer V cortical pyramidal cells and identified possible common alterations in behavior across SCZ-related genes. METHODS We applied a biophysically detailed multicompartmental model to study the excitability of a layer V pyramidal cell. We reviewed the literature on functional genomics for variants of genes associated with SCZ and used changes in neuron model parameters to represent the effects of these variants. RESULTS We present and apply a framework for examining the effects of subtle single nucleotide polymorphisms in ion channel and calcium transporter-encoding genes on neuron excitability. Our analysis indicates that most of the considered SCZ-related genetic variants affect the spiking behavior and intracellular calcium dynamics resulting from summation of inputs across the dendritic tree. CONCLUSIONS Our results suggest that alteration in the ability of a single neuron to integrate the inputs and scale its excitability may constitute a fundamental mechanistic contributor to mental disease, alongside the previously proposed deficits in synaptic communication and network behavior.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| | - Geir Halnes
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| | - Anna Devor
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| | - Aree Witoelar
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| | - Gaute T Einevoll
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| | - Anders M Dale
- Norwegian Centre for Mental Disorders Research and KG Jebsen Centre for Psychosis Research (TM-M, AW, FB, YW, OAA), Institute of Clinical Medicine, University of Oslo, Oslo; and Department of Mathematical Sciences and Technology (GH, GTE), Norwegian University of Life Sciences, Ås, Norway; Departments of Neurosciences (AD, YW, AMD) and Radiology (AD, AMD), University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging (AD), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; and Division of Mental Health and Addiction (FB, YW, OAA) and Department of Medical Genetics (SD), Oslo University Hospital, Oslo; Norwegian Centre for Mental Disorders Research (SD), KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen; and Department of Physics (GTE), University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Bhandiwad AA, Sisneros JA. Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:157-84. [PMID: 26515314 DOI: 10.1007/978-3-319-21059-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Behavioral methods have been critical in the study of auditory perception and discrimination in fishes. In this chapter, we review some of the common methods used in fish psychoacoustics. We discuss associative methods, such as operant, avoidance, and classical conditioning, and their use in constructing audiograms, measuring frequency selectivity, and auditory stream segregation. We also discuss the measurement of innate behavioral responses, such as the acoustic startle response (ASR), prepulse inhibition (PPI), and phonotaxis, and their use in the assessment of fish hearing to determine auditory thresholds and in the testing of mechanisms for sound source localization. For each psychoacoustic method, we provide examples of their use and discuss the parameters and situations where such methods can be best utilized. In the case of the ASR, we show how this method can be used to construct and compare audiograms between two species of larval fishes, the three-spined stickleback (Gasterosteus aculeatus) and the zebrafish (Danio rerio). We also discuss considerations for experimental design with respect to stimulus presentation and threshold criteria and how these techniques can be used in future studies to investigate auditory perception in fishes.
Collapse
Affiliation(s)
- Ashwin A Bhandiwad
- Department of Psychology, University of Washington, Seattle, WA, 98103, USA.
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, 98103, USA.,Department of Biology, University of Washington, Seattle, WA, 98103, USA
| |
Collapse
|
11
|
Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 2015; 20:974-85. [PMID: 25224259 PMCID: PMC4362800 DOI: 10.1038/mp.2014.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
In schizophrenia, cognitive overload is thought to reflect an inability to suppress non-salient information, a process which is studied using prepulse inhibition (PPI) of the startle response. PPI is reduced in schizophrenia and routinely tested in animal models and preclinical trials of antipsychotic drugs. However, the underlying neuronal circuitry is not well understood. We used a novel genetic screen in larval zebrafish to reveal the molecular identity of neurons that are required for PPI in fish and mice. Ablation or optogenetic silencing of neurons with developmental expression of the transcription factor genomic screen homeobox 1 (gsx1) produced profound defects in PPI in zebrafish, and PPI was similarly impaired in Gsx1 knockout mice. Gsx1-expressing neurons reside in the dorsal brainstem and form synapses closely apposed to neurons that initiate the startle response. Surprisingly, brainstem Gsx1 neurons are primarily glutamatergic despite their role in a functionally inhibitory pathway. As Gsx1 has an important role in regulating interneuron development in the forebrain, these findings reveal a molecular link between control of interneuron specification and circuits that gate sensory information across brain regions.
Collapse
Affiliation(s)
- Sadie A. Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nicole Carrier
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Grace H. Li
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A. Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA,6 Center Drive, Building 6B, Rm 3B308, Bethesda, MD 20892, , tel: 301-402-6018; fax: 301-496-0243
| |
Collapse
|
12
|
Curtin PCP, Preuss T. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network. Front Neural Circuits 2015; 9:12. [PMID: 25852486 PMCID: PMC4371714 DOI: 10.3389/fncir.2015.00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
Prepulse inhibition (PPI) is understood as a sensorimotor gating process that attenuates sensory flow to the startle pathway during early stages (20–1000 ms) of information processing. Here, we applied in vivo electrophysiology and pharmacology to determine if PPI is mediated by glycine receptors (GlyRs) and/or GABAA receptors (GABAARs) in the goldfish auditory startle circuit. Specifically, we used selective antagonists to dissect the contributions of target receptors on sound-evoked postsynaptic potentials (PSPs) recorded in the neurons that initiate startle, the Mauthner-cells (M-cell). We found that strychnine, a GlyR antagonist, disrupted a fast-activated (5 ms) and rapidly (<50 ms) decaying (feed-forward) inhibitory process that contributes to PPI at 20 ms prepulse/pulse inter-stimulus intervals (ISI). Additionally we observed increases of the evoked postsynaptic potential (PSP) peak amplitude (+87.43 ± 21.53%, N = 9) and duration (+204 ± 48.91%, N = 9). In contrast, treatment with bicuculline, a GABAAR antagonist, caused a general reduction in PPI across all tested interstimulus intervals (ISIs) (20–500 ms). Bicuculline also increased PSP peak amplitude (+133.8 ± 10.3%, N = 5) and PSP duration (+284.95 ± 65.64%, N = 5). Treatment with either antagonist also tonically increased post-synaptic excitability in the M-cells, reflected by an increase in the magnitude of antidromically-evoked action potentials (APs) by 15.07 ± 3.21%, N = 7 and 16.23 ± 7.08%, N = 5 for strychnine and bicuculline, respectively. These results suggest that GABAARs and GlyRs are functionally segregated to short- and longer-lasting sound-evoked (phasic) inhibitory processes that contribute to PPI, with the mediation of tonic inhibition by both receptor systems being critical for gain control within the M-cell startle circuit.
Collapse
Affiliation(s)
- Paul C P Curtin
- Graduate Center, City University of New York New York, NY, USA
| | - Thomas Preuss
- Hunter College, City University of New York New York, NY, USA
| |
Collapse
|
13
|
Medan V, Preuss T. The Mauthner-cell circuit of fish as a model system for startle plasticity. ACTA ACUST UNITED AC 2014; 108:129-40. [PMID: 25106811 DOI: 10.1016/j.jphysparis.2014.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Abstract
The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for addressing a wide range of neurobiological questions. Principles derived from studies on this system have contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmission and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmacological basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory inputs to the M-cell, we review experiments showing startle response modulation by temperature, social status, and sensory filtering. Although very different in nature, actions of these three sources of modulation converge in the M-cell network. Mechanisms of modulation include altering the excitability of the M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plasticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in several information processing disorders. Finally, we review recent work in the M-cell system which focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine.
Collapse
Affiliation(s)
- Violeta Medan
- Dept. de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Buenos Aires 1428, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Argentina.
| | - Thomas Preuss
- Psychology Dept. Hunter College, City University of New York, 695 Park Ave., New York, NY 10065, USA.
| |
Collapse
|
14
|
Matsuzaki J, Kagitani-Shimono K, Sugata H, Hirata M, Hanaie R, Nagatani F, Tachibana M, Tominaga K, Mohri I, Taniike M. Progressively increased M50 responses to repeated sounds in autism spectrum disorder with auditory hypersensitivity: a magnetoencephalographic study. PLoS One 2014; 9:e102599. [PMID: 25054201 PMCID: PMC4108353 DOI: 10.1371/journal.pone.0102599] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/20/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the differential time-course responses of the auditory cortex to repeated auditory stimuli in children with autism spectrum disorder (ASD) showing auditory hypersensitivity. Auditory-evoked field values were obtained from 21 boys with ASD (12 with and 9 without auditory hypersensitivity) and 15 age-matched typically developing controls. M50 dipole moments were significantly increased during the time-course study only in the ASD with auditory hypersensitivity compared with those for the other two groups. The boys having ASD with auditory hypersensitivity also showed more prolonged response duration than those in the other two groups. The response duration was significantly related to the severity of auditory hypersensitivity. We propose that auditory hypersensitivity is associated with decreased inhibitory processing, possibly resulting from an abnormal sensory gating system or dysfunction of inhibitory interneurons.
Collapse
Affiliation(s)
- Junko Matsuzaki
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Hisato Sugata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuzo Hanaie
- United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumiyo Nagatani
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaya Tachibana
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
- United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Tominaga
- United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ikuko Mohri
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
- United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masako Taniike
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
- United Graduate School of Child Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
15
|
Khakhalin AS, Koren D, Gu J, Xu H, Aizenman CD. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles. Eur J Neurosci 2014; 40:2948-62. [PMID: 24995793 DOI: 10.1111/ejn.12664] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 01/24/2023]
Abstract
Information processing in the vertebrate brain is thought to be mediated through distributed neural networks, but it is still unclear how sensory stimuli are encoded and detected by these networks, and what role synaptic inhibition plays in this process. Here we used a collision avoidance behavior in Xenopus tadpoles as a model for stimulus discrimination and recognition. We showed that the visual system of the tadpole is selective for behaviorally relevant looming stimuli, and that the detection of these stimuli first occurs in the optic tectum. By comparing visually guided behavior, optic nerve recordings, excitatory and inhibitory synaptic currents, and the spike output of tectal neurons, we showed that collision detection in the tadpole relies on the emergent properties of distributed recurrent networks within the tectum. We found that synaptic inhibition was temporally correlated with excitation, and did not actively sculpt stimulus selectivity, but rather it regulated the amount of integration between direct inputs from the retina and recurrent inputs from the tectum. Both pharmacological suppression and enhancement of synaptic inhibition disrupted emergent selectivity for looming stimuli. Taken together these findings suggested that, by regulating the amount of network activity, inhibition plays a critical role in maintaining selective sensitivity to behaviorally-relevant visual stimuli.
Collapse
Affiliation(s)
- Arseny S Khakhalin
- Department of Neuroscience, Brown University, Box G-LN, Providence, RI, 02912, USA
| | | | | | | | | |
Collapse
|
16
|
The 5-HT5A receptor regulates excitability in the auditory startle circuit: functional implications for sensorimotor gating. J Neurosci 2013; 33:10011-20. [PMID: 23761896 DOI: 10.1523/jneurosci.4733-12.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Here we applied behavioral testing, pharmacology, and in vivo electrophysiology to determine the function of the serotonin 5-HT5A receptor in goldfish startle plasticity and sensorimotor gating. In an initial series of behavioral experiments, we characterized the effects of a selective 5-HT5A antagonist, SB-699551 (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), on prepulse inhibition of the acoustic startle response. Those experiments showed a dose-dependent decline in startle rates in prepulse conditions. Subsequent behavioral experiments showed that SB-699551 also reduced baseline startle rates (i.e., without prepulse). To determine the cellular mechanisms underlying these behaviors, we tested the effects of two distinct selective 5-HT5A antagonists, SB-699551 and A-843277 (N-(2,6-dimethoxybenzyl)-N'[4-(4-fluorophenyl)thiazol-2-yl]guanidine), on the intrinsic membrane properties and synaptic sound response of the Mauthner cell (M-cell), the decision-making neuron of the startle circuit. Auditory-evoked postsynaptic potentials recorded in the M-cell were similarly attenuated after treatment with either 5-HT5A antagonist (SB-699551, 26.41 ± 3.98% reduction; A-843277, 17.52 ± 6.24% reduction). This attenuation was produced by a tonic (intrinsic) reduction in M-cell input resistance, likely mediated by a Cl(-) conductance, that added to the extrinsic inhibition produced by an auditory prepulse. Interestingly, the effector mechanisms underlying neural prepulse inhibition itself were unaffected by antagonist treatment. In summary, these results provide an in vivo electrophysiological characterization of the 5-HT5A receptor and its behavioral relevance and provide a new perspective on the interaction of intrinsic and extrinsic modulatory mechanisms in startle plasticity and sensorimotor gating.
Collapse
|