1
|
Selimi S, Frings C, Münchau A, Beste C, Moeller B. It's not distance but similarity of distance: changing stimulus relations affect the control of action sequences. PSYCHOLOGICAL RESEARCH 2024; 88:1727-1736. [PMID: 38733538 PMCID: PMC11281967 DOI: 10.1007/s00426-024-01973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Interacting with our environment happens on different levels of complexity: While there are individual and simple actions like an isolated button press, most actions are more complex and involve sequences of simpler actions. The degree to which multiple simple actions are represented as one action sequence can be measured via so-called response-response binding effects. When two or more responses are executed consecutively, they are integrated into one representation so that repetition of one response can start retrieval of the other. Executing such an action sequence typically involves responding to multiple objects or stimuli. Here, we investigated whether the spatial relation of these stimuli affects action sequence execution. To that end, we varied the distance between stimuli in a response-response binding task. Stimulus distance might affect response-response binding effects in one of two ways: It might directly affect the representation of the response sequence, making integration and retrieval between responses more likely if the responses relate to close stimuli. Alternatively, the similarity of stimulus distribution during integration and retrieval might be decisive, leading to larger binding effects if stimulus distance is identical during integration and retrieval. We found stronger binding effects with constant than with changing stimulus distance, indicating that action integration and retrieval can easily affect performance also if responses refer to separated objects. However, this effect on performance is diminished by changing spatial distribution of stimuli at the times of integration and retrieval.
Collapse
Affiliation(s)
- Silvia Selimi
- Department of Cognitive Psychology, Trier University, D-54286, Trier, Germany
| | - Christian Frings
- Department of Cognitive Psychology, Trier University, D-54286, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Birte Moeller
- Department of Cognitive Psychology, Trier University, D-54286, Trier, Germany.
| |
Collapse
|
2
|
Münster ND, Schmalbrock P, Bäumer T, Hommel B, Beste C, Münchau A, Frings C. Separating binding and retrieval of event files in older adults. Acta Psychol (Amst) 2024; 244:104190. [PMID: 38368782 DOI: 10.1016/j.actpsy.2024.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
In the literature on human action control, it is assumed that features of stimuli (S) and responses (R) are integrated into internal representations (so-called event files) that are involved in the execution of an action. Experimentally, the impact of this integration on action control is typically analyzed via S-R binding effects. Recent theorizing in the BRAC framework (Frings et al., 2020) suggests to disentangle the processes of S-R binding proper from S-R retrieval as two independent components contributing to S-R binding effects. Since the literature on age effects on S-R binding effects is scarce and does not provide information on whether the existing findings about the two processes can be generalized to older age groups, this is the first study addressing the effects of older age separately on S-R binding proper vs. S-R retrieval. In two established variants of S-R binding tasks (cumulative n = 262), we contrasted binding (by using a saliency manipulation at the time of binding proper) versus retrieval processes (by manipulating the onset of the distractor at the time of retrieval), replicating previous results in younger (18-30 years) and also in older healthy controls (50-70 years). We therefore found no evidence for age effects on S-R binding proper or S-R retrieval. We thus conclude that the processes contributing to S-R binding effects are - at least in the age groups analyzed in this study - robust and age-independent. STATEMENT OF SIGNIFICANCE: In human action control, binding proper and retrieval of features in stimulus-response episodes typically lead to so-called S-R binding effects. Against the background of recent theorizing, binding proper and retrieval should be studied independently. In this article, we ran a younger and an older age group and analyzed possible age-related differences in integration or retrieval. Both groups showed the expected pattern for binding and retrieval as expected from the literature.
Collapse
Affiliation(s)
- Nicolas D Münster
- Department of Psychology, Cognitive Psychology, University of Trier, Trier, Germany; Institute for Cognitive & Affective Neuroscience (ICAN), University of Trier, Trier, Germany.
| | - Philip Schmalbrock
- Department of Psychology, Cognitive Psychology, University of Trier, Trier, Germany; Institute for Cognitive & Affective Neuroscience (ICAN), University of Trier, Trier, Germany.
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.
| | - Bernhard Hommel
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, People's Republic of China.
| | - Christian Beste
- Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.
| | - Christian Frings
- Department of Psychology, Cognitive Psychology, University of Trier, Trier, Germany; Institute for Cognitive & Affective Neuroscience (ICAN), University of Trier, Trier, Germany.
| |
Collapse
|
3
|
Geissler CF, Schöpper LM, Engesser AF, Beste C, Münchau A, Frings C. Turning the Light Switch on Binding: Prefrontal Activity for Binding and Retrieval in Action Control. J Cogn Neurosci 2024; 36:95-106. [PMID: 37847814 DOI: 10.1162/jocn_a_02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
According to action control theories, responding to a stimulus leads to the binding of response and stimulus features into a common representation, that is, an event file. Repeating any component of an event file retrieves all previously bound information, leading to performance costs for partial repetitions measured in so-called binding effects. Although otherwise robust and stable, binding effects are typically completely absent in "localization tasks," in which participants localize targets with spatially compatible responses. Yet, it is possible to observe binding effects in such when location features have to be translated into response features. We hypothesized that this modulation of binding effects is reflected in task involvement of the dorsolateral pFC (DLPFC). Participants localized targets with either direct (i.e., spatially compatible key) or translated (i.e., diagonally opposite to the spatially compatible key) responses. We measured DLPFC activity with functional near-infrared spectroscopy. On the behavioral level, we observed binding effects in the translated response condition, but not in the direct response condition. Importantly, prefrontal activity was also higher in the translated mapping condition. In addition, we found some evidence for the strength of the difference in binding effects in behavioral data being correlated with the corresponding effects in prefrontal activity. This suggests that activity in the DLPFC reflects the amount of executive control needed for translating location features into responses. More generally, binding effects seem to emerge only when the task at hand involves DLPFC recruitment.
Collapse
|
4
|
Jamous R, Takacs A, Frings C, Münchau A, Mückschel M, Beste C. Unsigned surprise but not reward magnitude modulates the integration of motor elements during actions. Sci Rep 2023; 13:5379. [PMID: 37009782 PMCID: PMC10068803 DOI: 10.1038/s41598-023-32508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
It seems natural that motor responses unfold smoothly and that we are able to easily concatenate different components of movements to achieve goal-directed actions. Theoretical frameworks suggest that different motor features have to be bound to each other to achieve a coherent action. Yet, the nature of the "glue" (i.e., bindings) between elements constituting a motor sequence and enabling a smooth unfolding of motor acts is not well understood. We examined in how far motor feature bindings are affected by reward magnitude or the effects of an unsigned surprise signal. We show that the consistency of action file binding strength is modulated by unsigned surprise, but not by reward magnitude. On a conceptual and theoretical level, the results provide links between frameworks, which have until now not been brought into connection. In particular, theoretical accounts stating that only the unexpectedness (surprisingness) is essential for action control are connected to meta-control accounts of human action control.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Frings
- Cognitive Psychology Unit, Chair of General Psychology and Methodology, Faculty I - Psychology, University of Trier, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Gholamipourbarogh N, Prochnow A, Frings C, Münchau A, Mückschel M, Beste C. Perception-action integration during inhibitory control is reflected in a concomitant multi-region processing of specific codes in the neurophysiological signal. Psychophysiology 2023; 60:e14178. [PMID: 36083256 DOI: 10.1111/psyp.14178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 01/04/2023]
Abstract
The integration of perception and action has long been studied in psychological science using overarching cognitive frameworks. Despite these being very successful in explaining perception-action integration, little is known about its neurophysiological and especially the functional neuroanatomical foundations. It is unknown whether distinct brain structures are simultaneously involved in the processing of perception-action integration codes and also to what extent demands on perception-action integration modulate activities in these structures. We investigate these questions in an EEG study integrating temporal and ICA-based EEG signal decomposition with source localization. For this purpose, we used data from 32 healthy participants who performed a 'TEC Go/Nogo' task. We show that the EEG signal can be decomposed into components carrying different informational aspects or processing codes relevant for perception-action integration. Importantly, these specific codes are processed independently in different brain structures, and their specific roles during the processing of perception-action integration differ. Some regions (i.e., the anterior cingulate and insular cortex) take a 'default role' because these are not modulated in their activity by demands or the complexity of event file coding processes. In contrast, regions in the motor cortex, middle frontal, temporal, and superior parietal cortices were not activated by 'default' but revealed modulations depending on the complexity of perception-action integration (i.e., whether an event file has to be reconfigured). Perception-action integration thus reflects a multi-region processing of specific fractions of information in the neurophysiological signal. This needs to be taken into account when further developing a cognitive science framework detailing perception-action integration.
Collapse
Affiliation(s)
- Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
All together now: Simultaneous feature integration and feature retrieval in action control. Psychon Bull Rev 2021; 29:512-520. [PMID: 34713410 PMCID: PMC9038881 DOI: 10.3758/s13423-021-01999-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/08/2022]
Abstract
Accounts of human action control assume integration of stimulus and response features at response execution and, upon repetition of some of those features, retrieval of other previously integrated features. Even though both processes contribute sequentially to observed binding effects in studies using a sequential prime-probe design, integration and retrieval processes theoretically affect human action simultaneously. That is, every action that we execute leads to bindings between features of stimuli and responses, while at the same time these features also trigger retrieval of other previously integrated features. Nevertheless, the paradigms used to measure binding effects in action control can only testify for integration of stimulus and response features at the first (R1, n-1, or prime) and retrieval of the past event via feature repetition at the second (R2, n, or probe) response. Here we combined two paradigms used in the action control literature to show that integration and retrieval do indeed function simultaneously. We found both significant stimulus-response and significant response-response binding effects, indicating that integration of responses must have occurred at the same time as response retrieval due to feature repetition and vice versa.
Collapse
|
7
|
Dilcher R, Beste C, Takacs A, Bluschke A, Tóth-Fáber E, Kleimaker M, Münchau A, Li SC. Perception-action integration in young age-A cross-sectional EEG study. Dev Cogn Neurosci 2021; 50:100977. [PMID: 34147987 PMCID: PMC8225655 DOI: 10.1016/j.dcn.2021.100977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
Humans differ in their capacity for integrating perceived events and related actions. The "Theory of event coding" (TEC) conceptualizes how stimuli and actions are cognitively bound into a common functional representation (or "code"), known as the "event file". To date, however, the neural processes underlying the development of event file coding mechanisms across age are largely unclear. We investigated age-related neural changes of event file coding from late childhood to early adulthood, using EEG signal decompositions methods. We included a group of healthy participants (n = 91) between 10 and 30 years, performing an event file paradigm. Results of this study revealed age-related effects on event file coding processes both at the behavioural and the neurophysiological level. Performance accuracy data showed that event file unbinding und rebinding processes become more efficient from late childhood to early adulthood. These behavioural effects are reflected by age-related effects in two neurophysiological subprocesses associated with the superior parietal cortex (BA7) as revealed in the analyses using EEG signal decomposition. The first process entails mapping and association processes between stimulus and response; whereas, the second comprises inhibitory control subprocesses subserving the selection of the relevant motor programme amongst competing response options.
Collapse
Affiliation(s)
- Roxane Dilcher
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | | | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Germany; Centre for Tactile Internet With Human-in-the-Loop, TU Dresden, Germany.
| |
Collapse
|
8
|
Fronto-parietal homotopy in resting-state functional connectivity predicts task-switching performance. Brain Struct Funct 2021; 227:655-672. [PMID: 34106305 PMCID: PMC8843912 DOI: 10.1007/s00429-021-02312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/02/2021] [Indexed: 10/29/2022]
Abstract
Homotopic functional connectivity reflects the degree of synchrony in spontaneous activity between homologous voxels in the two hemispheres. Previous studies have associated increased brain homotopy and decreased white matter integrity with performance decrements on different cognitive tasks across the life-span. Here, we correlated functional homotopy, both at the whole-brain level and specifically in fronto-parietal network nodes, with task-switching performance in young adults. Cue-to-target intervals (CTI: 300 vs. 1200 ms) were manipulated on a trial-by-trial basis to modulate cognitive demands and strategic control. We found that mixing costs, a measure of task-set maintenance and monitoring, were significantly correlated to homotopy in different nodes of the fronto-parietal network depending on CTI. In particular, mixing costs for short CTI trials were smaller with lower homotopy in the superior frontal gyrus, whereas mixing costs for long CTI trials were smaller with lower homotopy in the supramarginal gyrus. These results were specific to the fronto-parietal network, as similar voxel-wise analyses within a control language network did not yield significant correlations with behavior. These findings extend previous literature on the relationship between homotopy and cognitive performance to task-switching, and show a dissociable role of homotopy in different fronto-parietal nodes depending on task demands.
Collapse
|