1
|
Jakubowski KL, Martino G, Beck ON, Sawicki GS, Ting LH. Center of mass states render multi-joint torques throughout standing balance recovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607976. [PMID: 39229207 PMCID: PMC11370471 DOI: 10.1101/2024.08.14.607976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Successful reactive balance control requires coordinated modulation of hip, knee, and ankle torques. Stabilizing joint torques arise from feedforward neural signals that modulate the musculoskeletal system's intrinsic mechanical properties, namely muscle short-range stiffness, and neural feedback pathways that activate muscles in response to sensory input. Although feedforward and feedback pathways are known to modulate the torque at each joint, the role of each pathway to the balance-correcting response across joints is poorly understood. Since the feedforward and feedback torque responses act at different delays following perturbations to balance, we modified the sensorimotor response model (SRM), previously used to analyze the muscle activation response to perturbations, to consist of parallel feedback loops with different delays. Each loop within the model is driven by the same information, center of mass (CoM) kinematics, but each loop has an independent delay. We evaluated if a parallel loop SRM could decompose the reactive torques into the feedforward and feedback contributions during balance-correcting responses to backward support surface translations at four magnitudes. The SRM accurately reconstructed reactive joint torques at the hip, knee, and ankle, across all perturbation magnitudes (R 2 >0.84 & VAF>0.83). Moreover, the hip and knee exhibited feedforward and feedback components, while the ankle only exhibited feedback components. The lack of a feedforward component at the ankle may occur because the compliance of the Achilles tendon attenuates muscle short-range stiffness. Our model may provide a framework for evaluating changes in the feedforward and feedback contributions to balance that occur due to aging, injury, or disease. NEWS AND NOTEWORTHY Reactive balance control requires coordination of neurally-mediated feedforward and feedback pathways to generate stabilizing joint torques at the hip, knee, and ankle. Using a sensorimotor response model, we decomposed reactive joint torques into feedforward and feedback contributions based on delays relative to center of mass kinematics. Responses across joints were driven by the same signals, but contributions from feedforward versus feedback pathways differed, likely due to differences in musculotendon properties between proximal and distal muscles.
Collapse
|
2
|
Monte A, Benamati A, Pavan A, d'Avella A, Bertucco M. Muscle synergies for multidirectional isometric force generation during maintenance of upright standing posture. Exp Brain Res 2024; 242:1881-1902. [PMID: 38874594 PMCID: PMC11252224 DOI: 10.1007/s00221-024-06866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Muscle synergies are defined as coordinated recruitment of groups of muscles with specific activation balances and time profiles aimed at generating task-specific motor commands. While muscle synergies in postural control have been investigated primarily in reactive balance conditions, the neuromechanical contribution of muscle synergies during voluntary control of upright standing is still unclear. In this study, muscle synergies were investigated during the generation of isometric force at the trunk during the maintenance of standing posture. Participants were asked to maintain the steady-state upright standing posture while pulling forces of different magnitudes were applied at the level at the waist in eight horizontal directions. Muscle synergies were extracted by nonnegative matrix factorization from sixteen lower limb and trunk muscles. An average of 5-6 muscle synergies were sufficient to account for a wide variety of EMG waveforms associated with changes in the magnitude and direction of pulling forces. A cluster analysis partitioned the muscle synergies of the participants into a large group of clusters according to their similarity, indicating the use of a subjective combination of muscles to generate a multidirectional force vector in standing. Furthermore, we found a participant-specific distribution in the values of cosine directional tuning parameters of synergy amplitude coefficients, suggesting the existence of individual neuromechanical strategies to stabilize the whole-body posture. Our findings provide a starting point for the development of novel diagnostic tools to assess muscle coordination in postural control and lay the foundation for potential applications of muscle synergies in rehabilitation.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy
| | - Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy
| | - Agnese Pavan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Bertucco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy.
| |
Collapse
|
3
|
Jones R, Ratnakumar N, Akbaş K, Zhou X. Delayed center of mass feedback in elderly humans leads to greater muscle co-contraction and altered balance strategy under perturbed balance: A predictive musculoskeletal simulation study. PLoS One 2024; 19:e0296548. [PMID: 38787871 PMCID: PMC11125460 DOI: 10.1371/journal.pone.0296548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Falls are one of the leading causes of non-disease death and injury in the elderly, often due to delayed sensory neural feedback essential for balance. This delay, challenging to measure or manipulate in human studies, necessitates exploration through neuromusculoskeletal modeling to reveal its intricate effects on balance. In this study, we developed a novel three-way muscle feedback control approach, including muscle length feedback, muscle force feedback, and enter of mass feedback, for balancing and investigated specifically the effects of center of mass feedback delay on elderly people's balance strategies. We conducted simulations of cyclic perturbed balance at different magnitudes ranging from 0 to 80 mm and with three center of mass feedback delays (100, 150 & 200 ms). The results reveal two key points: 1) Longer center of mass feedback delays resulted in increased muscle activations and co-contraction, 2) Prolonged center of mass feedback delays led to noticeable shifts in balance strategies during perturbed standing. Under low-amplitude perturbations, the ankle strategy was predominantly used, while higher amplitude disturbances saw more frequent employment of hip and knee strategies. Additionally, prolonged center of mass delays altered balance strategies across different phases of perturbation, with a noticeable increase in overall ankle strategy usage. These findings underline the adverse effects of prolonged feedback delays on an individual's stability, necessitating greater muscle co-contraction and balance strategy adjustment to maintain balance under perturbation. Our findings advocate for the development of training programs tailored to enhance balance reactions and mitigate muscle feedback delays within clinical or rehabilitation settings for fall prevention in elderly people.
Collapse
Affiliation(s)
- Rachel Jones
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Neethan Ratnakumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Kübra Akbaş
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Xianlian Zhou
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| |
Collapse
|
4
|
Shen KH, Borrelli J, Gray VL, Rogers MW, Hsiao HY. Lower limb vertical stiffness and frontal plane angular impulse during perturbation-induced single limb stance and their associations with gait in individuals post-stroke. J Biomech 2024; 163:111917. [PMID: 38184906 DOI: 10.1016/j.jbiomech.2023.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/30/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
After stroke, deficits in paretic single limb stance (SLS) are commonly observed and affect walking performance. During SLS, the hip abductor musculature is critical in providing vertical support and regulating balance. Although disrupted paretic hip abduction torque production has been identified in individuals post-stroke, interpretation of previous results is limited due to the discrepancies in weight-bearing conditions. Using a novel perturbation-based assessment that could induce SLS by removing the support surface underneath one limb, we aim to investigate whether deficits in hip abduction torque production, vertical body support, and balance regulation remain detectable during SLS when controlling for weight-bearing, and whether these measures are associated with gait performance. Our results showed that during the perturbation-induced SLS, individuals post-stroke had lower hip abduction torque, less vertical stiffness, and increased frontal plane angular impulse at the paretic limb compared to the non-paretic limb, while no differences were found between the paretic limb and healthy controls. In addition, vertical stiffness during perturbation-induced SLS was positively correlated with single support duration during gait at the paretic limb and predicted self-selected and fast walking speeds in individuals post-stroke. The findings indicate that reduced paretic hip abduction torque during SLS likely affects vertical support and balance control. Enhancing SLS hip abduction torque production could be an important rehabilitation target to improve walking function for individuals post-stroke.
Collapse
Affiliation(s)
- Keng-Hung Shen
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA
| | - James Borrelli
- Department of Biomedical Engineering, Stevenson University, MD, USA; Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Mark W Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Hao-Yuan Hsiao
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA; Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA.
| |
Collapse
|
5
|
Chen X, Dong X, Feng Y, Jiao Y, Yu J, Song Y, Li X, Zhang L, Hou P, Xie P. Muscle activation patterns and muscle synergies reflect different modes of coordination during upper extremity movement. Front Hum Neurosci 2023; 16:912440. [PMID: 36741782 PMCID: PMC9889926 DOI: 10.3389/fnhum.2022.912440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
A core issue in motor control is how the central nervous system generates and selects the muscle activation patterns necessary to achieve a variety of behaviors and movements. Extensive studies have verified that it is the foundation to induce a complex movement by the modular combinations of several muscles with a synergetic relationship. However, a few studies focus on the synergetic similarity and dissimilarity among different types of movements, especially for the upper extremity movements. In this study, we introduced the non-negative matrix factorization (NMF) method to explore the muscle activation patterns and synergy structure under 6 types of movements, involving the hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), supination (SU), and pronation (PR). For this, we enrolled 10 healthy subjects to record the electromyography signal for NMF calculation. The results showed a highly modular similarity of the muscle synergy among subjects under the same movement. Furthermore, Spearman's correlation analysis indicated significant similarities among HO-WE, HO-SU, and WE-SU (p < 0.001). Additionally, we also found shared synergy and special synergy in activation patterns among different movements. This study confirmed the theory of modular structure in the central nervous system, which yields a stable synergetic pattern under the same movement. Our findings on muscle synergy will be of great significance to motor control and even to clinical assessment techniques.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Xiaojiao Dong
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yange Feng
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yuntao Jiao
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Jian Yu
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yan Song
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Xinxin Li
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Lijie Zhang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Peiguo Hou
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China,Peiguo Hou,
| | - Ping Xie
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China,*Correspondence: Ping Xie,
| |
Collapse
|
6
|
Cherif A, Zenzeri J, Loram I. What is the contribution of voluntary and reflex processes to sensorimotor control of balance? Front Bioeng Biotechnol 2022; 10:973716. [PMID: 36246368 PMCID: PMC9557221 DOI: 10.3389/fbioe.2022.973716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
The contribution to balance of spinal and transcortical processes including the long-latency reflex is well known. The control of balance has been modelled previously as a continuous, state feedback controller representing, long-latency reflexes. However, the contribution of slower, variable delay processes has not been quantified. Compared with fixed delay processes (spinal, transcortical), we hypothesize that variable delay processes provide the largest contribution to balance and are sensitive to historical context as well as current states. Twenty-two healthy participants used a myoelectric control signal from their leg muscles to maintain balance of their own body while strapped to an actuated, inverted pendulum. We study the myoelectric control signal (u) in relation to the independent disturbance (d) comprising paired, discrete perturbations of varying inter-stimulus-interval (ISI). We fit the closed loop response, u from d, using one linear and two non-linear non-parametric (many parameter) models. Model M1 (ARX) is a generalized, high-order linear-time-invariant (LTI) process with fixed delay. Model M1 is equivalent to any parametric, closed-loop, continuous, linear-time-invariant (LTI), state feedback model. Model M2, a single non-linear process (fixed delay, time-varying amplitude), adds an optimized response amplitude to each stimulus. Model M3, two non-linear processes (one fixed delay, one variable delay, each of time-varying amplitude), add a second process of optimized delay and optimized response amplitude to each stimulus. At short ISI, the myoelectric control signals deviated systematically both from the fixed delay LTI process (M1), and also from the fixed delay, time-varying amplitude process (M2) and not from the two-process model (M3). Analysis of M3 (all fixed delay and variable delay response amplitudes) showed the variable (compared with fixed) delay process 1) made the largest contribution to the response, 2) exhibited refractoriness (increased delay related to short ISI) and 3) was sensitive to stimulus history (stimulus direction 2 relative to stimulus 1). For this whole-body balance task and for these impulsive stimuli, non-linear processes at variable delay are central to control of balance. Compared with fixed delay processes (spinal, transcortical), variable delay processes provided the largest contribution to balance and were sensitive to historical context as well as current states.
Collapse
Affiliation(s)
- Amel Cherif
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy
- *Correspondence: Amel Cherif, ; Ian Loram,
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Ian Loram
- Cognitive Motor Function Research Group, Research Centre for Musculoskeletal Science & Sports Medicine, Dept of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
- *Correspondence: Amel Cherif, ; Ian Loram,
| |
Collapse
|
7
|
Abram SJ, Poggensee KL, Sánchez N, Simha SN, Finley JM, Collins SH, Donelan JM. General variability leads to specific adaptation toward optimal movement policies. Curr Biol 2022; 32:2222-2232.e5. [PMID: 35537453 PMCID: PMC9504978 DOI: 10.1016/j.cub.2022.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 02/03/2022] [Accepted: 04/07/2022] [Indexed: 01/29/2023]
Abstract
Our nervous systems can learn optimal control policies in response to changes to our bodies, tasks, and movement contexts. For example, humans can learn to adapt their control policy in walking contexts where the energy-optimal policy is shifted along variables such as step frequency or step width. However, it is unclear how the nervous system determines which ways to adapt its control policy. Here, we asked how human participants explore through variations in their control policy to identify more optimal policies in new contexts. We created new contexts using exoskeletons that apply assistive torques to each ankle at each walking step. We analyzed four variables that spanned the levels of the whole movement, the joint, and the muscle: step frequency, ankle angle range, total soleus activity, and total medial gastrocnemius activity. We found that, across all of these analyzed variables, variability increased upon initial exposure to new contexts and then decreased with experience. This led to adaptive changes in the magnitude of specific variables, and these changes were correlated with reduced energetic cost. The timescales by which adaptive changes progressed and variability decreased were faster for some variables than others, suggesting a reduced search space within which the nervous system continues to optimize its policy. These collective findings support the principle that exploration through general variability leads to specific adaptation toward optimal movement policies.
Collapse
Affiliation(s)
- Sabrina J Abram
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | - Natalia Sánchez
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089, USA
| | - Surabhi N Simha
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - James M Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Steven H Collins
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - J Maxwell Donelan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
8
|
Stamenkovic A, Ting LH, Stapley PJ. Evidence for constancy in the modularity of trunk muscle activity preceding reaching: implications for the role of preparatory postural activity. J Neurophysiol 2021; 126:1465-1477. [PMID: 34587462 PMCID: PMC8782652 DOI: 10.1152/jn.00093.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/30/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022] Open
Abstract
Postural muscle activity precedes voluntary movements of the upper limbs. The traditional view of this activity is that it anticipates perturbations to balance caused by the movement of a limb. However, findings from reach-based paradigms have shown that postural adjustments can initiate center of mass displacement for mobility rather than minimize its displacement for stability. Within this context, altering reaching distance beyond the base of support would place increasing constraints on equilibrium during stance. If the underlying composition of anticipatory postural activity is linked to stability, coordination between muscles (i.e., motor modules) may evolve differently as equilibrium constraints increase. We analyzed the composition of motor modules in functional trunk muscles as participants performed multidirectional reaching movements to targets within and beyond the arm's length. Bilateral trunk and reaching arm muscle activity were recorded. Despite different trunk requirements necessary for successful movement, and the changing biomechanical (i.e., postural) constraints that accompany alterations in reach distance, nonnegative matrix factorization identified functional motor modules derived from preparatory trunk muscle activity that shared common features. Relative similarity in modular weightings (i.e., composition) and spatial activation profiles that reflect movement goals across tasks necessitating differing levels of trunk involvement provides evidence that preparatory postural adjustments are linked to the same task priorities (i.e., movement generation rather than stability).NEW & NOTEWORTHY Reaching within and beyond arm's length places different task constraints upon the required trunk motion necessary for successful movement execution. The identification of constant modular features, including functional muscle weightings and spatial tuning, lend support to the notion that preparatory postural adjustments of the trunk are tied to the same task priorities driving mobility, regardless of the future postural constraints.
Collapse
Affiliation(s)
- Alexander Stamenkovic
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, New South Wales, Australia
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, Richmond, Virginia
| | - Lena H Ting
- Walter H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering, Emory School of Medicine, Emory University, Atlanta, Georgia
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Paul J Stapley
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
9
|
Muscle synergy differences between voluntary and reactive backward stepping. Sci Rep 2021; 11:15462. [PMID: 34326376 PMCID: PMC8322057 DOI: 10.1038/s41598-021-94699-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022] Open
Abstract
Reactive stepping responses are essential to prevent falls after a loss of balance. It has previously been well described that both voluntary and reactive step training could improve the efficacy of reactive stepping in different populations. However, the effect of aging on neuromuscular control during voluntary and reactive stepping remains unclear. Electromyography (EMG) signals during both backward voluntary stepping in response to an auditory cue and backward reactive stepping elicited by a forward slip-like treadmill perturbation during stance were recorded in ten healthy young adults and ten healthy older adults. Using muscle synergy analysis, we extracted the muscle synergies for both voluntary and reactive stepping. Our results showed that fewer muscle synergies were used during reactive stepping than during voluntary stepping in both young and older adults. Minor differences in the synergy structure were observed for both voluntary and reactive stepping between age groups. Our results indicate that there is a low similarity of muscle synergies between voluntary stepping and reactive stepping and that aging had a limited effect on the structure of muscle synergies. This study enhances our understanding of the neuromuscular basis of both voluntary and reactive stepping as well as the potential effect of aging on neuromuscular control during balance tasks.
Collapse
|
10
|
Richmond SB, Fling BW, Lee H, Peterson DS. The assessment of center of mass and center of pressure during quiet stance: Current applications and future directions. J Biomech 2021; 123:110485. [PMID: 34004395 DOI: 10.1016/j.jbiomech.2021.110485] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
This perspective article provides a brief review of our understanding of how center of pressure (CoP) and center of mass (CoM) are traditionally utilized to measure quiet standing and how technological advancements are allowing for measurements to be derived outside the confines of a laboratory setting. Furthermore, this viewpoint provides descriptions of what CoP and CoM outcomes may reflect, a discussion of recent developments in selected balance outcomes, the importance of measuring instantaneous balance outcomes, and directions for future questions/research. Considering the enormous number and cost of falls annually, conclusions drawn from this perspective underscore the need for more cohesive efforts to advance our understanding of balance performance. As we refine the technology and algorithms used to portably assess postural stability, the question of which measurement (i.e. CoP or CoM) to utilize seems to be highly dependent on the question being asked. Further, the complexity of the question appears to span multiple disciplines and cultivate exploration of the intrinsic mechanisms of stability. Recently developed multi-dimensional methods for assessing balance performance may provide additional insight into balance, improving our ability to predict balance impairments and falls outside the laboratory and in the clinic. However, additional work will be necessary to understand the clinical significance and predictive capacity of these outcomes in various fall-prone populations.
Collapse
Affiliation(s)
- Sutton B Richmond
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32608, USA
| | - Brett W Fling
- College of Health and Human Sciences, Department of Health and Exercise Science, Colorado State University, 951 Plum St, Fort Collins, CO 80523, USA; Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, 1675 Campus Delivery, Fort Collins, CO 80523, USA
| | - Hyunglae Lee
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, AZ 85287, USA
| | - Daniel S Peterson
- College of Health Solutions, Arizona State University, 425 N 5(th) Street, Phoenix, AZ, USA; Phoenix VA Health Care System, 650 Indian School Rd. Phoenix, AZ, USA.
| |
Collapse
|
11
|
Kurtzer IL. Shoulder reflexes integrate elbow information at "long-latency" delay throughout a corrective action. J Neurophysiol 2019; 121:549-562. [PMID: 30540519 DOI: 10.1152/jn.00611.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies have demonstrated a progression of function when healthy subjects counter a sudden mechanical load. Short-latency reflexes are linked to local stretch of the particular muscle and its antagonist. Long-latency reflexes integrate stretch information from both local sources and muscles crossing remote joints appropriate for a limb's mechanical interactions. Unresolved is how sensory information is processed throughout the corrective response, since capabilities at some time can be produced by circuits acting at that delay and at briefer delays. One possibility is that local abilities are always expressed at a short-latency delay and integrative abilities are always expressed at a long-latency delay. Alternatively, the neural circuits may be altered over time, leading to a temporal shift in expressing certain abilities; a refractory period could retard integrative responses to a second perturbation, whereas priming could enable integrative responses at short latency. We tested between these three hypotheses in a shoulder muscle by intermixing trials of step torque with either torque pulses ( experiment 1) or double steps of torque ( experiment 2). The second perturbation occurred at 35, 60, and 110 ms after the first perturbation to probe processing throughout the corrective action. The second perturbation reliably evoked short-latency responses in the shoulder muscle linked to only shoulder motion and long-latency responses linked to both shoulder and elbow motion. This pattern is best accounted by the continuous action of controllers with fixed functions. NEW & NOTEWORTHY Sudden displacement of the limb evokes a short-latency reflex, 20-50 ms, based on local muscle stretch and a long-latency reflex based on integrating muscle stretch at different joints. A novel double-perturbation paradigm tested if these abilities are temporally conserved throughout the corrective response or are shifted (retarded or delayed) due to functional changes in the responsible circuits. Multi-joint integration was reliably expressed at a long-latency delay consistent with the continuous operation of circuits with fixed abilities.
Collapse
Affiliation(s)
- Isaac L Kurtzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
12
|
Fabre-Adinolfi D, Parietti-Winkler C, Pierret J, Lassalle-Kinic B, Frère J. You are better off running than walking revisited: Does an acute vestibular imbalance affect muscle synergies? Hum Mov Sci 2018; 62:150-160. [PMID: 30384183 DOI: 10.1016/j.humov.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/31/2018] [Accepted: 10/21/2018] [Indexed: 12/30/2022]
Abstract
It has been suggested that vestibular cues are inhibited for the benefit of spinal locomotor centres in parallel with the increase in locomotion speed. This study aimed at quantifying the influence of a transient vestibular tone imbalance (TVTI) on gait kinematics, muscle activity and muscle synergies during walking and running. Twelve participants walk or run at a self-selected speed with or without TVTI, which was generated by 10 body rotations just prior the locomotion task. Three-dimensional lower-limb kinematic was recorded simultaneously with the surface electromyographic (EMG) activity of 8 muscles to extract muscle synergies via non-negative matrix factorization. Under TVTI, there was an increased gait deviation in walking compared to running (22.8 ± 8.4° and 8.5 ± 3.6°, respectively; p < 0.01), while the number (n = 4) and the composition of the muscle synergies did not differ across conditions (p = 0.78). A higher increase (p < 0.05) in EMG activity due to TVTI was found during walking compared to running, especially during stance. These findings confirmed that the central nervous system inhibited misleading vestibular signals according to the increase in locomotion speed for the benefit of spinal mechanisms, expressed by the muscle synergies.
Collapse
Affiliation(s)
- Dimitri Fabre-Adinolfi
- Université de Lorraine, Laboratory « Développement, Adaptation et Handicap » (EA 3450), F-54000 Nancy, France; University Hospital of Nancy, Department of Oto-Rhino-Laryngology Head and Neck Surgery, F-54000 Nancy, France
| | - Cécile Parietti-Winkler
- Université de Lorraine, Laboratory « Développement, Adaptation et Handicap » (EA 3450), F-54000 Nancy, France; University Hospital of Nancy, Department of Oto-Rhino-Laryngology Head and Neck Surgery, F-54000 Nancy, France
| | - Jonathan Pierret
- Université de Lorraine, Laboratory « Développement, Adaptation et Handicap » (EA 3450), F-54000 Nancy, France; L.-Pierquin Rehabilitation Center, F-54000 Nancy, France
| | | | - Julien Frère
- Université de Lorraine, Laboratory « Développement, Adaptation et Handicap » (EA 3450), F-54000 Nancy, France.
| |
Collapse
|
13
|
Crevecoeur F, Kurtzer I. Long-latency reflexes for inter-effector coordination reflect a continuous state feedback controller. J Neurophysiol 2018; 120:2466-2483. [PMID: 30133376 DOI: 10.1152/jn.00205.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Successful performance in many everyday tasks requires compensating unexpected mechanical disturbance to our limbs and body. The long-latency reflex plays an important role in this process because it is the fastest response to integrate sensory information across several effectors, like when linking the elbow and shoulder or the arm and body. Despite the dozens of studies on inter-effector long-latency reflexes, there has not been a comprehensive treatment of how these reveal the basic control organization that sets constraints on any candidate model of neural feedback control such as optimal feedback control. We considered three contrasting ways that controllers can be organized: multiple independent controllers vs. a multiple-input multiple-output (MIMO) controller, a continuous feedback controller vs. an intermittent feedback controller, and a direct MIMO controller vs. a state feedback controller. Following a primer on control theory and review of the relevant evidence, we conclude that continuous state feedback control best describes the organization of inter-effector coordination by the long-latency reflex.
Collapse
Affiliation(s)
- Frederic Crevecoeur
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain , Louvain-la-Neuve , Belgium.,Institute of Neuroscience, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
| | - Isaac Kurtzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
14
|
Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements. Sci Rep 2018; 8:8391. [PMID: 29849101 PMCID: PMC5976658 DOI: 10.1038/s41598-018-26780-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Voluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements.
Collapse
|
15
|
Maguire CC, Sieben JM, De Bie RA. Movement goals encoded within the cortex and muscle synergies to reduce redundancy pre and post-stroke. The relevance for gait rehabilitation and the prescription of walking-aids. A literature review and scholarly discussion. Physiother Theory Pract 2018; 35:1-14. [PMID: 29400592 DOI: 10.1080/09593985.2018.1434579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current knowledge of neural and neuromuscular processes controlling gait and movement as well as an understanding of how these mechanisms change following stroke is an important basis for the development of effective rehabilitation interventions. To support the translation of findings from basic research into useful treatments in clinical practice, up-to-date neuroscience should be presented in forms accessible to all members of the multidisciplinary team. In this review we discuss aspects of cortical control of gait and movement, muscle synergies as a way of translating cortical commands into specific muscle activity and as an efficient means of reducing neural and musculoskeletal redundancy. We discuss how these mechanisms change following stroke, potential consequences for gait rehabilitation, and the prescription and use of walking-aids as well as areas requiring further research.
Collapse
Affiliation(s)
- Clare C Maguire
- a Department of Physiotherapy, BZG Bildungszentrum Gesundheit Basel-Stadt , Munchenstein , Switzerland.,b Health Division , Bern University of Applied Science , Bern , Switzerland.,c Caphri Research School , Maastricht University , Maastricht , the Netherlands
| | - Judith M Sieben
- c Caphri Research School , Maastricht University , Maastricht , the Netherlands.,d Department of Anatomy and Embryology , Maastricht University , Maastricht , the Netherlands
| | - Robert A De Bie
- c Caphri Research School , Maastricht University , Maastricht , the Netherlands.,e Department of Epidemiology , Maastricht University , Maastricht , the Netherlands
| |
Collapse
|
16
|
Blum KP, Lamotte D’Incamps B, Zytnicki D, Ting LH. Force encoding in muscle spindles during stretch of passive muscle. PLoS Comput Biol 2017; 13:e1005767. [PMID: 28945740 PMCID: PMC5634630 DOI: 10.1371/journal.pcbi.1005767] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/10/2017] [Accepted: 09/05/2017] [Indexed: 12/03/2022] Open
Abstract
Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position.
Collapse
Affiliation(s)
- Kyle P. Blum
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Boris Lamotte D’Incamps
- Center for Neurophysics, Physiology and Pathophysiology, Université Paris Descartes, Paris, France
| | - Daniel Zytnicki
- Center for Neurophysics, Physiology and Pathophysiology, Université Paris Descartes, Paris, France
| | - Lena H. Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
17
|
Balance, Body Motion, and Muscle Activity After High-Volume Short-Term Dance-Based Rehabilitation in Persons With Parkinson Disease: A Pilot Study. J Neurol Phys Ther 2017; 40:257-68. [PMID: 27576092 DOI: 10.1097/npt.0000000000000150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE The objectives of this pilot study were to (1) evaluate the feasibility and investigate the efficacy of a 3-week, high-volume (450 minutes per week) Adapted Tango intervention for community-dwelling individuals with mild-moderate Parkinson disease (PD) and (2) investigate the potential efficacy of Adapted Tango in modifying electromyographic (EMG) activity and center of body mass (CoM) displacement during automatic postural responses to support surface perturbations. METHODS Individuals with PD (n = 26) were recruited for high-volume Adapted Tango (15 lessons, 1.5 hour each over 3 weeks). Twenty participants were assessed with clinical balance and gait measures before and after the intervention. Nine participants were also assessed with support-surface translation perturbations. RESULTS Overall adherence to the intervention was 77%. At posttest, peak forward CoM displacement was reduced (4.0 ± 0.9 cm, pretest, vs 3.7 ± 1.1 cm, posttest; P = 0.03; Cohen's d = 0.30) and correlated to improvements on Berg Balance Scale (ρ = -0.68; P = 0.04) and Dynamic Gait Index (ρ = -0.75; P = 0.03). Overall antagonist onset time was delayed (27 ms; P = 0.02; d = 0.90) and duration was reduced (56 ms, ≈39%, P = 0.02; d = 0.45). Reductions in EMG magnitude were also observed (P < 0.05). DISCUSSION AND CONCLUSIONS Following participation in Adapted Tango, changes in kinematic and some EMG measures of perturbation responses were observed in addition to improvements in clinical measures. We conclude that 3-week, high-volume Adapted Tango is feasible and represents a viable alternative to longer duration adapted dance programs.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A143).
Collapse
|
18
|
Frère J. Spectral properties of multiple myoelectric signals: New insights into the neural origin of muscle synergies. Neuroscience 2017; 355:22-35. [PMID: 28483469 DOI: 10.1016/j.neuroscience.2017.04.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/07/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023]
Abstract
It is still unclear if muscle synergies reflect neural strategies or mirror the underlying mechanical constraints. Therefore, this study aimed to verify the consistency of muscle groupings between the synergies based on the linear envelope (LE) of muscle activities and those incorporating the time-frequency (TF) features of the electromyographic (EMG) signals. Twelve healthy participants performed six 20-m walking trials at a comfort and fast self-selected speed, while the activity of eleven lower limb muscles was recorded by means of surface EMG. Wavelet-transformed EMG was used to obtain the TF pattern and muscle synergies were extracted by non-negative matrix factorization. When five muscle synergies were extracted, both methods defined similar muscle groupings whatever the walking speed. When accounting the reconstruction level of the initial dataset, a new TF synergy emerged. This new synergy dissociated the activity of the rectus femoris from those of the vastii muscles (synergy #1) and from the one of the tensor fascia latae (synergy #5). Overall, extracting TF muscle synergies supports the neural origin of muscle synergies and provides an opportunity to distinguish between prescriptive and descriptive muscle synergies.
Collapse
Affiliation(s)
- Julien Frère
- University of Lorraine, Laboratory "Development, Adaption and Disability" (EA 3450), Faculty of Sports Sciences, 30 rue du Jardin Botanique, CS 30156, F-54603 Villers-lès-Nancy, France.
| |
Collapse
|
19
|
Lencioni T, Jonsdottir J, Cattaneo D, Crippa A, Gervasoni E, Rovaris M, Bizzi E, Ferrarin M. Are Modular Activations Altered in Lower Limb Muscles of Persons with Multiple Sclerosis during Walking? Evidence from Muscle Synergies and Biomechanical Analysis. Front Hum Neurosci 2016; 10:620. [PMID: 28018193 PMCID: PMC5145858 DOI: 10.3389/fnhum.2016.00620] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
Background: Persons with Multiple Sclerosis frequently have gait deficits that lead to diminished activities of daily living. Identification of motoneuron activity patterns may elucidate new insight into impaired locomotor coordination and underlying neural systems. The aim of the present study was to investigate muscle synergies, identified by motor modules and their activation profiles, in persons with Multiple Sclerosis (PwMS) during walking compared to those of healthy subjects (HS), as well as, exploring relationship of muscle synergies with walking ability of PwMS. Methods: Seventeen PwMS walked at their natural speed while 12 HS walked at slower than their natural speeds in order to provide normative gait values at matched speeds (spatio-temporal, kinematic, and kinetic parameters and electromyography signals). Non-negative matrix factorization was used to identify muscle synergies from eight muscles. Pearson's correlation coefficient was used to evaluate the similarity of motor modules between PwMS and HS. To assess differences in module activations, each module's activation timing was integrated over 100% of gait cycle and the activation percentage was computed in six phases. Results: Fifty-nine% of PwMS and 58% of HS had 4 modules while the remaining of both populations had 3 modules. Module 2 (related to soleus, medial, and lateral gastrocnemius primarily involved in mid and terminal stance) and Module 3 (related to tibialis anterior and rectus femoris primarily involved in early stance, and early and late swing) were comparable across all subjects regardless of synergies number. PwMS had shorter stride length, longer double support phase and push off deficit with respect to HS (p < 0.05). The alterations of activation timing profiles of specific modules in PwMS were associated with their walking deficits (e.g., the reduction of Module 2 activation percentage index in terminal stance, PwMS 35.55 ± 13.23 vs. HS 50.51 ± 9.13% p < 0.05, and the push off deficit, PwMS 0.181 ± 0.136 vs. HS 0.291 ± 0.062 w/kg p < 0.05). Conclusion: During gait PwMS have synergies numbers similar to healthy persons. Their neurological deficit alters modular control through modifications of the timing activation profiles rather than module composition. These changes were associated with their main walking impairment, muscle weakness, and prolonged double support.
Collapse
Affiliation(s)
- Tiziana Lencioni
- Biomedical Technology Department, IRCCS Fondazione Don Carlo Gnocchi Onlus Milan, Italy
| | - Johanna Jonsdottir
- Department of Neurorehabilitation, IRCCS Fondazione Don Carlo Gnocchi Onlus, LaRiCE Milan, Italy
| | - Davide Cattaneo
- Department of Neurorehabilitation, IRCCS Fondazione Don Carlo Gnocchi Onlus, LaRiCE Milan, Italy
| | - Alessandro Crippa
- Department of Neurorehabilitation, IRCCS Fondazione Don Carlo Gnocchi Onlus, LaRiCE Milan, Italy
| | - Elisa Gervasoni
- Department of Neurorehabilitation, IRCCS Fondazione Don Carlo Gnocchi Onlus, LaRiCE Milan, Italy
| | - Marco Rovaris
- Department of Multiple Sclerosis, IRCCS Fondazione Don Carlo Gnocchi Onlus Milan, Italy
| | - Emilio Bizzi
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Maurizio Ferrarin
- Biomedical Technology Department, IRCCS Fondazione Don Carlo Gnocchi Onlus Milan, Italy
| |
Collapse
|
20
|
Sozzi S, Nardone A, Schieppati M. Calibration of the Leg Muscle Responses Elicited by Predictable Perturbations of Stance and the Effect of Vision. Front Hum Neurosci 2016; 10:419. [PMID: 27625599 PMCID: PMC5003929 DOI: 10.3389/fnhum.2016.00419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/08/2016] [Indexed: 12/05/2022] Open
Abstract
Motor adaptation due to task practice implies a gradual shift from deliberate control of behavior to automatic processing, which is less resource- and effort-demanding. This is true both for deliberate aiming movements and for more stereotyped movements such as locomotion and equilibrium maintenance. Balance control under persisting critical conditions would require large conscious and motor effort in the absence of gradual modification of the behavior. We defined time-course of kinematic and muscle features of the process of adaptation to repeated, predictable perturbations of balance eliciting both reflex and anticipatory responses. Fifty-nine sinusoidal (10 cm, 0.6 Hz) platform displacement cycles were administered to 10 subjects eyes-closed (EC) and eyes-open (EO). Head and Center of Mass (CoM) position, ankle angle and Tibialis Anterior (TA) and Soleus (Sol) EMG were assessed. EMG bursts were classified as reflex or anticipatory based on the relationship between burst amplitude and ankle angular velocity. Muscle activity decreased over time, to a much larger extent for TA than Sol. The attenuation was larger for the reflex than the anticipatory responses. Regardless of muscle activity attenuation, latency of muscle bursts and peak-to-peak CoM displacement did not change across perturbation cycles. Vision more than doubled speed and the amount of EMG adaptation particularly for TA activity, rapidly enhanced body segment coordination, and crucially reduced head displacement. The findings give new insight on the mode of amplitude- and time-modulation of motor output during adaptation in a balancing task, advocate a protocol for assessing flexibility of balance strategies, and provide a reference for addressing balance problems in patients with movement disorders.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCCS) Pavia, Italy
| | - Antonio Nardone
- Posture and Movement Laboratory, Physical Medicine and Rehabilitation, Fondazione Salvatore Maugeri (IRCCS)Veruno, Italy; Department of Translational Medicine, University of Eastern PiedmontNovara, Italy
| | - Marco Schieppati
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCCS)Pavia, Italy; Department of Public Health, Experimental and Forensic Medicine, University of PaviaPavia, Italy
| |
Collapse
|
21
|
Peterson DS, Horak FB. Effects of freezing of gait on postural motor learning in people with Parkinson's disease. Neuroscience 2016; 334:283-289. [PMID: 27530701 DOI: 10.1016/j.neuroscience.2016.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 11/27/2022]
Abstract
Protective postural responses, including stepping, to recover equilibrium are critical for fall prevention and are impaired in people with Parkinson's disease (PD) with freezing of gait (FoG). Improving protective postural responses through training may reduce falls in this population. However, motor learning, the basis of neurorehabilitation, is also impaired in people with PD and, in particular, people with PD who experience freezing. It is unknown whether people with PD who freeze can improve protective postural responses, and whether these improvements are similar to nonfreezers. Our goal was to assess whether people with freezing can improve protective postural responses and retain these improvements similarly to nonfreezers. Twenty-eight people with PD (13 freezers, 15 nonfreezers) were enrolled. Improvement in protective postural responses was assessed over the course of 25 forward and 25 backward support surface translations (delivered in pseudo-random order). Postural responses were re-assessed 24h later to determine whether improvements were retained. People who freeze did not improve or retain improvement in protective postural responses as well as nonfreezers in our primary outcome variable, center of mass (COM) displacement after perturbations (post hoc across group assessments: freezers- p=0.14 and nonfreezers- p=0.001, respectively). However, other protective stepping outcomes, including margin of stability, step length, and step time, improved similarly across groups. Significant improvements were retained in both groups. In conclusion, people with PD who freeze exhibited reduced ability to improve protective postural responses in some, but not all, outcome variables. Additional training may be necessary to improve protective postural responses in people with PD who freeze.
Collapse
Affiliation(s)
- D S Peterson
- Veterans Affairs Salt Lake City Health Care System (VAPORHCS), Salt Lake City, UT, United States; Arizona State University, Program in Exercise Science and Health Promotion, Phoenix, AZ, United States.
| | - F B Horak
- Veterans Affairs Portland Health Care System (VAPORHCS), Portland, OR, United States; Oregon Health & Science University, Department of Neurology, Portland, OR, United States
| |
Collapse
|
22
|
Feedback control during voluntary motor actions. Curr Opin Neurobiol 2015; 33:85-94. [DOI: 10.1016/j.conb.2015.03.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/27/2022]
|
23
|
Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, Kesar TM. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 2015; 86:38-54. [PMID: 25856485 DOI: 10.1016/j.neuron.2015.02.042] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neuromechanical principles define the properties and problems that shape neural solutions for movement. Although the theoretical and experimental evidence is debated, we present arguments for consistent structures in motor patterns, i.e., motor modules, that are neuromechanical solutions for movement particular to an individual and shaped by evolutionary, developmental, and learning processes. As a consequence, motor modules may be useful in assessing sensorimotor deficits specific to an individual and define targets for the rational development of novel rehabilitation therapies that enhance neural plasticity and sculpt motor recovery. We propose that motor module organization is disrupted and may be improved by therapy in spinal cord injury, stroke, and Parkinson's disease. Recent studies provide insights into the yet-unknown underlying neural mechanisms of motor modules, motor impairment, and motor learning and may lead to better understanding of the causal nature of modularity and its underlying neural substrates.
Collapse
Affiliation(s)
- Lena H Ting
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA.
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Randy D Trumbower
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA
| | - Jessica L Allen
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - J Lucas McKay
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Madeleine E Hackney
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA 30033, USA; Department of Medicine, Division of General Medicine and Geriatrics, Emory University, Atlanta, GA 30322, USA
| | - Trisha M Kesar
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
24
|
Welch TDJ, Ting LH. Mechanisms of motor adaptation in reactive balance control. PLoS One 2014; 9:e96440. [PMID: 24810991 PMCID: PMC4014487 DOI: 10.1371/journal.pone.0096440] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/08/2014] [Indexed: 12/31/2022] Open
Abstract
Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM) excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations.
Collapse
Affiliation(s)
- Torrence D. J. Welch
- W. H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Lena H. Ting
- W. H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
25
|
Battaglia-Mayer A, Buiatti T, Caminiti R, Ferraina S, Lacquaniti F, Shallice T. Correction and suppression of reaching movements in the cerebral cortex: Physiological and neuropsychological aspects. Neurosci Biobehav Rev 2014; 42:232-51. [DOI: 10.1016/j.neubiorev.2014.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 01/25/2023]
|
26
|
Affiliation(s)
- Bryan Gick
- Department of Linguistics, University of British Columbia Vancouver, BC, Canada ; Haskins Laboratories New Haven, CT, USA
| | - Ian Stavness
- Department of Computer Science, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
27
|
Contribution of vision to postural behaviors during continuous support-surface translations. Exp Brain Res 2013; 232:169-80. [PMID: 24132526 DOI: 10.1007/s00221-013-3729-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
During standing balance, kinematics of postural behaviors have been previously observed to change across visual conditions, perturbation amplitudes, or perturbation frequencies. However, experimental limitations only allowed for independent investigation of such parameters. Here, we adapted a pseudorandom ternary sequence (PRTS) perturbation previously used in rotational support-surface perturbations (Peterka in J Neurophysiol 88(3):1097-1118, 2002) to a translational paradigm, allowing us to concurrently examine the effects of vision, perturbation amplitude, and frequency on balance control. Additionally, the unpredictable PRTS perturbation eliminated effects of feedforward adaptations typical of responses to sinusoidal stimuli. The PRTS perturbation contained a wide spectral bandwidth (0.08-3.67 Hz) and was scaled to 4 different peak-to-peak amplitudes (3-24 cm). Root mean square (RMS) of hip displacement and velocity increased relative to RMS ankle displacement and velocity in the absence of vision across all subjects, especially at higher perturbation amplitudes. Gain and phase lag of center of mass (CoM) sway relative to the perturbation also increased with perturbation frequency; phase lag further increased when vision was absent. Together, our results suggest that visual input, perturbation amplitude, and perturbation frequency can concurrently and independently modulate postural strategies during standing balance. Moreover, each factor contributes to the difficulty of maintaining postural stability; increased difficulty evokes a greater reliance on hip motion. Finally, despite high degrees of joint angle variation across subjects, CoM measures were relatively similar across subjects, suggesting that the CoM is an important controlled variable for balance.
Collapse
|
28
|
Safavynia SA, Ting LH. Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error. J Neurophysiol 2013; 110:1278-90. [PMID: 23803325 DOI: 10.1152/jn.00609.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In both the upper and lower limbs, evidence suggests that short-latency electromyographic (EMG) responses to mechanical perturbations are modulated based on muscle stretch or joint motion, whereas long-latency responses are modulated based on attainment of task-level goals, e.g., desired direction of limb movement. We hypothesized that long-latency responses are modulated continuously by task-level error feedback. Previously, we identified an error-based sensorimotor feedback transformation that describes the time course of EMG responses to ramp-and-hold perturbations during standing balance (Safavynia and Ting 2013; Welch and Ting 2008, 2009). Here, our goals were 1) to test the robustness of the sensorimotor transformation over a richer set of perturbation conditions and postural states; and 2) to explicitly test whether the sensorimotor transformation is based on task-level vs. joint-level error. We developed novel perturbation trains of acceleration pulses such that perturbations were applied when the body deviated from the desired, upright state while recovering from preceding perturbations. The entire time course of EMG responses (∼4 s) in an antagonistic muscle pair was reconstructed using a weighted sum of center of mass (CoM) kinematics preceding EMGs at long-latency delays (∼100 ms). Furthermore, CoM and joint kinematic trajectories became decorrelated during perturbation trains, allowing us to explicitly compare task-level vs. joint feedback in the same experimental condition. Reconstruction of EMGs was poorer using joint kinematics compared with CoM kinematics and required unphysiologically short (∼10 ms) delays. Thus continuous, long-latency feedback of task-level variables may be a common mechanism regulating long-latency responses in the upper and lower limbs.
Collapse
|
29
|
Chvatal SA, Ting LH. Common muscle synergies for balance and walking. Front Comput Neurosci 2013; 7:48. [PMID: 23653605 PMCID: PMC3641709 DOI: 10.3389/fncom.2013.00048] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/08/2013] [Indexed: 01/08/2023] Open
Abstract
Little is known about the integration of neural mechanisms for balance and locomotion. Muscle synergies have been studied independently in standing balance and walking, but not compared. Here, we hypothesized that reactive balance and walking are mediated by a common set of lower-limb muscle synergies. In humans, we examined muscle activity during multidirectional support-surface perturbations during standing and walking, as well as unperturbed walking at two speeds. We show that most muscle synergies used in perturbations responses during standing were also used in perturbation responses during walking, suggesting common neural mechanisms for reactive balance across different contexts. We also show that most muscle synergies using in reactive balance were also used during unperturbed walking, suggesting that neural circuits mediating locomotion and reactive balance recruit a common set of muscle synergies to achieve task-level goals. Differences in muscle synergies across conditions reflected differences in the biomechanical demands of the tasks. For example, muscle synergies specific to walking perturbations may reflect biomechanical challenges associated with single limb stance, and muscle synergies used during sagittal balance recovery in standing but not walking were consistent with maintaining the different desired center of mass motions in standing vs. walking. Thus, muscle synergies specifying spatial organization of muscle activation patterns may define a repertoire of biomechanical subtasks available to different neural circuits governing walking and reactive balance and may be recruited based on task-level goals. Muscle synergy analysis may aid in dissociating deficits in spatial vs. temporal organization of muscle activity in motor deficits. Muscle synergy analysis may also provide a more generalizable assessment of motor function by identifying whether common modular mechanisms are impaired across the performance of multiple motor tasks.
Collapse
Affiliation(s)
- Stacie A Chvatal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University Atlanta, GA, USA
| | | |
Collapse
|