1
|
Tavares D, da Silva Matos SLB, Duran LM, Castro SA, Taylor EW, Filogonio R, Fernandes MN, Leite CA. Baroreflex responses of decerebrate rattlesnakes (Crotalus durissus) are comparable to awake animals. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111286. [DOI: 10.1016/j.cbpa.2022.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
|
2
|
Laflamme OD, Ibrahim M, Akay T. Crossed reflex responses to flexor nerve stimulation in mice. J Neurophysiol 2022; 127:493-503. [PMID: 34986055 PMCID: PMC8836714 DOI: 10.1152/jn.00385.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Motor responses in one leg to sensory stimulation of the contralateral leg have been named "crossed reflexes" and are extensively investigated in cats and humans. Despite this effort, a circuit-level understanding of the crossed reflexes has remained missing. In mice, advances in molecular genetics enabled insights into the "commissural spinal circuitry" that ensures coordinated leg movements during locomotion. Despite some common features between the commissural spinal circuitry and the circuit for the crossed reflexes, the degree to which they overlap has remained obscure. Here, we describe excitatory crossed reflex responses elicited by electrically stimulating the common peroneal nerve that mainly innervates ankle flexor muscles and the skin on anterolateral aspect of the hind leg. Stimulation of the peroneal nerve with low current intensity evoked low-amplitude motor responses in the contralateral flexor and extensor muscles. At higher current strengths, stimulation of the same nerve evoked stronger and more synchronous responses in the same contralateral muscles. In addition to the excitatory crossed reflex pathway indicated by muscle activation, we demonstrate the presence of an inhibitory crossed reflex pathway, which was modulated when the motor pools were active during walking. The results are compared with the crossed reflex responses initiated by stimulating proprioceptors from extensor muscles and cutaneous afferents from the posterior part of the leg. We anticipate that these findings will be essential for future research combining the in vivo experiments presented here with mouse genetics to understand crossed reflex pathways at the network level in vivo.NEW & NOTEWORTHY Insights into the mechanisms of crossed reflexes are essential for understanding coordinated leg movements that maintain stable locomotion. Advances in mouse genetics allow for the selective manipulation of spinal interneurons and provide opportunities to understand crossed reflexes. Crossed reflexes in mice, however, are poorly described. Here, we describe crossed reflex responses in mice initiated by stimulation of the common peroneal nerve, which serves as a starting point for investigating crossed reflexes at the cellular level.
Collapse
Affiliation(s)
- Olivier D. Laflamme
- Atlantic Mobility Action Project, Department of Medical Neuroscience, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marwan Ibrahim
- Atlantic Mobility Action Project, Department of Medical Neuroscience, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Department of Medical Neuroscience, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Falgairolle M, O'Donovan MJ. Motoneuronal Regulation of Central Pattern Generator and Network Function. ADVANCES IN NEUROBIOLOGY 2022; 28:259-280. [PMID: 36066829 DOI: 10.1007/978-3-031-07167-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter reviews recent work showing that vertebrate motoneurons can trigger spontaneous rhythmic activity in the developing spinal cord and can modulate the function of several different central pattern generators later in development. In both the embryonic chick and the fetal mouse spinal cords, antidromic activation of motoneurons can trigger bouts of rhythmic activity. In the neonatal mouse, optogenetic manipulation of motoneuron firing can modulate the frequency of fictive locomotion activated by a drug cocktail. In adult animals, motoneurons have been shown to regulate swimming in the zebrafish, and vocalization in fish and frogs. We discuss the significance of these findings and the degree to which motoneurons may be considered a part of these central pattern generators.
Collapse
|
4
|
Schwaner MJ, Hsieh ST, Braasch I, Bradley S, Campos CB, Collins CE, Donatelli CM, Fish FE, Fitch OE, Flammang BE, Jackson BE, Jusufi A, Mekdara PJ, Patel A, Swalla BJ, Vickaryous M, McGowan CP. Future Tail Tales: A Forward-Looking, Integrative Perspective on Tail Research. Integr Comp Biol 2021; 61:521-537. [PMID: 33999184 PMCID: PMC8680820 DOI: 10.1093/icb/icab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis Tails are a defining characteristic of chordates and show enormous diversity in function and shape. Although chordate tails share a common evolutionary and genetic-developmental origin, tails are extremely versatile in morphology and function. For example, tails can be short or long, thin or thick, and feathered or spiked, and they can be used for propulsion, communication, or balancing, and they mediate in predator-prey outcomes. Depending on the species of animal the tail is attached to, it can have extraordinarily multi-functional purposes. Despite its morphological diversity and broad functional roles, tails have not received similar scientific attention as, for example, the paired appendages such as legs or fins. This forward-looking review article is a first step toward interdisciplinary scientific synthesis in tail research. We discuss the importance of tail research in relation to five topics: (1) evolution and development, (2) regeneration, (3) functional morphology, (4) sensorimotor control, and (5) computational and physical models. Within each of these areas, we highlight areas of research and combinations of long-standing and new experimental approaches to move the field of tail research forward. To best advance a holistic understanding of tail evolution and function, it is imperative to embrace an interdisciplinary approach, re-integrating traditionally siloed fields around discussions on tail-related research.
Collapse
Affiliation(s)
- M J Schwaner
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - S T Hsieh
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - I Braasch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - S Bradley
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C B Campos
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C E Collins
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - F E Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - O E Fitch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - B E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - B E Jackson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909, USA
| | - A Jusufi
- Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - P J Mekdara
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Patel
- Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa
| | - B J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - M Vickaryous
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C P McGowan
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Akay T, Murray AJ. Relative Contribution of Proprioceptive and Vestibular Sensory Systems to Locomotion: Opportunities for Discovery in the Age of Molecular Science. Int J Mol Sci 2021; 22:1467. [PMID: 33540567 PMCID: PMC7867206 DOI: 10.3390/ijms22031467] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Locomotion is a fundamental animal behavior required for survival and has been the subject of neuroscience research for centuries. In terrestrial mammals, the rhythmic and coordinated leg movements during locomotion are controlled by a combination of interconnected neurons in the spinal cord, referred as to the central pattern generator, and sensory feedback from the segmental somatosensory system and supraspinal centers such as the vestibular system. How segmental somatosensory and the vestibular systems work in parallel to enable terrestrial mammals to locomote in a natural environment is still relatively obscure. In this review, we first briefly describe what is known about how the two sensory systems control locomotion and use this information to formulate a hypothesis that the weight of the role of segmental feedback is less important at slower speeds but increases at higher speeds, whereas the weight of the role of vestibular system has the opposite relation. The new avenues presented by the latest developments in molecular sciences using the mouse as the model system allow the direct testing of the hypothesis.
Collapse
Affiliation(s)
- Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Science Research Institute, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J. Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, UK
| |
Collapse
|
6
|
Manuel M, Zytnicki D. Molecular and electrophysiological properties of mouse motoneuron and motor unit subtypes. CURRENT OPINION IN PHYSIOLOGY 2018; 8:23-29. [PMID: 32551406 DOI: 10.1016/j.cophys.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The field of motoneuron and motor unit physiology in mammals has deeply evolved the last decade thanks to the parallel development of mouse genetics and transcriptomic analysis and of in vivo mouse preparations that allow intracellular electrophysiological recordings of motoneurons. We review the efforts made to investigate the electrophysiological properties of the different functional subtypes of mouse motoneurons, to decipher the mosaic of molecular markers specifically expressed in each subtype, and to elucidate which of those factors drive the identity of motoneurons.
Collapse
Affiliation(s)
- Marin Manuel
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| | - Daniel Zytnicki
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| |
Collapse
|
7
|
Laflamme OD, Akay T. Excitatory and inhibitory crossed reflex pathways in mice. J Neurophysiol 2018; 120:2897-2907. [PMID: 30303749 DOI: 10.1152/jn.00450.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sensory information from one leg has been known to elicit reflex responses in the contralateral leg, known as "crossed reflexes," and these have been investigated extensively in cats and humans. Furthermore, experiments with mice have shown commissural pathways in detail by using in vitro and in vivo physiological approaches combined with genetics. However, the relationship between these commissural pathways discovered in mice and crossed reflex pathways described in cats and humans is not known. In this study, we analyzed the crossed reflex in mice by using in vivo electromyographic recording techniques combined with peripheral nerve stimulation protocols to provide a detailed description of the crossed reflex pathways. We show that excitatory crossed reflexes are mediated by both proprioceptive and cutaneous afferent activation. In addition, we provide evidence for a short-latency inhibitory crossed reflex pathway likely mediated by cutaneous feedback. Furthermore, the short-latency crossed inhibition is downregulated in the knee extensor muscle and the ankle flexor muscle during locomotion. In conclusion, this article provides an analysis of excitatory and inhibitory crossed reflex pathways during resting and locomoting mice in vivo. The data presented in this article pave the way for future research aimed at understanding crossed reflexes using genetics in mice. NEW & NOTEWORTHY We describe for the first time excitatory and inhibitory crossed reflex pathways in mouse spinal cord in vivo and show that the inhibitory pathways are modulated during walking. This is a first step toward an understanding of crossed reflexes and their function during walking using in vivo recording techniques combined with mouse genetics.
Collapse
Affiliation(s)
- Olivier D Laflamme
- Atlantic Mobility Action Project, Brain Repair Center, Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Center, Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada
| |
Collapse
|
8
|
Jeffrey-Gauthier R, Piché M, Leblond H. H-reflex disinhibition by lumbar muscle inflammation in a mouse model of spinal cord injury. Neurosci Lett 2018; 690:36-41. [PMID: 30292718 DOI: 10.1016/j.neulet.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022]
Abstract
Inflammation is a common comorbidity in patients with traumatic spinal cord injury (SCI). Recent reports indicate that inflammation hinders functional recovery in animal models of SCI. However, the spinal mechanisms underlying this alteration are currently unknown. Considering that spinal plasticity is a therapeutic target in patients and animal models of SCI, these mechanisms remain to be clarified. Using injections of complete Freund's adjuvant (CFA) in lumbar muscles as a model of persistent inflammation, the objective of this study was to assess the impact of inflammation on spinal reflex excitability after a complete midthoracic spinal transection in mice. To this end, the excitability of spinal reflexes was examined by measuring H-reflex frequency-dependent depression (FDD) on days 7, 14 and 28 following a complete spinal transection. H-reflex parameters were compared between spinal mice with CFA and control spinal mice. On day 7, lumbar muscle inflammation disinhibited the H-reflex, reflected by an attenuation of H-reflex FDD (p < 0.01), although this effect did not persist later on, either on day 14 or day 28. These results indicate that lumbar muscle inflammation alters spinal reflex excitability transiently in spinal mice. Considering that changes in spinal reflex excitability are associated with poor functional recovery after SCI, this implies that inflammation should be treated effectively to promote optimal recovery following SCI.
Collapse
Affiliation(s)
- Renaud Jeffrey-Gauthier
- Department of Anatomy, Université du Québec à Trois-Rivières (UQTR), 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Mathieu Piché
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada; Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Hugues Leblond
- Department of Anatomy, Université du Québec à Trois-Rivières (UQTR), 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
9
|
Martínez-Silva MDL, Imhoff-Manuel RD, Sharma A, Heckman CJ, Shneider NA, Roselli F, Zytnicki D, Manuel M. Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. eLife 2018; 7:30955. [PMID: 29580378 PMCID: PMC5922970 DOI: 10.7554/elife.30955] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Hyperexcitability has been suggested to contribute to motoneuron degeneration in amyotrophic lateral sclerosis (ALS). If this is so, and given that the physiological type of a motor unit determines the relative susceptibility of its motoneuron in ALS, then one would expect the most vulnerable motoneurons to display the strongest hyperexcitability prior to their degeneration, whereas the less vulnerable should display a moderate hyperexcitability, if any. We tested this hypothesis in vivo in two unrelated ALS mouse models by correlating the electrical properties of motoneurons with their physiological types, identified based on their motor unit contractile properties. We found that, far from being hyperexcitable, the most vulnerable motoneurons become unable to fire repetitively despite the fact that their neuromuscular junctions were still functional. Disease markers confirm that this loss of function is an early sign of degeneration. Our results indicate that intrinsic hyperexcitability is unlikely to be the cause of motoneuron degeneration. Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a fatal disorder of the nervous system. Early symptoms include muscle weakness, unsteadiness and slurred speech. These symptoms arise because the neurons that control muscles – the motoneurons – lose their ability to make the muscles contract. Eventually, the muscles become paralyzed, with more and more muscles affected over time. Most patients die within a few years of diagnosis when the disease destroys the muscles that control breathing. Muscles are made up of muscle fibers. Each motoneuron controls a bundle of muscle fibers, and the motoneuron and its muscle fibers together make up a motor unit. A single muscle contains hundreds of motor units. These consist of several different types, which differ in how many muscle fibers they contain, how fast those muscle fibers can contract, and how fatigable the muscle fibers are. In ALS, motoneurons become detached from their muscle fibers, causing motor units to break down. But what triggers this process? One long-standing idea is that motoneurons begin to respond excessively to commands from the brain and spinal cord. In other words, they become hyperexcitable, which ultimately leads to their death. But some more recent studies of ALS suggest the opposite, namely that motoneurons become less active, or hypoexcitable. To distinguish between these possibilities, Martinez-Silva et al. took advantage of the fact that different types of motor unit break down at different rates in ALS. Large motor units containing fast-contracting muscle fibers break down before smaller motor units. By measuring the activity of motor units in two mouse models of ALS, Martinez-Silva et al. showed that large motoneurons are hypoexcitable. In other words, the motoneurons that are most vulnerable to ALS respond too little to commands from the nervous system, rather than too much. Studies of specific proteins inside the cells confirmed that hypoexcitable motoneurons are further along in the disease process than other motoneurons. Hypoexcitability is thus a key player in the ALS disease process. Developing drugs to target this hypoexcitability may be a promising strategy for the future of this condition.
Collapse
Affiliation(s)
| | - Rebecca D Imhoff-Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Aarti Sharma
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | - C J Heckman
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Therapy and Human Movement Science, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Neil A Shneider
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | | | - Daniel Zytnicki
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Marin Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France.,Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
10
|
Jeffrey-Gauthier R, Piché M, Leblond H. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury. Neuroscience 2017; 359:69-81. [DOI: 10.1016/j.neuroscience.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
|
11
|
Abstract
BACKGROUND Genetic techniques rendering murine models a popular choice for neuroscience research has led to important insights on neural networks controlling locomotor function. Using genetically altered mouse models for in vivo, electrophysiological studies in the adult state could validate key principles of locomotor network organization that have been described in neonatal, in vitro preparations. NEW METHOD The experimental model presented here describes a decerebrate, in vivo adult mouse preparation in which focal, electrical midbrain stimulation was combined with monitoring lumbar neural activity and motor output after pre-collicular decerebration and neuromuscular blockade. RESULTS Lumbar cord dorsum potentials (in 9/10 animals) and motoneuron output (in 3/5 animals) including fictive locomotion, was achieved by focal midbrain stimulation. The stimulation electrode locations could be reconstructed (in 6/7 animals) thereby allowing anatomical identification of the stimulated supraspinal regions. COMPARISON WITH EXISTING METHODS This preparation allows for concomitant recording or stimulation in the spinal cord and in the mid/hindbrain of adult mice. It differs from other methods used in the past with adult mice as it does not require pharmacological manipulation of neural excitability in order to generate motor output. CONCLUSIONS Midbrain stimulation can consistently be used for inducing lumbar neural activity in adult mice under neuromuscular blockade. This model is suited for examination of brain-spinal connectivity and it may benefit a wide range of fields depending on the features of the genetically modified mouse models used in combination with the presented methods.
Collapse
Affiliation(s)
- Katinka Stecina
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave., BMSB-436, Winnipeg, MB, R3E0J9, Canada.
| |
Collapse
|
12
|
Abstract
The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor behavior using intracellular recording approaches, which would not be possible using current anesthetized preparations. This protocol describes the steps required to achieve a low-blood-loss decerebration in the mouse and approaches for recording signals from spinal cord neurons with a focus on motoneurons. The protocol also describes an example application for the protocol: the evocation of spontaneous and actively driven stepping, including optimization of these behaviors in decerebrate mice. The time taken to prepare the animal and perform a decerebration takes ∼2 h, and the mice are viable for up to 3-8 h, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery.
Collapse
|
13
|
Carrasco DI, Vincent JA, Cope TC. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles. J Neurophysiol 2017; 117:1690-1701. [PMID: 28123009 DOI: 10.1152/jn.00889.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV1.1, predominantly in sensory terminals together with NaV1.6 and for NaV1.7, mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles.NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site involved in transduction or encoding of muscle stretch. We propose that NaVs contribute to multiple steps in sensory signaling by muscle spindles as it does in other types of slowly adapting sensory neurons.
Collapse
Affiliation(s)
- Dario I Carrasco
- School of Biological Science, Georgia Institute of Technology, Atlanta Georgia
| | - Jacob A Vincent
- School of Biological Science, Georgia Institute of Technology, Atlanta Georgia
| | - Timothy C Cope
- School of Biological Science, Georgia Institute of Technology, Atlanta Georgia; .,Biomedical Engineering, Georgia Institute of Technology, Atlanta Georgia; and
| |
Collapse
|
14
|
Mandadi S, Leduc-Pessah H, Hong P, Ejdrygiewicz J, Sharples SA, Trang T, Whelan PJ. Modulatory and plastic effects of kinins on spinal cord networks. J Physiol 2016; 594:1017-36. [PMID: 26634895 DOI: 10.1113/jp271152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Inflammatory kinins are released following spinal cord injury or neurotrauma. The effects of these kinins on ongoing locomotor activity of central pattern generator networks are unknown. In the present study, kinins were shown to have short- and long-term effects on motor networks. The short-term effects included direct depolarization of interneurons and motoneurons in the ventral horn accompanied by modulation of transient receptor potential vanilloid 1-sensitive nociceptors in the dorsal horn. Over the long-term, we observed a bradykinin-mediated effect on promoting plasticity in the spinal cord. In a model of spinal cord injury, we observed an increase in microglia numbers in both the dorsal and ventral horn and, in a microglia cell culture model, we observed bradykinin-induced expression of glial-derived neurotrophic factor. ABSTRACT The expression and function of inflammatory mediators in the developing spinal cord remain poorly characterized. We discovered novel, short and long-term roles for the inflammatory nonapeptide bradykinin (BK) and its receptor bradykinin receptor B2 (B2R) in the neuromodulation of developing sensorimotor networks following a spinal cord injury (SCI), suggesting that BK participates in an excitotoxic cascade. Functional expression of B2R was confirmed by a transient disruptive action of BK on fictive locomotion generated by a combination of NMDA, 5-HT and dopamine. The role of BK in the dorsal horn nociceptive afferents was tested using spinal cord attached to one-hind-limb (HL) preparations. In the HL preparations, BK at a subthreshold concentration induced transient disruption of fictive locomotion only in the presence of: (1) noxious heat applied to the hind paw and (2) the heat sensing ion channel transient receptor potential vanilloid 1 (TRPV1), known to be restricted to nociceptors in the superficial dorsal horn. BK directly depolarized motoneurons and ascending interneurons in the ventrolateral funiculus. We found a key mechanism for BK in promoting long-term plasticity within the spinal cord. Using a model of neonatal SCI and a microglial cell culture model, we examined the role of BK in inducing activation of microglia and expression of glial-derived neurotrophic factor (GDNF). In the neonatal SCI model, we observed an increase in microglia numbers and increased GDNF expression restricted to microglia. In the microglia cell culture model, we observed a BK-induced increased expression of GDNF via B2R, suggesting a novel mechanism for BK spinal-mediated plasticity.
Collapse
Affiliation(s)
- S Mandadi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - H Leduc-Pessah
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - P Hong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - J Ejdrygiewicz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - T Trang
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Cabaj AM, Majczyński H, Couto E, Gardiner PF, Stecina K, Sławińska U, Jordan LM. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT 7 receptors in adult rats. J Physiol 2016; 595:301-320. [PMID: 27393215 DOI: 10.1113/jp272271] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. ABSTRACT Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT7 ) receptor agonists and antagonists and 5-HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra- and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR-evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5-HT neurons, leading to excitation of central pattern generator neurons with 5-HT7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5-HT7 receptor-mediated control of sensory pathways during development.
Collapse
Affiliation(s)
- Anna M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland.,Department of Nerve-Muscle Engineering, Institute of Biocybernetics and Biomedical Engineering PAS, 02-109, Warsaw, Poland
| | - Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Erika Couto
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Phillip F Gardiner
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Katinka Stecina
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Larry M Jordan
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
16
|
Charles JP, Cappellari O, Spence AJ, Wells DJ, Hutchinson JR. Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model. J Anat 2016; 229:514-35. [PMID: 27173448 PMCID: PMC5013061 DOI: 10.1111/joa.12461] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
Musculoskeletal modelling has become a valuable tool with which to understand how neural, muscular, skeletal and other tissues are integrated to produce movement. Most musculoskeletal modelling work has to date focused on humans or their close relatives, with few examples of quadrupedal animal limb models. A musculoskeletal model of the mouse hindlimb could have broad utility for questions in medicine, genetics, locomotion and neuroscience. This is due to this species’ position as a premier model of human disease, having an array of genetic tools for manipulation of the animal in vivo, and being a small quadruped, a category for which few models exist. Here, the methods used to develop the first three‐dimensional (3D) model of a mouse hindlimb and pelvis are described. The model, which represents bones, joints and 39 musculotendon units, was created through a combination of previously gathered muscle architecture data from microdissections, contrast‐enhanced micro‐computed tomography (CT) scanning and digital segmentation. The model allowed muscle moment arms as well as muscle forces to be estimated for each musculotendon unit throughout a range of joint rotations. Moment arm analysis supported the reliability of musculotendon unit placement within the model, and comparison to a previously published rat hindlimb model further supported the model's reliability. A sensitivity analysis performed on both the force‐generating parameters and muscle's attachment points of the model indicated that the maximal isometric muscle moment is generally most sensitive to changes in either tendon slack length or the coordinates of insertion, although the degree to which the moment is affected depends on several factors. This model represents the first step in the creation of a fully dynamic 3D computer model of the mouse hindlimb and pelvis that has application to neuromuscular disease, comparative biomechanics and the neuromechanical basis of movement. Capturing the morphology and dynamics of the limb, it enables future dissection of the complex interactions between the nervous and musculoskeletal systems as well as the environment.
Collapse
Affiliation(s)
- James P Charles
- Neuromuscular Diseases Group, Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Structure and Motion Lab, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| | - Ornella Cappellari
- Neuromuscular Diseases Group, Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Andrew J Spence
- Structure and Motion Lab, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Dominic J Wells
- Neuromuscular Diseases Group, Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - John R Hutchinson
- Structure and Motion Lab, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.
| |
Collapse
|
17
|
Lemieux M, Josset N, Roussel M, Couraud S, Bretzner F. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits. Front Neurosci 2016; 10:42. [PMID: 26941592 PMCID: PMC4763020 DOI: 10.3389/fnins.2016.00042] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/01/2016] [Indexed: 01/21/2023] Open
Abstract
Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences Québec, QC, Canada
| | - Nicolas Josset
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences Québec, QC, Canada
| | - Marie Roussel
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences Québec, QC, Canada
| | - Sébastien Couraud
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences Québec, QC, Canada
| | - Frédéric Bretzner
- Centre de Recherche du CHU de Québec, CHUL-NeurosciencesQuébec, QC, Canada; Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuébec, QC, Canada
| |
Collapse
|
18
|
Ahmed Z. Modulation of gamma and alpha spinal motor neurons activity by trans-spinal direct current stimulation: effects on reflexive actions and locomotor activity. Physiol Rep 2016; 4:e12696. [PMID: 26869682 PMCID: PMC4758926 DOI: 10.14814/phy2.12696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Spontaneous and evoked spinal activities interact to set the characteristics of emergent motor responses. Gamma motor neurons have feedforward and feedback functions in motor control, which are crucial for transforming motor commands into action. Meanwhile, the intrinsic excitability and functional connectivity of alpha motor neurons determine the accuracy of actions. In this study, we investigated the effects of trans-spinal direct current stimulation (tsDCS) on spontaneous and cortically evoked activity of well-isolated single units of gamma and alpha motor neurons in mice. We also investigated the effects of tsDCS on reflexive and locomotor actions. In general, motor neurons showed increased responses to cathodal tsDCS (c-tsDCS) and decreased responses to anodal tsDCS (a-tsDCS). These effects were observed for cortically evoked discharges and spontaneous firing rates of gamma motor neurons, cortically evoked discharges of larger alpha motor neurons, and spontaneous firing rates of smaller alpha motor neurons. An exception was that spontaneous firing rates of larger alpha motor neurons showed the opposite pattern of reduction by c-tsDCS and increase by a-tsDCS. Reflexive and voluntary behavior were also increased by c-tsDCS and reduced by a-tsDCS. Specifically, the amplitude and duration of crossed and tail pinch reflexes in decerebrate animals and the quality of ground and treadmill walking patterns in healthy awake animals showed this pattern. These polarity-specific changes in behavior could be attributed to polarity-mediated modulation of alpha and gamma motor neuron activity and spinal circuitry. The results reveal an important principle: effects of tsDCS on spinal motor neurons depend on current polarity and cell size.
Collapse
Affiliation(s)
- Zaghloul Ahmed
- Department of Physical Therapy, College of Staten Island for Developmental Neuroscience, The College of Staten Island, Staten Island, New York Graduate Center/The City University of New York, New York, New York
| |
Collapse
|
19
|
Perry S, Gezelius H, Larhammar M, Hilscher MM, Lamotte d'Incamps B, Leao KE, Kullander K. Firing properties of Renshaw cells defined by Chrna2 are modulated by hyperpolarizing and small conductance ion currents Ih and ISK. Eur J Neurosci 2015; 41:889-900. [PMID: 25712471 DOI: 10.1111/ejn.12852] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 11/28/2022]
Abstract
Renshaw cells in the spinal cord ventral horn regulate motoneuron output through recurrent inhibition. Renshaw cells can be identified in vitro using anatomical and cellular criteria; however, their functional role in locomotion remains poorly defined because of the difficulty of functionally isolating Renshaw cells from surrounding motor circuits. Here we aimed to investigate whether the cholinergic nicotinic receptor alpha2 (Chrna2) can be used to identify Renshaw cells (RCs(α2)) in the mouse spinal cord. Immunohistochemistry and electrophysiological characterization of passive and active RCs(α2) properties confirmed that neurons genetically marked by the Chrna2-Cre mouse line together with a fluorescent reporter mouse line are Renshaw cells. Whole-cell patch-clamp recordings revealed that RCs(α2) constitute an electrophysiologically stereotyped population with a resting membrane potential of -50.5 ± 0.4 mV and an input resistance of 233.1 ± 11 MΩ. We identified a ZD7288-sensitive hyperpolarization-activated cation current (Ih) in all RCs(α2), contributing to membrane repolarization but not to the resting membrane potential in neonatal mice. Additionally, we found RCs(α2) to express small calcium-activated potassium currents (I(SK)) that, when blocked by apamin, resulted in a complete attenuation of the afterhyperpolarisation potential, increasing cellular firing frequency. We conclude that RCs(α2) can be genetically targeted through their selective Chrna2 expression and that they display currents known to modulate rebound excitation and firing frequency. The genetic identification of Renshaw cells and their electrophysiological profile is required for genetic and pharmacological manipulation as well as computational simulations with the aim to understand their functional role.
Collapse
Affiliation(s)
- Sharn Perry
- Department of Neuroscience, Uppsala University, Box 593, 751 24, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Ryczko D, Knüsel J, Crespi A, Lamarque S, Mathou A, Ijspeert AJ, Cabelguen JM. Flexibility of the axial central pattern generator network for locomotion in the salamander. J Neurophysiol 2014; 113:1921-40. [PMID: 25540227 DOI: 10.1152/jn.00894.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In tetrapods, limb and axial movements are coordinated during locomotion. It is well established that inter- and intralimb coordination show considerable variations during ongoing locomotion. Much less is known about the flexibility of the axial musculoskeletal system during locomotion and the neural mechanisms involved. Here we examined this issue in the salamander Pleurodeles waltlii, which is capable of locomotion in both aquatic and terrestrial environments. Kinematics of the trunk and electromyograms from the mid-trunk epaxial myotomes were recorded during four locomotor behaviors in freely moving animals. A similar approach was used during rhythmic struggling movements since this would give some insight into the flexibility of the axial motor system. Our results show that each of the forms of locomotion and the struggling behavior is characterized by a distinct combination of mid-trunk motor patterns and cycle durations. Using in vitro electrophysiological recordings in isolated spinal cords, we observed that the spinal networks activated with bath-applied N-methyl-d-aspartate could generate these axial motor patterns. In these isolated spinal cord preparations, the limb motor nerve activities were coordinated with each mid-trunk motor pattern. Furthermore, isolated mid-trunk spinal cords and hemicords could generate the mid-trunk motor patterns. This indicates that each side of the cord comprises a network able to generate coordinated axial motor activity. The roles of descending and sensory inputs in the behavior-related changes in axial motor coordination are discussed.
Collapse
Affiliation(s)
- D Ryczko
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| | - J Knüsel
- Biorobotics Laboratory (BIOROB), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - A Crespi
- Biorobotics Laboratory (BIOROB), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Lamarque
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| | - A Mathou
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| | - A J Ijspeert
- Biorobotics Laboratory (BIOROB), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J M Cabelguen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| |
Collapse
|
21
|
Ritter LK, Tresch MC, Heckman CJ, Manuel M, Tysseling VM. Characterization of motor units in behaving adult mice shows a wide primary range. J Neurophysiol 2014; 112:543-51. [PMID: 24805075 DOI: 10.1152/jn.00108.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units.
Collapse
Affiliation(s)
- Laura K Ritter
- McCormick Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Matthew C Tresch
- McCormick Biomedical Engineering Department, Northwestern University, Evanston, Illinois; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| | - Marin Manuel
- Laboratoire de Neurophysique et Physiologie, Université Paris Descartes, Institut des Neurosciences et de la Cognition, Centre National de la Recherche Scientifique UMR 8119, Paris, France
| | - Vicki M Tysseling
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
22
|
Manuel M, Marin M, Heckman CJ. Simultaneous intracellular recording of a lumbar motoneuron and the force produced by its motor unit in the adult mouse in vivo. J Vis Exp 2012:e4312. [PMID: 23242236 DOI: 10.3791/4312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The spinal motoneuron has long been a good model system for studying neural function because it is a neuron of the central nervous system with the unique properties of (1) having readily identifiable targets (the muscle fibers) and therefore having a very well-known function (to control muscle contraction); (2) being the convergent target of many spinal and descending networks, hence the name of "final common pathway"; and (3) having a large soma which makes it possible to penetrate them with sharp intracellular electrodes. Furthermore, when studied in vivo, it is possible to record simultaneously the electrical activity of the motoneurons and the force developed by their muscle targets. Performing intracellular recordings of motoneurons in vivo therefore put the experimentalist in the unique position of being able to study, at the same time, all the compartments of the "motor unit" (the name given to the motoneuron, its axon, and the muscle fibers it innervates(1)): the inputs impinging on the motoneuron, the electrophysiological properties of the motoneuron, and the impact of these properties on the physiological function of the motoneurons, i.e. the force produced by its motor unit. However, this approach is very challenging because the preparation cannot be paralyzed and thus the mechanical stability for the intracellular recording is reduced. Thus, this kind of experiments has only been achieved in cats and in rats. However, the study of spinal motor systems could make a formidable leap if it was possible to perform similar experiments in normal and genetically modified mice. For technical reasons, the study of the spinal networks in mice has mostly been limited to neonatal in vitro preparations, where the motoneurons and the spinal networks are immature, the motoneurons are separated from their targets, and when studied in slices, the motoneurons are separated from most of their inputs. Until recently, only a few groups had managed to perform intracellular recordings of motoneurons in vivo(2-4 ), including our team who published a new preparation which allowed us to obtain very stable recordings of motoneurons in vivo in adult mice(5,6). However, these recordings were obtained in paralyzed animals, i.e. without the possibility to record the force output of these motoneurons. Here we present an extension of this original preparation in which we were able to obtain simultaneous recordings of the electrophysiological properties of the motoneurons and of the force developed by their motor unit. This is an important achievement, as it allows us to identify the different types of motoneurons based on their force profile, and thereby revealing their function. Coupled with genetic models disturbing spinal segmental circuitry(7-9), or reproducting human disease(10,11), we expect this technique to be an essential tool for the study of spinal motor system.
Collapse
Affiliation(s)
- Marin Manuel
- Department of Physiology, Northwestern University Feinberg School of Medicine.
| | | | | |
Collapse
|
23
|
Wilkinson KA, Kloefkorn HE, Hochman S. Characterization of muscle spindle afferents in the adult mouse using an in vitro muscle-nerve preparation. PLoS One 2012; 7:e39140. [PMID: 22745708 PMCID: PMC3380032 DOI: 10.1371/journal.pone.0039140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
We utilized an in vitro adult mouse extensor digitorum longus (EDL) nerve-attached preparation to characterize the responses of muscle spindle afferents to ramp-and-hold stretch and sinusoidal vibratory stimuli. Responses were measured at both room (24°C) and muscle body temperature (34°C). Muscle spindle afferent static firing frequencies increased linearly in response to increasing stretch lengths to accurately encode the magnitude of muscle stretch (tested at 2.5%, 5% and 7.5% of resting length [Lo]). Peak firing frequency increased with ramp speeds (20% Lo/sec, 40% Lo/sec, and 60% Lo/sec). As a population, muscle spindle afferents could entrain 1:1 to sinusoidal vibrations throughout the frequency (10-100 Hz) and amplitude ranges tested (5-100 µm). Most units preferentially entrained to vibration frequencies close to their baseline steady-state firing frequencies. Cooling the muscle to 24°C decreased baseline firing frequency and units correspondingly entrained to slower frequency vibrations. The ramp component of stretch generated dynamic firing responses. These responses and related measures of dynamic sensitivity were not able to categorize units as primary (group Ia) or secondary (group II) even when tested with more extreme length changes (10% Lo). We conclude that the population of spindle afferents combines to encode stretch in a smoothly graded manner over the physiological range of lengths and speeds tested. Overall, spindle afferent response properties were comparable to those seen in other species, supporting subsequent use of the mouse genetic model system for studies on spindle function and dysfunction in an isolated muscle-nerve preparation.
Collapse
Affiliation(s)
- Katherine A Wilkinson
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, United States of America.
| | | | | |
Collapse
|