1
|
Chen J, Zhong Y, Shen B, Wang J, Shen Z, Beckel J, de Groat WC, Tai C. Superficial peroneal neuromodulation of nonobstructive urinary retention induced by prolonged pudendal afferent activity in cats. Am J Physiol Regul Integr Comp Physiol 2022; 322:R136-R143. [PMID: 34984922 PMCID: PMC8799394 DOI: 10.1152/ajpregu.00271.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study is to determine whether superficial peroneal nerve stimulation (SPNS) can improve nonobstructive urinary retention (NOUR) induced by prolonged pudendal nerve stimulation (PNS). In this exploratory acute study using eight cats under anesthesia, PNS and SPNS were applied by nerve cuff electrodes. Skin surface electrodes were also used for SPNS. A double lumen catheter was inserted via the bladder dome for bladder infusion and pressure measurement and to allow voiding without a physical urethral outlet obstruction. The voided and postvoid residual (PVR) volumes were also recorded. NOUR induced by repetitive (4-13 times) application of 30-min PNS significantly (P < 0.05) reduced voiding efficiency by 49.5 ± 16.8% of control (78.3 ± 7.9%), with a large PVR volume at 208.2 ± 82.6% of control bladder capacity. SPNS (1 Hz, 0.2 ms) at 1.5-2 times threshold intensity (T) for inducing posterior thigh muscle contractions was applied either continuously (SPNSc) or intermittently (SPNSi) during cystometrograms to improve the PNS-induced NOUR. SPNSc and SPNSi applied by nerve cuff electrodes significantly (P < 0.05) increased voiding efficiency to 74.5 ± 18.9% and 67.0 ± 15.3%, respectively, and reduced PVR volume to 54.5 ± 39.0% and 88.3 ± 56.0%, respectively. SPNSc and SPNSi applied noninvasively by skin surface electrodes also improved NOUR similar to the stimulation applied by a cuff electrode. This study indicates that abnormal pudendal afferent activity could be a pathophysiological cause for the NOUR occurring in Fowler's syndrome and a noninvasive superficial peroneal neuromodulation therapy might be developed to treat NOUR in patients with Fowler's syndrome.
Collapse
Affiliation(s)
- Jialiang Chen
- 1Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania,2Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yihua Zhong
- 1Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania,3School of Biomedical Engineering, Capital Medical University, Beijing, People’s Republic of China
| | - Bing Shen
- 1Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jicheng Wang
- 1Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhijun Shen
- 1Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan Beckel
- 4Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C. de Groat
- 4Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Changfeng Tai
- 1Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania,4Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania,5Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Chen J, Mohapatra A, Zhao J, Zhong Y, Shen B, Wang J, Shen Z, Beckel J, de Groat WC, Tai C. Superficial peroneal neuromodulation of persistent bladder underactivity induced by prolonged pudendal afferent nerve stimulation in cats. Am J Physiol Regul Integr Comp Physiol 2021; 320:R675-R682. [PMID: 33719564 DOI: 10.1152/ajpregu.00346.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study is to determine whether superficial peroneal nerve stimulation (SPNS) can reverse persistent bladder underactivity induced by prolonged pudendal nerve stimulation (PNS). In 16 α-chloralose-anesthetized cats, PNS and SPNS were applied by nerve cuff electrodes. Skin surface electrodes were also used for SPNS. Bladder underactivity consisting of a significant increase in bladder capacity to 157.8 ± 10.9% of control and a significant reduction in bladder contraction amplitude to 56.0 ± 5.0% of control was induced by repetitive (4-16 times) application of 30-min PNS. SPNS (1 Hz, 0.2 ms) at 1.5-2 times threshold intensity (T) for inducing posterior thigh muscle contractions was applied either continuously (SPNSc) or intermittently (SPNSi) during a cystometrogram (CMG) to determine whether the stimulation can reverse the PNS-induced bladder underactivity. SPNSc or SPNSi applied by nerve cuff electrodes during the prolonged PNS inhibition significantly reduced bladder capacity to 124.4 ± 10.7% and 132.4 ± 14.2% of control, respectively, and increased contraction amplitude to 85.3 ± 6.2% and 75.8 ± 4.7%, respectively. Transcutaneous SPNSc and SPNSi also significantly reduced bladder capacity and increased contraction amplitude. Additional PNS applied during the bladder underactivity further increased bladder capacity, whereas SPNSc applied simultaneously with the PNS reversed the increase in bladder capacity. This study indicates that a noninvasive superficial peroneal neuromodulation therapy might be developed to treat bladder underactivity caused by abnormal pudendal nerve somatic afferent activation that is hypothesized to occur in patients with Fowler's syndrome.
Collapse
Affiliation(s)
- Jialiang Chen
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Anand Mohapatra
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jun Zhao
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Urology, The Second Affiliated Hospital of Xian Jiaotong University, Xian, People's Republic of China
| | - Yihua Zhong
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Biomedical Engineering, Capital Medical University, Beijing, People's Republic of China
| | - Bing Shen
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhijun Shen
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Changfeng Tai
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Mohapatra A, Chen J, Zhao J, Zhong Y, Armann K, Shen B, Wang J, Beckel J, de Groat WC, Tai C. Bladder underactivity induced by prolonged pudendal afferent activity in cats. Am J Physiol Regul Integr Comp Physiol 2021; 320:R80-R87. [PMID: 33146553 PMCID: PMC7847056 DOI: 10.1152/ajpregu.00239.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 01/25/2023]
Abstract
The purpose of this study was to determine the effects of pudendal nerve stimulation (PNS) on reflex bladder activity and develop an animal model of underactive bladder (UAB). In six anesthetized cats, a bladder catheter was inserted via the urethra to infuse saline and measure pressure. A cuff electrode was implanted on the pudendal nerve. After determination of the threshold intensity (T) for PNS to induce an anal twitch, PNS (5 Hz, 0.2 ms, 2 T or 4 T) was applied during cystometrograms (CMGs). PNS (4-6 T) of 30-min duration was then applied repeatedly until bladder underactivity was produced. Following stimulation, control CMGs were performed over 1.5-2 h to determine the duration of bladder underactivity. When applied during CMGs, PNS (2 T and 4 T) significantly (P < 0.05) increased bladder capacity while PNS at 4 T also significantly (P < 0.05) reduced bladder contraction amplitude, duration, and area under contraction curve. Repeated application of 30-min PNS for a cumulative period of 3-8 h produced bladder underactivity exhibiting a significantly (P < 0.05) increased bladder capacity (173 ± 14% of control) and a significantly (P < 0.05) reduced contraction amplitude (50 ± 7% of control). The bladder underactivity lasted more than 1.5-2 h after termination of the prolonged PNS. These results provide basic science evidence supporting the proposal that abnormal afferent activity from external urethral/anal sphincter could produce central inhibition that underlies nonobstructive urinary retention (NOUR) in Fowler's syndrome. This cat model of UAB may be useful to investigate the mechanism by which sacral neuromodulation reverses NOUR in Fowler's syndrome.
Collapse
Affiliation(s)
- Anand Mohapatra
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jialiang Chen
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zhao
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Urology, The Second Affiliated Hospital of Xian Jiaotong University, Xian, China
| | - Yihua Zhong
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Kody Armann
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bing Shen
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Changfeng Tai
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Shapiro K, Pace N, Morgan T, Cai H, Shen B, Wang J, Roppolo JR, de Groat WC, Tai C. Additive Inhibition of Reflex Bladder Activity Induced by Bilateral Pudendal Neuromodulation in Cats. Front Neurosci 2020; 14:80. [PMID: 32116523 PMCID: PMC7020809 DOI: 10.3389/fnins.2020.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Objective To determine the inhibitory effect on bladder activity induced by bilateral pudendal neuromodulation. Methods In 10 cats under anesthesia, two tripolar cuff electrodes were implanted bilaterally on the pudendal nerves for stimulation. A double lumen catheter was inserted into the bladder through the urethra to infuse saline and measure bladder pressure. During repeated cystometrograms (CMGs) pudendal nerve stimulation (PNS: 5 Hz, 0.2 ms, 5–15 min) was applied unilaterally or bilaterally at 1- or 2-times intensity threshold (T) for inducing anal sphincter twitching. PNS inhibition was indicated by the increase in bladder capacity measured by CMGs. Results Unilateral PNS at 1T did not significantly increase bladder capacity, but at 2T significantly (p < 0.05) increased bladder capacity by about 30%. Bilateral PNS at 1T also failed to increase bladder capacity, but at 2T significantly (p < 0.05) increased bladder capacity by about 60%, indicating an additive effect induced by the bilateral 2T PNS. Unilateral 1T PNS did not enhance the inhibitory effect induced by contra-lateral 2T PNS. Conclusion This study in anesthetized cats reveals that an additive inhibition of reflex bladder activity can be induced by bilateral pudendal neuromodulation, indicating that bilateral PNS might achieve better therapeutic efficacy in treating overactive bladder (OAB) than unilateral PNS.
Collapse
Affiliation(s)
- Katherine Shapiro
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Natalie Pace
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tara Morgan
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haotian Cai
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, United States
- School of Health and Rehabilitation Sciences, University of Pittsburgh, PA, United States
| | - Bing Shen
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James R. Roppolo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Changfeng Tai
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Changfeng Tai,
| |
Collapse
|
5
|
Yu T, Liao L, Wyndaele JJ. Can intraurethral stimulation inhibit micturition reflex in normal female rats? Int Braz J Urol 2017; 42:608-13. [PMID: 27286128 PMCID: PMC4920582 DOI: 10.1590/s1677-5538.ibju.2015.0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022] Open
Abstract
Objective The study was designed to determine the effect of low frequency (2.5Hz) intraurethral electrical stimulation on bladder capacity and maximum voiding pressures. Materials and Methods The experiments were conducted in 15 virgin female Sprague-Dawley rats (220–250g). The animals were anesthetized by intraperitoneal injection of urethane (1.5g/kg). Animal care and experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee of Antwerp University (code: 2013-50). Unipolar square pulses of 0.06mA were used to stimulate urethra at frequency of 2.5Hz (0.2ms pulse width) in order to evaluate the ability of intraurethral stimulation to inhibit bladder contractions. Continuous stimulation and intermittent stimulation with 5sec ‘‘on’’ and 5sec ‘‘off’’ duty cycle were applied during repeated saline cystometrograms (CMGs). Maximum voiding pressures (MVP) and bladder capacity were investigated to determine the inhibitory effect on bladder contraction induced by intraurethral stimulation. Results The continuous stimulation and intermittent stimulation significantly (p<0.05) decreased MVP and increased bladder capacity. There was no significant difference in MVP and bladder capacity between continuous and intermittent stimulation group. Conclusions The present results suggest that 2.5Hz continuous and intermittent intraurethral stimulation can inhibit micturition reflex, decrease MVP and increase bladder capacity. There was no significant difference in MVP and bladder capacity between continuous and intermittent stimulation group.
Collapse
Affiliation(s)
- Tian Yu
- Department translational neurosciences, Laboratory Urology, University of Antwerp, Faculty GGW, Belgium.,Department of Urology, University Hopsital Antwerp, Antwerp, Belgium.,Department of Urology, China Rehabilitation Research Center, Capital Medical University, Beijing, China.,Department of Urology, Capital Medical University, Beijing, China
| | - Limin Liao
- Department of Urology, China Rehabilitation Research Center, Capital Medical University, Beijing, China.,Department of Urology, Capital Medical University, Beijing, China
| | - Jean Jacques Wyndaele
- Department translational neurosciences, Laboratory Urology, University of Antwerp, Faculty GGW, Belgium.,Department of Urology, University Hopsital Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Jones J, Van de Putte D, De Ridder D, Knowles C, O'Connell R, Nelson D, Goessaert AS, Everaert K. A Joint Mechanism of Action for Sacral Neuromodulation for Bladder and Bowel Dysfunction? Urology 2016; 97:13-19. [DOI: 10.1016/j.urology.2016.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/15/2016] [Accepted: 05/01/2016] [Indexed: 12/27/2022]
|
7
|
Langdale CL, Grill WM. Phasic activation of the external urethral sphincter increases voiding efficiency in the rat and the cat. Exp Neurol 2016; 285:173-181. [PMID: 27235934 DOI: 10.1016/j.expneurol.2016.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Electrical stimulation of the pudendal nerve (PN) is a potential therapy for bladder dysfunction, but voiding efficiency (VE) produced by PN stimulation appears limited to 60-70%. We conducted experiments in rats and cats to investigate the hypothesis that introduction of artificial phasic bursting activity of the external urethral sphincter (EUS) would enhance VE under conditions where such activity was absent. MATERIALS AND METHODS Cystometry experiments were conducted in 17 urethane anesthetized female Sprague-Dawley rats and 4 α-chloralose anesthetized male cats. The effects of phasic stimulation of the pudendal motor branch on VE were quantified in intact conditions, following bilateral transection of the motor branch of the PN, and following subsequent bilateral transection of the sensory branch of the PN. RESULTS Artificial phasic bursting activity in the EUS generated by electrical stimulation of the motor branch of the PN increased VE in both rats and cats. Subsequent transection of the sensory branch of the PN abolished the increased VE elicited by phasic stimulation in both rats and cats. CONCLUSIONS Artificial phasic EUS bursting restored efficient voiding in rats. Introduction of artificial phasic bursting in cats, which normally exhibit EUS relaxation while voiding, was also effective in promoting efficient voiding. In both species phasic EUS activity increased voiding efficiency via activation of pudendal sensory pathways. These results provide further insight into the function of phasic EUS activity in efficient voiding and highlight a novel approach to increase VE generated by pudendal afferent nerve stimulation.
Collapse
Affiliation(s)
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Inhibitory Effect and Possible Mechanism of Intraurethral Stimulation on Overactive Bladder in Female Rats. Int Neurourol J 2015; 19:151-7. [PMID: 26620896 PMCID: PMC4582086 DOI: 10.5213/inj.2015.19.3.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
Purpose: To investigate the inhibitory effect and possible mechanism of intraurethral stimulation on overactive bladder (OAB) induced by acetic acid irritation. Methods: Cystometry was performed in 13 urethane-anesthetized female rats. Intravesical infusion of 0.5% acetic acid was used to irritate the bladder and induce OAB. Multiple cystometrograms were performed with mirabegron, continuous stimulation, mirabegron plus continuous stimulation, and β3-adrenoceptor antagonist plus continuous stimulation to determine the mechanism underlying the inhibitory effect by intraurethral stimulation. Results: Infusion of acetic acid significantly decreased bladder capacity. Intraurethral stimulation at 2.5 Hz plus mirabegron significantly increased bladder capacity and decreased the nonvoiding contraction count. The changes were strongly inhibited after the β3-adrenoceptor antagonist was administered. Conclusions: Activation of urethral afferent nerves can reverse OAB, which activates C-fiber afferent nerves. This animal study indicates that intraurethral stimulation may interfere with OAB through hypogastric nerve activation and pudendal nerve neuromodulation.
Collapse
|
9
|
Zhang F, Zhao S, Shen B, Wang J, Nelson DE, Roppolo JR, de Groat WC, Tai C. Neural pathways involved in sacral neuromodulation of reflex bladder activity in cats. Am J Physiol Renal Physiol 2013; 304:F710-7. [PMID: 23283999 DOI: 10.1152/ajprenal.00334.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the mechanisms underlying the effects of sacral neuromodulation on reflex bladder activity in chloralose-anesthetized cats. Bladder activity was recorded during cystometrograms (CMGs) or under isovolumetric conditions. An S1-S3 dorsal (DRT) or ventral root (VRT) was electrically stimulated at a range of frequencies (1-30 Hz) and at intensities relative to threshold (0.25-2T) for evoking anal/toe twitches. Stimulation of DRTs but not VRTs at 1T intensity and frequencies of 1-30 Hz inhibited isovolumetric rhythmic bladder contractions. A 5-Hz DRT stimulation during CMGs was optimal for increasing (P < 0.05) bladder capacity (BC), but stimulation at 15 and 30 Hz was ineffective. Stimulation of the S1 DRT was more effective (increases BC to 144% and 164% of control at 1T and 2T, respectively) than S2 DRT stimulation (increases BC to 132% and 150% of control). Bilateral transection of the hypogastric or pudendal nerves did not change the inhibitory effect induced by S1 DRT stimulation. Repeated stimulation of S1 and S2 DRTs during multiple CMGs elicited a significant (P < 0.05) increase in BC (to 155 ± 11% of control) that persisted after termination of the stimulation. These results in cats suggest that the inhibition of reflex bladder activity by sacral neuromodulation occurs primarily in the central nervous system by inhibiting the ascending or descending pathways of the spinobulbospinal micturition reflex.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tai C, Shen B, Mally AD, Zhang F, Zhao S, Wang J, Roppolo JR, de Groat WC. Inhibition of micturition reflex by activation of somatic afferents in posterior femoral cutaneous nerve. J Physiol 2012; 590:4945-55. [PMID: 22869011 DOI: 10.1113/jphysiol.2012.239475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study determined if activation of somatic afferents in posterior femoral cutaneous nerve (PFCN) could modulate the micturition reflex recorded under isovolumetric conditions in α-chloralose anaesthetized cats. PFCN stimulation inhibited reflex bladder activity and significantly (P <0.05) increased bladder capacity during slow infusion of saline or 0.25% acetic acid (AA). The optimal frequency for PFCN stimulation-induced bladder inhibition was between 3 and 10 Hz, and a minimal stimulation intensity of half of the threshold for inducing anal twitching was required. Bilateral pudendal nerve transection eliminated PFCN stimulation-induced anal twitching but did not change the stimulation-induced bladder inhibition, excluding the involvement of pudendal afferent or efferent axons in PFCN afferent inhibition.Mechanical or electrical stimulation on the skin surface in the PFCN dermatome also inhibited bladder activity. Prolonged (2 × 30 min) PFCN stimulation induced a post-stimulation inhibition that persists for at least 2 h. This study revealed a new cutaneous-bladder reflex activated by PFCN afferents. Although the mechanisms and physiological functions of this cutaneous-bladder reflex need to be further studied, our data raise the possibility that stimulation of PFCN afferents might be useful clinically for the treatment of overactive bladder symptoms.
Collapse
Affiliation(s)
- Changfeng Tai
- Department of Urology, University of Pittsburgh, 700 Kaufmann Building, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tajkarimi K, Burnett AL. The Role of Genital Nerve Afferents in the Physiology of the Sexual Response and Pelvic Floor Function. J Sex Med 2011; 8:1299-312. [DOI: 10.1111/j.1743-6109.2011.02211.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|