1
|
Hessel EVS, Staal YCM, Piersma AH. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicol Appl Pharmacol 2018; 354:136-152. [PMID: 29544899 DOI: 10.1016/j.taap.2018.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022]
Abstract
Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing.
Collapse
Affiliation(s)
- Ellen V S Hessel
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands.
| | - Yvonne C M Staal
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discov 2016; 2:16018. [PMID: 27551511 PMCID: PMC4979450 DOI: 10.1038/cddiscovery.2016.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Noble gases such as xenon and argon have been reported to provide neuroprotection against acute brain ischemic/anoxic injuries. Herein, we wished to evaluate the protective potential of these two gases under conditions relevant to the pathogenesis of chronic neurodegenerative disorders. For that, we established cultures of neurons typically affected in Alzheimer's disease (AD) pathology, that is, cortical neurons and basal forebrain cholinergic neurons and exposed them to L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to generate sustained, low-level excitotoxic stress. Over a period of 4 days, PDC caused a progressive loss of cortical neurons which was prevented substantially when xenon replaced nitrogen in the cell culture atmosphere. Unlike xenon, argon remained inactive. Xenon acted downstream of the inhibitory and stimulatory effects elicited by PDC on glutamate uptake and efflux, respectively. Neuroprotection by xenon was mimicked by two noncompetitive antagonists of NMDA glutamate receptors, memantine and ketamine. Each of them potentiated xenon-mediated neuroprotection when used at concentrations providing suboptimal rescue to cortical neurons but most surprisingly, no rescue at all. The survival-promoting effects of xenon persisted when NMDA was used instead of PDC to trigger neuronal death, indicating that NMDA receptor antagonism was probably accountable for xenon’s effects. An excess of glycine failed to reverse xenon neuroprotection, thus excluding a competitive interaction of xenon with the glycine-binding site of NMDA receptors. Noticeably, antioxidants such as Trolox and N-acetylcysteine reduced PDC-induced neuronal death but xenon itself lacked free radical-scavenging activity. Cholinergic neurons were also rescued efficaciously by xenon in basal forebrain cultures. Unexpectedly, however, xenon stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in these cultures. Memantine reproduced some of these neurotrophic effects, albeit with less efficacy than xenon. In conclusion, we demonstrate for the first time that xenon may have a therapeutic potential in AD.
Collapse
|
3
|
Lavaur J, Lemaire M, Pype J, Le Nogue D, Hirsch EC, Michel PP. Neuroprotective and neurorestorative potential of xenon. Cell Death Dis 2016; 7:e2182. [PMID: 27054337 PMCID: PMC4855665 DOI: 10.1038/cddis.2016.86] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J Lavaur
- Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - M Lemaire
- Air Liquide Healthcare, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - J Pype
- Air Liquide Healthcare, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - D Le Nogue
- Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - E C Hirsch
- Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - P P Michel
- Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
4
|
Borodinsky LN, Belgacem YH. Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification. J Chem Neuroanat 2015; 73:3-8. [PMID: 26686293 DOI: 10.1016/j.jchemneu.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
Abstract
Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States.
| | - Yesser H Belgacem
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States
| |
Collapse
|
5
|
Frequency decoding of calcium oscillations. Biochim Biophys Acta Gen Subj 2014; 1840:964-9. [DOI: 10.1016/j.bbagen.2013.11.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 11/15/2013] [Indexed: 01/14/2023]
|
6
|
Borodinsky LN, Belgacem YH, Swapna I, Sequerra EB. Dynamic regulation of neurotransmitter specification: relevance to nervous system homeostasis. Neuropharmacology 2012; 78:75-80. [PMID: 23270605 DOI: 10.1016/j.neuropharm.2012.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/09/2012] [Accepted: 12/13/2012] [Indexed: 12/11/2022]
Abstract
During nervous system development the neurotransmitter identity changes and coexpression of several neurotransmitters is a rather generalized feature of developing neurons. In the mature nervous system, different physiological and pathological circumstances recreate this phenomenon. The rules of neurotransmitter respecification are multiple. Among them, the goal of assuring balanced excitability appears as an important driving force for the modifications in neurotransmitter phenotype expression. The functional consequences of these dynamic revisions in neurotransmitter identity span a varied range, from fine-tuning the developing neural circuit to modifications in addictive and locomotor behaviors. Current challenges include determining the mechanisms underlying neurotransmitter phenotype respecification and how they intersect with genetic programs of neuronal specialization. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, USA.
| | - Yesser Hadj Belgacem
- Department of Physiology & Membrane Biology, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Immani Swapna
- Department of Physiology & Membrane Biology, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Eduardo Bouth Sequerra
- Department of Physiology & Membrane Biology, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Dulcis D, Spitzer NC. Reserve pool neuron transmitter respecification: Novel neuroplasticity. Dev Neurobiol 2012; 72:465-74. [PMID: 21595049 DOI: 10.1002/dneu.20920] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The identity of the neurotransmitters expressed by neurons has been thought to be fixed and immutable, but recent studies demonstrate that changes in electrical activity can rapidly and reversibly reconfigure the transmitters and corresponding transmitter receptors that neurons express. Induction of transmitter expression can be achieved by selective activation of afferents recruited by a physiological range of sensory input. Strikingly, neurons acquiring an additional transmitter project to appropriate targets prior to transmitter respecification in some cases, indicating the presence of reserve pools of neurons that can boost circuit function. We discuss the evidence for such reserve pools, their likely locations and ways to test for their existence, and the potential clinical value of such circuit-specific neurotransmitter respecification for treatments of neurological disorders.
Collapse
Affiliation(s)
- Davide Dulcis
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California-San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
8
|
Abstract
Acetylcholine release at motor neuron synapses has been long established; however, recent discoveries indicate that synaptic transmission by motor neurons is more complex than previously thought. Using whole-cell patch clamp, we show that spontaneous excitatory postsynaptic currents of rat motor neurons in primary ventral horn cultures are entirely glutamatergic, although the cells respond to exogenous acetylcholine. Motor neurons in cultures express the vesicular glutamate transporter VGlut2, and culturing motor neurons for weeks with glutamate receptors blocked upregulates glutamate signaling without increasing cholinergic signaling. In spinal cord slices, motor neurons showed no decrease in spontaneous excitatory synaptic potentials after blocking acetylcholine receptors. Our results suggest that motor neuron synapses formed on other neurons are largely glutamatergic in culture and the spinal cord.
Collapse
|
9
|
Demarque M, Spitzer NC. Neurotransmitter phenotype plasticity: an unexpected mechanism in the toolbox of network activity homeostasis. Dev Neurobiol 2012; 72:22-32. [PMID: 21557513 DOI: 10.1002/dneu.20909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transmitter phenotype of a neuron has long been thought to be stable for the lifespan. Much as eyes have one color and do not change it over time, neurons have been thought to have one neurotransmitter and retain it for their lifetime. Both principles, exclusivity and stability, are challenged by recent data. More and more neurons in different regions of the brain appear to coexpress two or more neurotransmitters. Moreover, the profile of neurotransmitter expression of a given neuron has been shown to change over time, both during development and in response to changes in activity. The present review summarizes recent studies of this neurotransmitter phenotype plasticity (NPP). Homeostatic mechanisms of plasticity are aimed at maintaining the system within a functional range. They appear to be critical for optimal network operations and have been thought to operate largely by regulating intrinsic excitability, synapse number and synaptic strength. NPP provides a new and unexpected level of regulation of network homeostasis. We propose that it provides the basis for NT coexpression and discuss emerging issues and new questions for further studies in coming years.
Collapse
Affiliation(s)
- Michaël Demarque
- Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
10
|
Abstract
For many years it has been assumed that the identity of the transmitters expressed by neurons is stable and unchanging. Recent work, however, shows that electrical activity can respecify neurotransmitter expression during development and in the mature nervous system, and an understanding is emerging of the molecular mechanisms underlying activity-dependent transmitter respecification. Changes in postsynaptic neurotransmitter receptor expression accompany and match changes in transmitter specification, thus enabling synaptic transmission. The functional roles of neurotransmitter respecification are beginning to be understood and appear to involve homeostatic synaptic regulation, which in turn influences behaviour. Activation of this novel form of plasticity by sensorimotor stimuli may provide clinical benefits.
Collapse
|
11
|
Abstract
Calcium-dependent electrical activity plays a significant role in neurotransmitter specification at early stages of development. To test the hypothesis that activity-dependent differentiation depends on molecular context, we investigated the development of dopaminergic neurons in the CNS of larval Xenopus laevis. We find that different dopaminergic nuclei respond to manipulation of this early electrical activity by ion channel misexpression with different increases and decreases in numbers of dopaminergic neurons. Focusing on the ventral suprachiasmatic nucleus and the spinal cord to gain insight into these differences, we identify distinct subpopulations of neurons that express characteristic combinations of GABA and neuropeptide Y as cotransmitters and Lim1,2 and Nurr1 transcription factors. We demonstrate that the developmental state of neurons identified by their spatial location and expression of these molecular markers is correlated with characteristic spontaneous calcium spike activity. Different subpopulations of dopaminergic neurons respond differently to manipulation of this early electrical activity. Moreover, retinohypothalamic circuit activation of the ventral suprachiasmatic nucleus recruits expression of dopamine selectively in reserve pool neurons that already express GABA and neuropeptide Y. The results are consistent with the hypothesis that spontaneously active neurons expressing GABA are most susceptible to activity-dependent expression of dopamine in both the spinal cord and brain. Because loss of dopaminergic neurons plays a role in neurological disorders such as Parkinson's disease, understanding how subpopulations of neurons become dopaminergic may lead to protocols for differentiation of neurons in vitro to replace those that have been lost in vivo.
Collapse
|
12
|
Marek KW, Kurtz LM, Spitzer NC. cJun integrates calcium activity and tlx3 expression to regulate neurotransmitter specification. Nat Neurosci 2010; 13:944-50. [PMID: 20581840 PMCID: PMC2910808 DOI: 10.1038/nn.2582] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/19/2010] [Indexed: 12/02/2022]
Abstract
Neuronal differentiation is accomplished through cascades of intrinsic genetic factors initiated in neuronal progenitors by external gradients of morphogens. Activity was thought to be important only late in development, but recent evidence indicates that activity also regulates early neuronal differentiation. Activity in post-mitotic neurons prior to synapse formation can regulate phenotypic specification, including neurotransmitter choice, but the mechanisms are not clear. Here we identify a mechanism that links endogenous calcium spike activity with an intrinsic genetic pathway to specify neurotransmitter choice in neurons in the dorsal embryonic spinal cord of Xenopus tropicalis. Early activity modulates transcription of the GABAergic/glutamatergic selection gene tlx3 and requires a variant cAMP response element (CRE) in its promoter. The cJun transcription factor binds to this CRE site, modulates transcription, and regulates neurotransmitter phenotype through its transactivation domain. Calcium signals through cJun N-terminal phosphorylation, thus integrating activity-dependent and intrinsic neurotransmitter specification. This mechanism provides a basis for early activity to regulate genetic pathways at critical decision points, switching the phenotype of developing neurons.
Collapse
Affiliation(s)
- Kurt W Marek
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
13
|
Kalogiannis M, Grupke SL, Potter PE, Edwards JG, Chemelli RM, Kisanuki YY, Yanagisawa M, Leonard CS. Narcoleptic orexin receptor knockout mice express enhanced cholinergic properties in laterodorsal tegmental neurons. Eur J Neurosci 2010; 32:130-42. [PMID: 20576035 DOI: 10.1111/j.1460-9568.2010.07259.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pharmacological studies of narcoleptic canines indicate that exaggerated pontine cholinergic transmission promotes cataplexy. As disruption of orexin (hypocretin) signaling is a primary defect in narcolepsy with cataplexy, we investigated whether markers of cholinergic synaptic transmission might be altered in mice constitutively lacking orexin receptors (double receptor knockout; DKO). mRNA for Choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT) and the high-affinity choline transporter (CHT1) but not acetylcholinesterase (AChE) was significantly higher in samples from DKO than wild-type (WT) mice. This was region-specific; levels were elevated in samples from the laterodorsal tegmental nucleus (LDT) and the fifth motor nucleus (Mo5) but not in whole brainstem samples. Consistent with region-specific changes, we were unable to detect significant differences in Western blots for ChAT and CHT1 in isolates from brainstem, thalamus and cortex or in ChAT enzymatic activity in the pons. However, using ChAT immunocytochemistry, we found that while the number of cholinergic neurons in the LDT and Mo5 were not different, the intensity of somatic ChAT immunostaining was significantly greater in the LDT, but not Mo5, from DKO than from WT mice. We also found that ChAT activity was significantly reduced in cortical samples from DKO compared with WT mice. Collectively, these findings suggest that the orexins can regulate neurotransmitter expression and that the constitutive absence of orexin signaling results in an up-regulation of the machinery necessary for cholinergic neurotransmission in a mesopontine population of neurons that have been associated with both normal rapid eye movement sleep and cataplexy.
Collapse
Affiliation(s)
- M Kalogiannis
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Apostolova G, Dechant G. Development of neurotransmitter phenotypes in sympathetic neurons. Auton Neurosci 2009; 151:30-8. [DOI: 10.1016/j.autneu.2009.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Leininger E, Belousov AB. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade. Brain Res 2008; 1251:87-102. [PMID: 19059386 DOI: 10.1016/j.brainres.2008.11.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/10/2008] [Accepted: 11/13/2008] [Indexed: 11/18/2022]
Abstract
Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.
Collapse
Affiliation(s)
- Eric Leininger
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | |
Collapse
|