1
|
Frolov RV. Non-inactivating voltage-activated K+ conductances can increase photoreceptor signaling bandwidth beyond the bandwidth set by phototransduction. PLoS One 2023; 18:e0289466. [PMID: 37527242 PMCID: PMC10393161 DOI: 10.1371/journal.pone.0289466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Evolution produced a large variety of rhabdomeric photoreceptors in the compound eyes of insects. To study effects of morphological and electrophysiological differences on signal generation and modulation, we developed models of the cockroach and blow fly photoreceptors. The cockroach model included wide microvilli, large membrane capacitance and two voltage-activated K+ conductances. The blow fly model included narrow microvilli, small capacitance and two sustained voltage-activated K+ conductances. Our analysis indicated that membrane of even the narrowest microvilli of up to 3 μm long can be measured fully from the soma. Attenuation of microvillar quantum bump (QB)-like signals at the recording site in the soma increased with the signal amplitude in the microvillus, due to the decreasing driving force. However, conductance of the normal-sized QBs can be detected in the soma with minimal attenuation. Next, we investigated how interactions between the sustained voltage-activated K+ and light-induced conductances can shape the frequency response. The models were depolarized by either a current injection or light-induced current (LIC) and probed with inward currents kinetically approximating dark- or light-adapted QBs. By analyzing the resulting voltage impulse responses (IR), we found that: (1) sustained K+ conductance can shorten IRs, expanding the signaling bandwidth beyond that set by phototransduction; (2) voltage-dependencies of changes in IR durations have minima within the physiological voltage response range, depending on the activation kinetics of K+ conductance, the presence or absence of sustained LIC, and the kinetics of the probing current stimulus; and (3) sustained LIC lowers gain of IRs and can exert dissimilar effects on their durations. The first two findings were supported by experiments. It is argued that improvement of membrane response bandwidth by parametric interactions between passive, ligand-gated and voltage-dependent components of the membrane circuit can be a general feature of excitable cells that respond with graded voltage signals.
Collapse
Affiliation(s)
- Roman V Frolov
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
2
|
Speed of phototransduction in the microvillus regulates the accuracy and bandwidth of the rhabdomeric photoreceptor. PLoS Comput Biol 2020; 16:e1008427. [PMID: 33196643 PMCID: PMC7704055 DOI: 10.1371/journal.pcbi.1008427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/30/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Phototransduction reactions in the rhabdomeric photoreceptor are profoundly stochastic due to the small number of participating molecules and small reaction space. The resulting quantum bumps (QBs) vary in their timing (latency), amplitudes and durations, and these variabilities within each cell are not correlated. Using modeling and electrophysiological recordings, we investigated how the QB properties depend on the cascade speed and how they influence signal transfer. Parametric analysis in the model supported by experimental data revealed that faster cascades elicit larger and narrower QBs with faster onsets and smaller variabilities than slower cascades. Latency dispersion was stronger affected by modification of upstream than downstream activation parameters. The variability caused by downstream modifications closely matched the experimental variability. Frequency response modeling showed that corner frequency is a reciprocal function of the characteristic duration of the multiphoton response, which, in turn, is a non-linear function of QB duration and latency dispersion. All QB variabilities contributed noise but only latency dispersion slowed and spread multiphoton responses, lowering the corner frequency. Using the discovered QB correlations, we evaluated transduction noise for dissimilar species and two extreme adaptation states, and compared it to photon noise. The noise emitted by the cascade was non-additive and depended non-linearly on the interaction between the QB duration and the three QB variabilities. Increased QB duration strongly suppressed both noise and corner frequency. This trade-off might be acceptable for nocturnal but not diurnal species because corner frequency is the principal determinant of information capacity. To offset the increase in noise accompanying the QB narrowing during light adaptation and the response-expanding effect of latency dispersion, the cascade accelerates. This explains the widespread evolutionary tendency of diurnal fliers to have fast phototransduction, especially after light adaptation, which thus appears to be a common adaptation to contain stochasticity, improve SNR and expand the bandwidth.
Collapse
|
3
|
Chatterjee P, Mohan U, Krishnan A, Sane SP. Evolutionary constraints on flicker fusion frequency in Lepidoptera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:671-681. [PMID: 32529485 DOI: 10.1007/s00359-020-01429-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/24/2022]
Abstract
Flying insects occupy both diurnal and nocturnal niches, and their visual systems encounter distinct challenges in both conditions. Visual adaptations, such as superposition eyes of moths, enhance sensitivity to low light levels but trade off with spatial and temporal resolution. Conversely, apposition eyes of butterflies enable high spatial resolution but are poorly sensitive in dim light. Although diel activity patterns of insects influence visual processing, their role in evolution of visual systems is relatively unexplored. Lepidopteran insects present an excellent system to study how diel activity patterns and phylogenetic position influence the visual transduction system. We addressed this question by comparing electroretinography measurements of temporal response profiles of diverse Lepidoptera to light stimuli that were flickering at different frequencies. Our data show that the eyes of diurnal butterflies are sensitive to visual stimuli of higher temporal frequencies than nocturnal moths. Hesperiid skippers, which are typically diurnal or crepuscular, exhibit intermediate phenotypes with peak sensitivity across broader frequency range. Across all groups, species within families exhibited similar phenotypes irrespective of diel activity. Thus, Lepidopteran photoreceptors may have diversified under phylogenetic constraints, and shifts in their sensitivity to higher temporal frequencies occurred concomitantly with the evolution of diurnal lifestyles.
Collapse
Affiliation(s)
- Payel Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Umesh Mohan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Anand Krishnan
- Indian Institute of Science Education and Research, Pashan Road, Pune, 411008, India.
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India.
| |
Collapse
|
4
|
Electrophysiological adaptations of insect photoreceptors and their elementary responses to diurnal and nocturnal lifestyles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:55-69. [PMID: 31858215 PMCID: PMC6995784 DOI: 10.1007/s00359-019-01392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Nocturnal vision in insects depends on the ability to reliably detect scarce photons. Nocturnal insects tend to have intrinsically more sensitive and larger rhabdomeres than diurnal species. However, large rhabdomeres have relatively high membrane capacitance (Cm), which can strongly low-pass filter the voltage bumps, widening and attenuating them. To investigate the evolution of photoreceptor signaling under near dark, we recorded elementary current and voltage responses from a number of species in six insect orders. We found that the gain of phototransduction increased with Cm, so that nocturnal species had relatively large and prolonged current bumps. Consequently, although the voltage bump amplitude correlated negatively with Cm, the strength of the total voltage signal increased. Importantly, the background voltage noise decreased strongly with increasing Cm, yielding a notable increase in signal-to-noise ratio for voltage bumps. A similar decrease in the background noise with increasing Cm was found in intracellular recordings in vivo. Morphological measurements of rhabdomeres were consistent with our Cm estimates. Our results indicate that the increased photoreceptor Cm in nocturnal insects is a major sensitivity-boosting and noise-suppressing adaptation. However, by requiring a compensatory increase in the gain of phototransduction, this adaptation comes at the expense of the signaling bandwidth.
Collapse
|
5
|
Gür B, Sporar K, Lopez-Behling A, Silies M. Distinct expression of potassium channels regulates visual response properties of lamina neurons in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:273-287. [PMID: 31823004 DOI: 10.1007/s00359-019-01385-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/23/2019] [Accepted: 11/21/2019] [Indexed: 01/11/2023]
Abstract
The computational organization of sensory systems depends on the diversification of individual cell types with distinct signal-processing capabilities. The Drosophila visual system, for instance, splits information into channels with different temporal properties directly downstream of photoreceptors in the first-order interneurons of the OFF pathway, L2 and L3. However, the biophysical mechanisms that determine this specialization are largely unknown. Here, we show that the voltage-gated Ka channels Shaker and Shal contribute to the response properties of the major OFF pathway input L2. L3 calcium response kinetics postsynaptic to photoreceptors resemble the sustained calcium signals of photoreceptors, whereas L2 neurons decay transiently. Based on a cell-type-specific RNA-seq data set and endogenous protein tagging, we identified Shaker and Shal as the primary candidates to shape L2 responses. Using in vivo two-photon imaging of L2 calcium signals in combination with pharmacological and genetic perturbations of these Ka channels, we show that the wild-type Shaker and Shal function is to enhance L2 responses and cell-autonomously sharpen L2 kinetics. Our results reveal a role for Ka channels in determining the signal-processing characteristics of a specific cell type in the visual system.
Collapse
Affiliation(s)
- Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
- European Neuroscience Institute Göttingen a Joint Initiative of the University Medical Center Göttingen, and the Max Planck Society, 37077, Göttingen, Germany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Göttingen, Germany
| | - Katja Sporar
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
- European Neuroscience Institute Göttingen a Joint Initiative of the University Medical Center Göttingen, and the Max Planck Society, 37077, Göttingen, Germany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of Göttingen, Göttingen, Germany
| | - Anne Lopez-Behling
- European Neuroscience Institute Göttingen a Joint Initiative of the University Medical Center Göttingen, and the Max Planck Society, 37077, Göttingen, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany.
- European Neuroscience Institute Göttingen a Joint Initiative of the University Medical Center Göttingen, and the Max Planck Society, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Frolov RV, Immonen EV, Saari P, Torkkeli PH, Liu H, French AS. Phenotypic plasticity in Periplaneta americana photoreceptors. J Gen Physiol 2018; 150:1386-1396. [PMID: 30115661 PMCID: PMC6168239 DOI: 10.1085/jgp.201812107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Abstract
Plasticity is a crucial aspect of neuronal physiology essential for proper development and continuous functional optimization of neurons and neural circuits. Despite extensive studies of different visual systems, little is known about plasticity in mature microvillar photoreceptors. Here we investigate changes in electrophysiological properties and gene expression in photoreceptors of the adult cockroach, Periplaneta americana, after exposure to constant light (CL) or constant dark (CD) for several months. After CL, we observed a decrease in mean whole-cell capacitance, a proxy for cell membrane area, from 362 ± 160 to 157 ± 58 pF, and a decrease in absolute sensitivity. However, after CD, we observed an increase in capacitance to 561 ± 155 pF and an increase in absolute sensitivity. Small changes in the expression of light-sensitive channels and signaling molecules were detected in CD retinas, together with a substantial increase in the expression of the primary green-sensitive opsin (GO1). Accordingly, light-induced currents became larger in CD photoreceptors. Even though normal levels of GO1 expression were retained in CL photoreceptors, light-induced currents became much smaller, suggesting that factors other than opsin are involved. Latency of phototransduction also decreased significantly in CL photoreceptors. Sustained voltage-activated K+ conductance was not significantly different between the experimental groups. The reduced capacitance of CL photoreceptors expanded their bandwidth, increasing the light-driven voltage signal at high frequencies. However, voltage noise was also amplified, probably because of unaltered expression of TRPL channels. Consequently, information transfer rates were lower in CL than in control or CD photoreceptors. These changes in whole-cell capacitance and electrophysiological parameters suggest that structural modifications can occur in the photoreceptors to adapt their function to altered environmental conditions. The opposing patterns of modifications in CL and CD photoreceptors differ profoundly from previous findings in Drosophila melanogaster photoreceptors.
Collapse
Affiliation(s)
- Roman V Frolov
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Esa-Ville Immonen
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Paulus Saari
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Frolov RV. On the role of transient depolarization-activated K + current in microvillar photoreceptors. J Gen Physiol 2018; 150:1287-1298. [PMID: 30049678 PMCID: PMC6122929 DOI: 10.1085/jgp.201711940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/11/2018] [Accepted: 06/28/2018] [Indexed: 01/30/2023] Open
Abstract
The transient K+ current carried by Shaker channels is thought to play a role in low-frequency signal amplification in Drosophila melanogaster photoreceptors. By combining patch-clamp recordings with a physiological variability analysis, Frolov reveals its role in high-frequency signal transmission. Photoreceptors in the compound eyes of most insect species express two functional types of depolarization-activated potassium currents: a transient A-type current (IA) and a sustained delayed rectifier current (IDR). The role of Shaker-dependent IA in Drosophila melanogaster photoreceptors was previously investigated by comparing intracellular recordings from Shaker and wild-type photoreceptors. Shaker channels were proposed to be involved in low-frequency signal amplification in dim light and reduction of the metabolic cost of information transfer. Here, I study the function of IA in photoreceptors of the cockroach Panchlora nivea using the patch-clamp method. Responses to Gaussian white-noise stimuli reveal that blockade of IA with 4-aminopyridine has no discernible effect on voltage responses or information processing. However, because open-channel blockers are often ineffective at low membrane potentials, no conclusion on the role of IA could be made on the basis of negative results of pharmacological tests. Using a relatively large set of control data, a physiological variability analysis was performed to discern the role of IA. Amplitudes of the IA window current and half-activation potentials correlate strongly with membrane corner frequencies, especially in dim light, indicating that IA facilitates transmission of higher frequencies. Consistent with voltage-dependent inactivation of IA, these correlations decrease with depolarization in brighter backgrounds. In contrast, correlations involving IDR are comparatively weak. Upon reexamining photoreceptor conductance in wild-type and Shaker strains of D. melanogaster, I find a biphasic voltage dependence near the resting potential in a minority of photoreceptors from both strains, indicating that Shaker channels are not crucial for early amplification of voltage signals in D. melanogaster photoreceptors. Leak current in Shaker photoreceptors at the level of the soma is not elevated. These results suggest a novel role for IA in facilitating transmission of high-frequency signals in microvillar photoreceptors.
Collapse
Affiliation(s)
- Roman V Frolov
- Faculty of Science, Nano and Molecular Materials Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
8
|
Honkanen A, Immonen EV, Salmela I, Heimonen K, Weckström M. Insect photoreceptor adaptations to night vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0077. [PMID: 28193821 DOI: 10.1098/rstb.2016.0077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 01/25/2023] Open
Abstract
Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Anna Honkanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Iikka Salmela
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Kyösti Heimonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Matti Weckström
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Paeger L, Bardos V, Kloppenburg P. Transient voltage-activated K + currents in central antennal lobe neurons: cell type-specific functional properties. J Neurophysiol 2017; 117:2053-2064. [PMID: 28179480 PMCID: PMC5434483 DOI: 10.1152/jn.00685.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/01/2023] Open
Abstract
In this study we analyzed transient voltage-activated K+ currents (IA) of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana The antennal lobe is the first synaptic processing station for olfactory information in insects. Local interneurons are crucial for computing olfactory information and form local synaptic connections exclusively in the antennal lobe, whereas a primary task of the projection neurons is the transfer of preprocessed olfactory information from the antennal lobe to higher order centers in the protocerebrum. The different physiological tasks of these neurons require specialized physiological and morphological neuronal phenotypes. We asked if and how the different physiological phenotypes are reflected in the functional properties of IA, which is crucial for shaping intrinsic electrophysiological properties of neurons. Whole cell patch-clamp recordings from adult male P. americana showed that all their central antennal lobe neurons can generate IA The current exhibited marked cell type-specific differences in voltage dependence of steady-state activation and inactivation, and differences in inactivation kinetics during sustained depolarization. Pharmacological experiments revealed that IA in all neuron types was partially blocked by α-dendrotoxin and phrixotoxin-2, which are considered blockers with specificity for Shaker- and Shal-type channels, respectively. These findings suggest that IA in each cell type is a mixed current generated by channels of both families. The functional role of IA was analyzed in experiments under current clamp, in which portions of IA were blocked by α-dendrotoxin or phrixotoxin-2. These experiments showed that IA contributes significantly to the intrinsic electrophysiological properties, such as the action potential waveform and membrane excitability.NEW & NOTEWORTHY In the insect olfactory system, projection neurons and local interneurons have task-specific electrophysiological and morphological phenotypes. Voltage-activated potassium channels play a crucial role in shaping functional properties of these neurons. This study revealed marked cell type-specific differences in the biophysical properties of transient voltage-activated potassium currents in central antennal lobe neurons.
Collapse
Affiliation(s)
- Lars Paeger
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Viktor Bardos
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Frolov RV, Matsushita A, Arikawa K. Not flying blind: a comparative study of photoreceptor function in flying and non-flying cockroaches. ACTA ACUST UNITED AC 2017; 220:2335-2344. [PMID: 28404730 DOI: 10.1242/jeb.159103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/10/2017] [Indexed: 11/20/2022]
Abstract
Flying is often associated with superior visual performance, as good vision is crucial for detection and implementation of rapid visually guided aerial movements. To understand the evolution of insect visual systems it is therefore important to compare phylogenetically related species with different investments in flight capability. Here, we describe and compare morphological and electrophysiological properties of photoreceptors from the habitually flying green cockroach Panchlora nivea and the American cockroach Periplaneta americana, which flies only at high ambient temperatures. In contrast to Periplaneta, ommatidia in Panchlora were characterized by two-tiered rhabdom, which might facilitate detection of polarized light while flying in the dark. In patch-clamp experiments, we assessed the absolute sensitivity to light, elementary and macroscopic light-activated current and voltage responses, voltage-activated potassium (Kv) conductances, and information transfer. Both species are nocturnal, and their photoreceptors were similarly sensitive to light. However, a number of important differences were found, including the presence in Panchlora of a prominent transient Kv current and a generally low variability in photoreceptor properties. The maximal information rate in Panchlora was one-third higher than in Periplaneta, owing to a substantially higher gain and membrane corner frequency. The differences in performance could not be completely explained by dissimilarities in the light-activated or Kv conductances; instead, we suggest that the superior performance of Panchlora photoreceptors mainly originates from better synchronization of elementary responses. These findings raise the issue of whether the evolutionary tuning of photoreceptor properties to visual demands proceeded differently in Blattodea than in Diptera.
Collapse
Affiliation(s)
- Roman V Frolov
- Faculty of Science, Nano and Molecular Materials Research Unit, University of Oulu, PO Box 3000, Oulun Yliopisto 90014, Finland
| | - Atsuko Matsushita
- Laboratory of Neuroethology, Sokendai (The Graduate University for Advanced Studies), Shonan Village, Hayama 240-0193, Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai (The Graduate University for Advanced Studies), Shonan Village, Hayama 240-0193, Japan
| |
Collapse
|
11
|
Saari P, French AS, Torkkeli PH, Liu H, Immonen EV, Frolov RV. Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana. J Gen Physiol 2017; 149:455-464. [PMID: 28283577 PMCID: PMC5379922 DOI: 10.1085/jgp.201611737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s1 because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light.
Collapse
Affiliation(s)
- Paulus Saari
- Biophysics Group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu FI-90014, Finland
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Esa-Ville Immonen
- Biophysics Group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu FI-90014, Finland.,Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Roman V Frolov
- Biophysics Group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu FI-90014, Finland
| |
Collapse
|
12
|
Frolov RV. Current advances in invertebrate vision: insights from patch-clamp studies of photoreceptors in apposition eyes. J Neurophysiol 2016; 116:709-23. [PMID: 27250910 DOI: 10.1152/jn.00288.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
Traditional electrophysiological research on invertebrate photoreceptors has been conducted in vivo, using intracellular recordings from intact compound eyes. The only exception used to be Drosophila melanogaster, which was exhaustively studied by both intracellular recording and patch-clamp methods. Recently, several patch-clamp studies have provided new information on the biophysical properties of photoreceptors of diverse insect species, having both apposition and neural superposition eyes, in the contexts of visual ecology, behavior, and ontogenesis. Here, I discuss these and other relevant results, emphasizing differences between fruit flies and other species, between photoreceptors of diurnal and nocturnal insects, properties of distinct functional types of photoreceptors, postembryonic developmental changes, and relationships between voltage-gated potassium channels and visual ecology.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|