1
|
Xiao T, Wu K, Wang P, Ding Y, Yang X, Chang C, Yang Y. Sensory input-dependent gain modulation of the optokinetic nystagmus by mid-infrared stimulation in pigeons. eLife 2023; 12:78729. [PMID: 36853228 PMCID: PMC9977280 DOI: 10.7554/elife.78729] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Neuromodulation serves as a cornerstone for brain sciences and clinical applications. Recent reports suggest that mid-infrared stimulation (MIRS) causes non-thermal modulation of brain functions. Current understanding of its mechanism hampers the routine application of MIRS. Here, we examine how MIRS influences the sensorimotor transformation in awaking-behaving pigeons, from neuronal signals to behavior. We applied MIRS and electrical stimulation (ES) to the pretectal nucleus lentiformis mesencephali (nLM), an essential retinorecipient structure in the pretectum, and examined their influences on the optokinetic nystagmus, a visually guided eye movement. We found MIRS altered eye movements by modulating a specific gain depending on the strength of visual inputs, in a manner different than the effect of ES. Simultaneous extracellular recordings and stimulation showed that MIRS could either excite and inhibit the neuronal activity in the same pretectal neuron depending on its ongoing sensory responsiveness levels in awake-behaving animals. Computational simulations suggest that MIRS modulates the resonance of a carbonyl group of the potassium channel, critical to the action potential generation, altering neuronal responses to sensory inputs and as a consequence, guiding behavior. Our findings suggest that MIRS could be a promising approach toward modulating neuronal functions for brain research and treating neurological diseases.
Collapse
Affiliation(s)
- Tong Xiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Peiliang Wang
- University of Chinese Academy of SciencesBeijingChina
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- Key Laboratory of Electromagnetic Radiation and Sensing Technology, Aerospace Information Research Institute, Chinese Academy of sciencesBeijingChina
| | - Yali Ding
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- School of Physics, Peking UniversityBeijingChina
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefeiChina
| |
Collapse
|
2
|
Huang J, Tang X, Xu Y, Zhang C, Chen T, Yu Y, Mustain W, Allison J, Iversen MM, Rabbitt RD, Zhou W, Zhu H. Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats. J Assoc Res Otolaryngol 2022; 23:435-453. [DOI: 10.1007/s10162-022-00839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
|
3
|
Chen T, Huang J, Yu Y, Tang X, Zhang C, Xu Y, Arteaga A, Allison J, Mustain W, Donald MC, Rappai T, Zhang M, Zhou W, Zhu H. Sound-Evoked Responses in the Vestibulo-Ocular Reflex Pathways of Rats. Front Neurosci 2021; 15:741571. [PMID: 34720863 PMCID: PMC8551456 DOI: 10.3389/fnins.2021.741571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Vestibular evoked myogenic potentials (VEMP) have been used to assess otolith function in clinics worldwide. However, there are accumulating evidence suggesting that the clinically used sound stimuli activate not only the otolith afferents, but also the canal afferents, indicating canal contributions to the VEMPs. To better understand the neural mechanisms underlying the VEMPs and develop discriminative VEMP protocols, we further examined sound-evoked responses of the vestibular nucleus neurons and the abducens neurons, which have the interneurons and motoneurons of the vestibulo-ocular reflex (VOR) pathways. Air-conducted clicks (50–80 dB SL re ABR threshold, 0.1 ms duration) or tone bursts (60–80 dB SL, 125–4,000 Hz, 8 ms plateau, 1 ms rise/fall) were delivered to the ears of Sprague-Dawley or Long-Evans rats. Among 425 vestibular nucleus neurons recorded in anesthetized rats and 18 abducens neurons recorded in awake rats, sound activated 35.9% of the vestibular neurons that increased discharge rates for ipsilateral head rotation (Type I neuron), 15.7% of the vestibular neurons that increased discharge rates for contralateral head rotation (Type II neuron), 57.2% of the vestibular neurons that did not change discharge rates during head rotation (non-canal neuron), and 38.9% of the abducens neurons. Sound sensitive vestibular nucleus neurons and abducens neurons exhibited characteristic tuning curves that reflected convergence of canal and otolith inputs in the VOR pathways. Tone bursts also evoked well-defined eye movements that increased with tone intensity and duration and exhibited peak frequency of ∼1,500 Hz. For the left eye, tone bursts evoked upward/rightward eye movements for ipsilateral stimulation, and downward/leftward eye movements for contralateral stimulation. These results demonstrate that sound stimulation results in activation of the canal and otolith VOR pathways that can be measured by eye tracking devices to develop discriminative tests of vestibular function in animal models and in humans.
Collapse
Affiliation(s)
- Tianwen Chen
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jun Huang
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yue Yu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xuehui Tang
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chunming Zhang
- Department of Otolaryngology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Youguo Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alberto Arteaga
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jerome Allison
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - William Mustain
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Matthew C Donald
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Tracy Rappai
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Michael Zhang
- Summer Undergraduate Research Program, University of Mississippi Medical Center, Jackson, MS, United States
| | - Wu Zhou
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Neurology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Hong Zhu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
4
|
Yu Y, Huang J, Tang X, Allison J, Sandlin D, Ding D, Pang Y, Zhang C, Chen T, Yin N, Chen L, Mustain W, Zhou W, Zhu H. Exposure to blast shock waves via the ear canal induces deficits in vestibular afferent function in rats. J Otol 2020; 15:77-85. [PMID: 32884557 PMCID: PMC7451608 DOI: 10.1016/j.joto.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
The ears are air-filled structures that are directly impacted during blast exposure. In addition to hearing loss and tinnitus, blast victims often complain of vertigo, dizziness and unsteady posture, suggesting that blast exposure induces damage to the vestibular end organs in the inner ear. However, the underlying mechanisms remain to be elucidated. In this report, single vestibular afferent activity and the vestibulo-ocular reflex (VOR) were investigated before and after exposure to blast shock waves (∼20 PSI) delivered into the left external ear canals of anesthetized rats. Single vestibular afferent activity was recorded from the superior branch of the left vestibular nerves of the blast-treated and control rats one day after blast exposure. Blast exposure reduced the spontaneous discharge rates of the otolith and canal afferents. Blast exposure also reduced the sensitivity of irregular canal afferents to sinusoidal head rotation at 0.5-2Hz. Blast exposure, however, resulted in few changes in the VOR responses to sinusoidal head rotation and translation. To the best of our knowledge, this is the first study that reports blast exposure-induced damage to vestibular afferents in an animal model. These results provide insights that may be helpful in developing biomarkers for early diagnosis of blast-induced vestibular deficits in military and civilian populations.
Collapse
Affiliation(s)
- Yue Yu
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jun Huang
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xuehui Tang
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerome Allison
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - David Sandlin
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Yi Pang
- Department of Pediatric, University of Mississippi Medical Center, Jackson, MS, USA
| | - Chunming Zhang
- Department of Otolaryngology, First Affiliated Hospital, Shanxi Medical University, Taiyuan Shanxi, 030001, China
| | - Tianwen Chen
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathan Yin
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lan Chen
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - William Mustain
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wu Zhou
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hong Zhu
- Departmant of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
5
|
The Cervical Vestibular-Evoked Myogenic Potentials (cVEMPs) Recorded Along the Sternocleidomastoid Muscles During Head Rotation and Flexion in Normal Human Subjects. J Assoc Res Otolaryngol 2016; 17:303-11. [PMID: 27105980 DOI: 10.1007/s10162-016-0566-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
Tone burst-evoked myogenic potentials recorded from tonically contracted sternocleidomastoid muscles (SCM) (cervical VEMP or cVEMP) are widely used to assess the vestibular function. Since the cVEMP response is mediated by the vestibulo-collic reflex (VCR) pathways, it is important to understand how the cVEMPs are determined by factors related to either the sensory components (vestibular end organs) or the motor components (SCM) of the VCR pathways. Compared to the numerous studies that have investigated effects of sound parameters on the cVEMPs, there are few studies that have examined effects of SCM-related factors on the cVEMPs. The goal of the present study is to fill this knowledge gap by testing three SCM-related hypotheses. The first hypothesis is that contrary to the current view, the cVEMP response is only present in the SCM ipsilateral to the stimulated ear. The second hypothesis is that the cVEMP response is not only dependent on tonic level of the SCM, but also on how the tonic level is achieved, i.e., by head rotation or head flexion. The third hypothesis is that the SCM is compartmented and the polarity of the cVEMP response is dependent on the recording site. Seven surface electrodes were positioned along the left SCMs in 12 healthy adult subjects, and tone bursts were delivered to the ipsilateral or contralateral ear (8 ms plateau, 1 ms rise/fall, 130 dB SPL, 50-4000 Hz) while subjects activated their SCMs by head rotation (HR condition) or chin downward head flexion (CD condition). The first hypothesis was confirmed by the finding that the contralateral cVEMPs were minimal at all recording sites for all the tested tones during both HR and CD conditions. The second hypothesis was confirmed by the finding that the ipsilateral cVEMPs were larger in HR condition than in CD condition at recording sites above and below the SCM midpoint. Finally, the third hypothesis was confirmed by the finding that the cVEMPs exhibit reversed polarities at the sites near the mastoid and the sternal head. These results improve understanding of the cVEMP generation and suggest that the SCM-related factors should be taken into consideration when developing standardized clinical cVEMP testing protocols.
Collapse
|
6
|
Ranjbaran M, Galiana HL. Hybrid model of the context dependent vestibulo-ocular reflex: implications for vergence-version interactions. Front Comput Neurosci 2015; 9:6. [PMID: 25709578 PMCID: PMC4321407 DOI: 10.3389/fncom.2015.00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/14/2015] [Indexed: 11/27/2022] Open
Abstract
The vestibulo-ocular reflex (VOR) is an involuntary eye movement evoked by head movements. It is also influenced by viewing distance. This paper presents a hybrid nonlinear bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) in the dark. The model is based on known interconnections between saccadic burst circuits in the brainstem and ocular premotor areas in the vestibular nuclei during fast and slow phase intervals of nystagmus. We implemented a viable switching strategy for the timing of nystagmus events to allow emulation of real nystagmus data. The performance of the hybrid model is evaluated with simulations, and results are consistent with experimental observations. The hybrid model replicates realistic AVOR nystagmus patterns during sinusoidal or step head rotations in the dark and during interactions with vergence, e.g., fixation distance. By simply assigning proper nonlinear neural computations at the premotor level, the model replicates all reported experimental observations. This work sheds light on potential underlying neural mechanisms driving the context dependent AVOR and explains contradictory results in the literature. Moreover, context-dependent behaviors in more complex motor systems could also rely on local nonlinear neural computations.
Collapse
Affiliation(s)
- Mina Ranjbaran
- Department of Biomedical Engineering, McGill University Montreal, QC, Canada
| | - Henrietta L Galiana
- Department of Biomedical Engineering, McGill University Montreal, QC, Canada
| |
Collapse
|
7
|
Reply to the Commentary on Luis et al. "Spontaneous plugging of the horizontal semicircular canal with reversible canal dysfunction and recovery of vestibular evoked myogenic potentials". Otol Neurotol 2014; 35:379-83. [PMID: 24448300 DOI: 10.1097/mao.0000000000000198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhu H, Tang X, Wei W, Maklad A, Mustain W, Rabbitt R, Highstein S, Allison J, Zhou W. Input-output functions of vestibular afferent responses to air-conducted clicks in rats. J Assoc Res Otolaryngol 2014; 15:73-86. [PMID: 24297262 PMCID: PMC3901862 DOI: 10.1007/s10162-013-0428-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/06/2013] [Indexed: 01/08/2023] Open
Abstract
Sound-evoked vestibular myogenic potentials recorded from the sternocleidomastoid muscles (the cervical vestibular-evoked myogenic potential or cVEMP) and the extraocular muscles (the ocular VEMP or oVEMP) have proven useful in clinical assessment of vestibular function. VEMPs are commonly interpreted as a test of saccular function, based on neurophysiological evidence showing activation of saccular afferents by intense acoustic click stimuli. However, recent neurophysiological studies suggest that the clicks used in clinical VEMP tests activate vestibular end organs other than the saccule. To provide the neural basis for interpreting clinical VEMP testing results, the present study examined the extent to which air-conducted clicks differentially activate the various vestibular end organs at several intensities and durations in Sprague-Dawley rats. Single unit recordings were made from 562 vestibular afferents that innervated the otoliths [inferior branch otolith (IO) and superior branch otolith (SO)], the anterior canal (AC), the horizontal canal (HC), and the posterior canal (PC). Clicks higher than 60 dB SL (re-auditory brainstem response threshold) activated both semicircular canal and otolith organ afferents. Clicks at or below 60 dB SL, however, activated only otolith organ afferents. Longer duration clicks evoked larger responses in AC, HC, and SO afferents, but not in IO afferents. Intra-axonal recording and labeling confirmed that sound sensitive vestibular afferents innervated the horizontal and anterior canal cristae as well as the saccular and utricular maculae. Interestingly, all sound sensitive afferents are calyx-bearing fibers. These results demonstrate stimulus-dependent acoustic activation of both semicircular canals and otolith organs, and suggest that sound activation of vestibular end organs other than the saccule should not be ruled out when designing and interpreting clinical VEMP tests.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ranjbaran M, Galiana HL. The horizontal angular vestibulo-ocular reflex: a nonlinear mechanism for context-dependent responses. IEEE Trans Biomed Eng 2013; 60:3216-25. [PMID: 23846433 DOI: 10.1109/tbme.2013.2271723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies of the vestibulo-ocular reflex (VOR) have revealed that this type of involuntary eye movement is influenced by viewing distance. This paper presents a bilateral model for the horizontal angular VOR in the dark based on realistic physiological mechanisms. It is shown that by assigning proper nonlinear neural computations at the premotor level, the model is capable of replicating target-distance-dependent VOR responses that are in agreement with geometrical requirements. Central premotor responses in the model are also shown to be consistent with experimental observations. Moreover, the model performance after simulated unilateral canal plugging also reproduces experimental observations, an emerging property. Such local nonlinear computations could similarly generate context-dependent behaviors in other more complex motor systems.
Collapse
|
10
|
Eye position dependency of nystagmus during constant vestibular stimulation. Exp Brain Res 2013; 226:175-82. [DOI: 10.1007/s00221-013-3423-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
11
|
Ranjbaran M, Galiana HL. The horizontal angular vestibulo-ocular reflex: a non-linear mechanism for context-dependent responses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:3866-9. [PMID: 23366772 DOI: 10.1109/embc.2012.6346811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. It is shown that by assigning proper non-linear neural computations at the premotor level, the model is capable of replicating target-distance dependent VOR responses. Moreover, the model behavior in case of sensory plugging is also consistent with reported experimental observations.
Collapse
Affiliation(s)
- Mina Ranjbaran
- Department of Biomedical Engineering, McGill University, Montreal, Canada, H3A 2B4
| | | |
Collapse
|
12
|
Bockisch CJ, Khojasteh E, Straumann D, Hegemann SCA. Development of eye position dependency of slow phase velocity during caloric stimulation. PLoS One 2012; 7:e51409. [PMID: 23251522 PMCID: PMC3520909 DOI: 10.1371/journal.pone.0051409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/02/2012] [Indexed: 11/25/2022] Open
Abstract
The nystagmus in patients with vestibular disorders often has an eye position dependency, called Alexander’s law, where the slow phase velocity is higher with gaze in the fast phase direction compared with gaze in the slow phase direction. Alexander’s law has been hypothesized to arise either due to adaptive changes in the velocity-to-position neural integrator, or as a consequence of processing of the vestibular-ocular reflex. We tested whether Alexander’s law arises only as a consequence of non-physiologic vestibular stimulation. We measured the time course of the development of Alexander’s law in healthy humans with nystagmus caused by three types of caloric vestibular stimulation: cold (unilateral inhibition), warm (unilateral excitation), and simultaneous bilateral bithermal (one side cold, the other warm) stimulation, mimicking the normal push-pull pattern of vestibular stimulation. Alexander’s law, measured as a negative slope of the velocity versus position curve, was observed in all conditions. A reversed pattern of eye position dependency (positive slope) was found <10% of the time. The slope often changed with nystagmus velocity (cross-correlation of nystagmus speed and slope was significant in 50% of cases), and the average lag of the slope with the speed was not significantly different from zero. Our results do not support the hypothesis that Alexander’s law can only be observed with non-physiologic vestibular stimulation. Further, the rapid development of Alexander’s law, while possible for an adaptive mechanism, is nonetheless quite fast compared to most other ocular motor adaptations. These results suggest that Alexander’s law may not be a consequence of a true adaptive mechanism.
Collapse
Affiliation(s)
- Christopher J Bockisch
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
13
|
Frequency tuning of the cervical vestibular-evoked myogenic potential (cVEMP) recorded from multiple sites along the sternocleidomastoid muscle in normal human subjects. J Assoc Res Otolaryngol 2012. [PMID: 23183876 DOI: 10.1007/s10162-012-0360-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Frequency tuning of tone burst-evoked myogenic potentials recorded from the sternocleidomastoid muscle (cervical VEMP or cVEMP) is used clinically to assess vestibular function. Understanding the characteristics of cVEMP is important for improving the specificity of cVEMP testing in diagnosing vestibular deficits. In the present study, we analyzed the frequency tuning properties of the cVEMPs by constructing detailed tuning curves and examining their morphology and dependence on SCM tonic level, sound intensity, and recording site along the SCM. Here we report two main findings. First, by employing nine tone frequencies between 125 and 4,000 Hz, some tuning curves exhibited two distinct peaks, which cannot be modeled by a single mass spring system as previously suggested. Instead, the observed tuning is better modeled as linear summation of two mass spring systems, with resonance frequencies at ~300 and ~1,000 Hz. Peak frequency of cVEMP tuning curves was not affected by SCM tonic level, sound intensity, and location of recording site on the SCM. However, sharpness of cVEMP tuning was increased at lower sound intensities. Second, polarity of cVEMP responses recorded from the lower quarter of the SCM was reversed as compared to that at the two upper sites. While more studies are needed, these results suggest that cVEMP tuning is mediated through multiple generators with different resonance frequencies. Future studies are needed to explore implications of these results on development of selective VEMP tests and determine the nature of polarity inversion at the lower quarter of SCM.
Collapse
|
14
|
Rosengren SM, Colebatch JG, Straumann D, Weber KP. Why do oVEMPs become larger when you look up? Explaining the effect of gaze elevation on the ocular vestibular evoked myogenic potential. Clin Neurophysiol 2012. [PMID: 23177454 DOI: 10.1016/j.clinph.2012.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The ocular vestibular evoked myogenic potential (oVEMP) is a vestibular reflex recorded from the inferior oblique (IO) muscles, which increases in amplitude during eye elevation. We investigated whether this effect of gaze elevation could be explained by movement of the IO closer to the recording electrode. METHODS We compared oVEMPs recorded with different gaze elevations to those recorded with constant gaze position but electrodes placed at increasing distance from the eyes. oVEMPs were recorded in ten healthy subjects using bursts of skull vibration. RESULTS oVEMP amplitude decreased more with decreasing gaze elevation (9 μV from 24° up to neutral) than with increasing electrode distance (2.7 μV from baseline to 6.4 mm; P<0.005). The oVEMP recorded with gaze 24° down had delayed latency (by 4.5 ms). CONCLUSION The effect of gaze elevation on the oVEMP cannot be explained by changes in position of the muscle alone and is likely mainly due to increased tonic contraction of the IO muscle in up-gaze. The oVEMP recorded in down-gaze (when the IO is inactivated, but the IR activated) likely originates in the adjacent IR muscle. SIGNIFICANCE Our results suggest that oVEMP amplitudes in extraocular muscles scale in response to changing tonic muscle activity.
Collapse
|
15
|
Anastasopoulos D, Anagnostou E. Invariance of vestibulo-ocular reflex gain to head impulses in pitch at different initial eye-in-orbit elevations: implications for Alexander's law. Acta Otolaryngol 2012; 132:1066-72. [PMID: 22668130 DOI: 10.3109/00016489.2012.682120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS These findings are in line with previous data on the horizontal vestibulo-ocular reflex (VOR) from this laboratory and suggest that eye position signals do not modulate natural vestibular responses. Hence, the Alexander's law (AL) phenomenon cannot be interpreted simply as a consequence of vestibular or oculomotor nuclei activity modulation with desired gaze. BACKGROUND AL states that the intensity of the spontaneous nystagmus of a patient with a unilateral vestibular lesion grows with increasing gaze in the direction of the fast phase. Some of the mechanisms proposed to account for the gaze effects assume a direct modification of the normal VOR by eye position signals. We tested the validity of these assumptions and investigated the effects of gaze direction on the normal vertical human VOR in the behaviorally relevant high frequency range. METHODS Head and eye movements were recorded with the search coil method during passive head impulses in pitch, while subjects were asked to hold gaze at various elevation angles in 8° steps within ± 16° from the straight ahead reference position. RESULTS Upward and downward head rotations produced VOR gains of similar magnitude. Furthermore, the gain remained unaffected by eye-in-orbit position for both upward and downward head impulses.
Collapse
Affiliation(s)
- Dimitri Anastasopoulos
- Dizziness and Balance Unit, Department of Physiology, School of Nursing, University of Athens, Greece.
| | | |
Collapse
|
16
|
Cullen KE. The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci 2012; 35:185-96. [PMID: 22245372 DOI: 10.1016/j.tins.2011.12.001] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/03/2011] [Accepted: 12/02/2011] [Indexed: 01/16/2023]
Abstract
Understanding how sensory pathways transmit information under natural conditions remains a major goal in neuroscience. The vestibular system plays a vital role in everyday life, contributing to a wide range of functions from reflexes to the highest levels of voluntary behavior. Recent experiments establishing that vestibular (self-motion) processing is inherently multimodal also provide insight into a set of interrelated questions. What neural code is used to represent sensory information in vestibular pathways? How do the interactions between the organism and the environment shape encoding? How is self-motion information processing adjusted to meet the needs of specific tasks? This review highlights progress that has recently been made towards understanding how the brain encodes and processes self-motion to ensure accurate motor control.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
17
|
Zhu H, Tang X, Wei W, Mustain W, Xu Y, Zhou W. Click-evoked responses in vestibular afferents in rats. J Neurophysiol 2011; 106:754-63. [DOI: 10.1152/jn.00003.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sound activates not only the cochlea but also the vestibular end organs. Research on this phenomenon led to the discovery of the sound-evoked vestibular myogenic potentials recorded from the sternocleidomastoid muscles (cervical VEMP, or cVEMP). Since the cVEMP offers simplicity and the ability to stimulate each labyrinth separately, its values as a test of human vestibular function are widely recognized. Currently, the cVEMP is interpreted as a test of saccule function based on the assumption that clicks primarily activate the saccule. However, sound activation of vestibular end organs other than the saccule has been reported. To provide the neural basis for interpreting clinical VEMP testing, we employed the broadband clicks used in clinical VEMP testing to examine the sound-evoked responses in a large sample of vestibular afferents in Sprague-Dawley rats. Recordings were made from 924 vestibular afferents from 106 rats: 255 from the anterior canal (AC), 202 from the horizontal canal (HC), 177 from the posterior canal (PC), 207 from the superior vestibular nerve otolith (SO), and 83 from the inferior nerve otolith (IO). Sound sensitivity of each afferent was quantified by computing the cumulative probability of evoking a spike (CPE). We found that clicks activated irregular afferents (normalized coefficient of variation of interspike intervals >0.2) from both the otoliths (81%) and the canals (43%). The order of end organ sound sensitivity was SO = IO > AC > HC > PC. Since the sternocleidomastoid motoneurons receive inputs from both the otoliths and the canals, these results provide evidence of a possible contribution from both of them to the click-evoked cVEMP.
Collapse
Affiliation(s)
- Hong Zhu
- Departments of 1Otolaryngology and Communicative Sciences,
| | - Xuehui Tang
- Departments of 1Otolaryngology and Communicative Sciences,
| | - Wei Wei
- Departments of 1Otolaryngology and Communicative Sciences,
| | | | - Youguo Xu
- Departments of 1Otolaryngology and Communicative Sciences,
| | - Wu Zhou
- Departments of 1Otolaryngology and Communicative Sciences,
- Neurology, and
- Anatomy, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
18
|
Donnellan K, Wei W, Jeffcoat B, Mustain W, Xu Y, Eby T, PhD WZ. Frequency tuning of bone-conducted tone burst-evoked myogenic potentials recorded from extraocular muscles (BOVEMP) in normal human subjects. Laryngoscope 2010; 120:2555-60. [DOI: 10.1002/lary.21100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
The conjugacy of the vestibulo-ocular reflex evoked by single labyrinth stimulation in awake monkeys. Exp Brain Res 2010; 206:249-55. [PMID: 20820761 DOI: 10.1007/s00221-010-2403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
It is well known that the vestibulo-ocular reflex (VOR) is conjugate when measured in the dark with minimal vergence. But the neural basis of the VOR conjugacy remains to be identified. In the present study, we measured the VOR conjugacy during single labyrinth stimulation to examine whether the VOR conjugacy depends on reciprocal stimulation of the two labyrinths. There are conflicting views on this issue. First, since the vestibular signals carried by the ascending tract of Deiters' are distributed exclusively to the motoneurons of the ipsilateral eye, the neural innervations after single labyrinth stimulation are not symmetrical for the two eyes. Thus, single labyrinth stimulation may generate disjunctive VOR responses. Second, the only published study on this issue was an electrooculography (EOG) study that reported disjunctive VOR responses during unilateral caloric irrigation (Wolfe in Ann Otol 88:79-85, 1979). Third, the VOR during unilateral caloric stimulation performed in clinical vestibular tests is routinely perceived to be conjugate. To resolve these conflicting views, the present study examined the VOR conjugacy during single labyrinth stimulation by recording binocular eye position signals in awake monkeys with a search coil technique. In contradiction to the previous EOG study and the prediction based on the asymmetry of the unilateral brainstem VOR circuits, we found that the VOR during unilateral caloric irrigation was conjugate over a wide range of conditions. We conclude that the net neural innervations received by the two eyes are symmetrical after single labyrinth stimulation, despite the apparent asymmetry in the unilateral VOR pathways. A novel role for the ascending tract of Deiters' in the VOR conjugacy is proposed.
Collapse
|
20
|
Acoustic clicks activate both the canal and otolith vestibulo-ocular reflex pathways in behaving monkeys. J Assoc Res Otolaryngol 2009; 10:569-77. [PMID: 19626369 DOI: 10.1007/s10162-009-0178-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 06/16/2009] [Indexed: 10/20/2022] Open
Abstract
Acoustic activation of the vestibular system has been well documented in humans and animal models. In the past decade, sound-evoked myogenic potentials in the sternocleidomastoid muscle (cVEMP) and the extraocular muscles (oVEMP) have been extensively studied, and their potentials as new tests for vestibular function have been widely recognized. However, the extent to which sound activates the otolith and canal pathways remains controversial. In the present study, we examined this issue in a recently developed nonhuman primate model of acoustic activation of the vestibular system, i.e., sound-evoked vestibulo-ocular reflexes (VOR) in behaving monkeys. To determine whether the canal and otolith VOR pathways are activated by sound, we analyzed abducens neurons' responses to clicks that were delivered into either ear. The main finding was that clicks evoked short-latency excitatory responses in abducens neurons on both sides. The latencies of the two responses, however, were different. The mean latency of the contralateral and ipsilateral abducens neurons was 2.44 +/- 0.4 and 1.65 +/- 0.28 ms, respectively. A further analysis of the excitatory latencies, in combination with the known canal and otolith VOR pathways, suggests that the excitatory responses of the contralateral abducens neurons were mediated by the contralateral disynaptic VOR pathways that connect the lateral canal to the contralateral abducens neurons, and the excitatory responses of the ipsilateral abducens neurons were mediated by the ipsilateral monosynaptic VOR pathways that connect the utricle to the ipsilateral abducens neurons. These results provide new insights into the understanding of the neural basis for sound-evoked vestibular responses, which is essential for developing new tests for both canal and otolith functions in humans.
Collapse
|
21
|
Khojasteh E, Galiana HL. Implications of gain modulation in brainstem circuits: VOR control system. J Comput Neurosci 2009; 27:437-51. [PMID: 19404727 DOI: 10.1007/s10827-009-0156-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 03/31/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
Gain modulation is believed to be a common integration mechanism employed by neurons to combine information from various sources. Although gain fields have been shown to exist in some cortical and subcortical areas of the brain, their existence has not been explored in the brainstem. In the present modeling study, we develop a physiologically relevant simplified model for the angular vestibulo-ocular reflex (VOR) to show that gain modulation could also be the underlying mechanism that modifies VOR function with sensorimotor context (i.e. concurrent eye positions and stimulus intensity). The resulting nonlinear model is further extended to generate both slow and quick phases of the VOR. Through simulation of the hybrid nonlinear model we show that disconjugate eye movements during the VOR are an inevitable consequence of the existence of such gain fields in the bilateral VOR pathway. Finally, we will explore the properties of the predicted disconjugate component. We will demonstrate that the apparent phase characteristics of the disconjugate response vary with the concurrent conjugate component.
Collapse
Affiliation(s)
- Elham Khojasteh
- Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
22
|
Welgampola MS, Migliaccio AA, Myrie OA, Minor LB, Carey JP. The human sound-evoked vestibulo-ocular reflex and its electromyographic correlate. Clin Neurophysiol 2009; 120:158-66. [PMID: 19070541 PMCID: PMC2648610 DOI: 10.1016/j.clinph.2008.06.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/18/2008] [Accepted: 06/21/2008] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Sound and vibration evoke a short-latency eye movement or "sound-evoked vestibulo-ocular reflex" (VOR) and an infraorbital surface potential: the "ocular vestibular-evoked myogenic potential" (OVEMP). We examined their relationship by measuring the modulation of both responses by gaze and stimulus parameters. METHODS In seven subjects with superior semicircular-canal dehiscence (SCD) and six controls, the sound-evoked VOR was measured in 3D using scleral search coils. OVEMPs were recorded simultaneously, using surface electromyography. RESULTS Eye movement onset (11.6+/-0.8ms) coincided with the OVEMP peak (12.1+/-0.35ms). OVEMP and VOR magnitudes were 5-15 times larger in SCD compared with controls. OVEMP amplitudes were maximal on upgaze and abolished on downgaze; VOR magnitudes were unaffected. When stimulus type was changed from sound to vibration, OVEMP and VOR changed concordantly: increasing in controls and decreasing in SCD. OVEMP and VOR tuned to identical stimulus frequencies. OVEMP and VOR magnitudes on upgaze were significantly correlated (R=0.83-0.97). CONCLUSION Selective decrease of the OVEMP upon downgaze is consistent with relaxation or retraction of the inferior oblique muscles. The temporal relationship of OVEMP and VOR and their identical modulation by external factors confirms a common origin. SIGNIFICANCE Sound-evoked OVEMP and VOR represent the electrical and mechanical correlates of the same vestibulo-ocular response.
Collapse
Affiliation(s)
- Miriam S Welgampola
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Missenden Road, Camperdown, Sydney, NSW 2050, Australia.
| | | | | | | | | |
Collapse
|
23
|
Chan WWP, Galiana HL. Modeling the nonlinear context dependency of the neural integrator in the vestibuloocular reflex. IEEE Trans Biomed Eng 2008; 55:1946-55. [PMID: 18632357 DOI: 10.1109/tbme.2007.912429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A neural integrator (NI) is presumed to exist in the oculomotor system to assist in numerous tasks such as maintaining gaze on imaginary targets in the dark. It is shared by all ocular reflexes including the vestibuloocular reflex (VOR). It has been widely accepted that the NI acts as a "perfect" integrator even in the dark with time constants as large as 1950s. However, the NI time constant is often less than ideal and its value can also be dependent on context [W. W. P. Chan and H. L. Galiana, "Integrator function in the oculomotor system is dependent on sensory context," J. Neurophysiol., vol. 93, pp. 3709--3717, Feb. 2005.]. In this paper, a nonlinear feedback model is postulated to model the context-dependent properties of the NI. Algorithms are first developed and validated to fit both linear and nonlinear NI models to experimental data in the presence of ocular nystagmus. Preliminary results indicate that even normal subjects can have a nonlinear VOR and NI.
Collapse
Affiliation(s)
- Wilbur W P Chan
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada.
| | | |
Collapse
|
24
|
Jeffcoat B, Shelukhin A, Fong A, Mustain W, Zhou W. Alexander's Law Revisited. J Neurophysiol 2008; 100:154-9. [DOI: 10.1152/jn.00055.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alexander's Law states that the slow-phase velocity of the nystagmus caused by unilateral vestibular lesion increases with gaze in the beat direction. Two studies have shown that this gaze effect is generalized to the nystagmus caused by unilateral cold water irrigation. This indicates that the gaze effect is not the result of central changes associated with a peripheral lesion but rather because of unilateral vestibular peripheral inhibition. In this study, we show that there is a similar gaze effect on the nystagmus produced by unilateral warm water ear irrigation. Furthermore, we examined the two hypotheses of Alexander's Law proposed in the two studies. One hypothesis is based on the gaze-dependent modulation of the vestibulo-ocular reflex (VOR) response to unbalanced canal input. The other hypothesis, however, is based on the leaky neural integrator caused by unilateral vestibular peripheral inhibition. These two hypotheses predict the same gaze effect on the nystagmus produced by cold water irrigation, but opposite gaze effects on the nystagmus produced by warm water irrigation. Our results support the first hypothesis and suggest that the second hypothesis needs to be modified.
Collapse
|
25
|
Vergence-mediated modulation of the human angular vestibulo-ocular reflex is unaffected by canal plugging. Exp Brain Res 2008; 186:581-7. [PMID: 18188548 DOI: 10.1007/s00221-007-1262-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
The angular vestibulo-ocular reflex (AVOR) normally has an increased response during vergence on a near target. Some lines of evidence suggest that different vestibular afferent classes may contribute differentially to the vergence effect. For example, lesions that selectively affect those afferents sensitive to acceleration, i.e. irregular afferents, (galvanic ablation, intratympanic gentamicin) have been found to markedly reduce the vergence-mediated modulation of the AVOR. We hypothesized that a nonspecific and incomplete reduction in the AVOR response caused by canal plugging should have minimal effect on vergence-mediated modulation of the AVOR. The AVOR response to passive head impulses in canal planes (horizontal canals, left anterior-right posterior canals, right anterior-left posterior canals) while viewing a far (124 cm) or near (15 cm) target was measured in seven human subjects before and after anterior canal (AC) plugging to treat vertigo caused by dehiscence of the AC (i.e. superior canal dehiscence). The impulses were low amplitude (approximately 20 degrees ), high velocity ( approximately 150 degrees /s), high-acceleration (approximately 3,000 degrees /s(2)) head rotations administered manually by the investigator. Binocular eye and head velocity were recorded using the scleral search coil technique. The AVOR gain was defined as inverted eye velocity divided by head velocity. Before plugging, AVOR gain for the dehiscent AC went from 0.87 +/- 0.10 for far targets to 1.04 +/- 0.13 for near targets (+19.1 +/- 7.3%). After plugging, the AC AVOR gain went from 0.50 +/- 0.10 for far targets to 0.59 +/- 0.11 for near targets (+19.7 +/- 6.1%). There was no difference in the vergence-mediated gain increase between pre- and post-plugged conditions (multi-way analysis of variance: P = 0.66). AC plugging also did not change the latency of the AVOR for either AC. We hypothesize that canal plugging, unlike gentamicin or galvanic ablation, has no effect on vergence-mediated modulation of the AVOR because plugging does not preferentially affect irregular afferents.
Collapse
|
26
|
Khojasteh E, Galiana HL. Neural computation in the binocular VOR circuit: a theoretical study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008; 2008:5518-5521. [PMID: 19163967 DOI: 10.1109/iembs.2008.4650464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present here a bilateral model for the horizontal rotational vestibulo-ocular reflex (VOR) that integrates sigmoidal nonlinearities in the response of VOR interneurons. This model realistically links the systems level approach to the underlying neural mechanisms. It is capable of producing VOR modulations with viewing context using only the efference copies of eye position signals to make novel predictions.
Collapse
Affiliation(s)
- Elham Khojasteh
- Department of Biomedical Engineering, McGill University, Montreal H3A2B4, Canada
| | | |
Collapse
|