1
|
Areshenkoff CN, de Brouwer AJ, Gale DJ, Nashed JY, Smallwood J, Flanagan JR, Gallivan JP. Distinct patterns of connectivity with the motor cortex reflect different components of sensorimotor learning. PLoS Biol 2024; 22:e3002934. [PMID: 39625995 PMCID: PMC11644839 DOI: 10.1371/journal.pbio.3002934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/13/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024] Open
Abstract
Sensorimotor learning is supported by multiple competing processes that operate concurrently, making it a challenge to elucidate their neural underpinnings. Here, using human functional MRI, we identify 3 distinct axes of connectivity between the motor cortex and other brain regions during sensorimotor adaptation. These 3 axes uniquely correspond to subjects' degree of implicit learning, performance errors and explicit strategy use, and involve different brain networks situated at increasing levels of the cortical hierarchy. We test the generalizability of these neural axes to a separate form of motor learning known to rely mainly on explicit processes and show that it is only the Explicit neural axis, composed of higher-order areas in transmodal cortex, that predicts learning in this task. Together, our study uncovers multiple distinct patterns of functional connectivity with motor cortex during sensorimotor adaptation, the component processes that these patterns support, and how they generalize to other forms of motor learning.
Collapse
Affiliation(s)
- Corson N. Areshenkoff
- Centre for Neuroscience Studies, Queens University, Kingston Ontario, Canada
- Department of Psychology, Queens University, Kingston Ontario, Canada
| | - Anouk J. de Brouwer
- Centre for Neuroscience Studies, Queens University, Kingston Ontario, Canada
| | - Daniel J. Gale
- Centre for Neuroscience Studies, Queens University, Kingston Ontario, Canada
| | - Joseph Y. Nashed
- Centre for Neuroscience Studies, Queens University, Kingston Ontario, Canada
| | | | - J. Randall Flanagan
- Centre for Neuroscience Studies, Queens University, Kingston Ontario, Canada
- Department of Psychology, Queens University, Kingston Ontario, Canada
| | - Jason P. Gallivan
- Centre for Neuroscience Studies, Queens University, Kingston Ontario, Canada
- Department of Psychology, Queens University, Kingston Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queens University, Kingston Ontario, Canada
| |
Collapse
|
2
|
Tsay JS, Kim HE, McDougle SD, Taylor JA, Haith A, Avraham G, Krakauer JW, Collins AGE, Ivry RB. Fundamental processes in sensorimotor learning: Reasoning, refinement, and retrieval. eLife 2024; 13:e91839. [PMID: 39087986 PMCID: PMC11293869 DOI: 10.7554/elife.91839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action-outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this '3R' framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburgUnited States
| | - Hyosub E Kim
- School of Kinesiology, University of British ColumbiaVancouverCanada
| | | | - Jordan A Taylor
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | - Adrian Haith
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Guy Avraham
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - John W Krakauer
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Santa Fe InstituteSanta FeUnited States
| | - Anne GE Collins
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - Richard B Ivry
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| |
Collapse
|
3
|
Sutter K, Oostwoud Wijdenes L, van Beers RJ, Claassen JAHR, Kessels RPC, Medendorp WP. Early-Stage Alzheimer's Disease Affects Fast But Not Slow Adaptive Processes in Motor Learning. eNeuro 2024; 11:ENEURO.0108-24.2024. [PMID: 38821873 PMCID: PMC11209650 DOI: 10.1523/eneuro.0108-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 06/02/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by an initial decline in declarative memory, while nondeclarative memory processing remains relatively intact. Error-based motor adaptation is traditionally seen as a form of nondeclarative memory, but recent findings suggest that it involves both fast, declarative, and slow, nondeclarative adaptive processes. If the declarative memory system shares resources with the fast process in motor adaptation, it can be hypothesized that the fast, but not the slow, process is disturbed in AD patients. To test this, we studied 20 early-stage AD patients and 21 age-matched controls of both sexes using a reach adaptation paradigm that relies on spontaneous recovery after sequential exposure to opposing force fields. Adaptation was measured using error clamps and expressed as an adaptation index (AI). Although patients with AD showed slightly lower adaptation to the force field than the controls, both groups demonstrated effects of spontaneous recovery. The time course of the AI was fitted by a hierarchical Bayesian two-state model in which each dynamic state is characterized by a retention and learning rate. Compared to controls, the retention rate of the fast process was the only parameter that was significantly different (lower) in the AD patients, confirming that the memory of the declarative, fast process is disturbed by AD. The slow adaptive process was virtually unaffected. Since the slow process learns only weakly from an error, our results provide neurocomputational evidence for the clinical practice of errorless learning of everyday tasks in people with dementia.
Collapse
Affiliation(s)
- Katrin Sutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 GD, The Netherlands
| | - Leonie Oostwoud Wijdenes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 GD, The Netherlands
| | - Robert J van Beers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 GD, The Netherlands
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands
| | - Jurgen A H R Claassen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 GD, The Netherlands
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 GD, The Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray 5803 DM, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 GD, The Netherlands
| |
Collapse
|
4
|
Hadjiosif AM, Abraham G, Ranjan T, Smith MA. Subtle Visual Latency Can Profoundly Impair Implicit Sensorimotor Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585093. [PMID: 38558971 PMCID: PMC10980026 DOI: 10.1101/2024.03.14.585093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Short sub-100ms visual feedback latencies are common in many types of human-computer interactions yet are known to markedly reduce performance in a wide variety of motor tasks from simple pointing to operating surgical robotics. These latencies are also present in the computer-based experiments used to study the sensorimotor learning that underlies the acquisition of motor performance. Inspired by neurophysiological findings showing that cerebellar LTD and cortical LTP would both be disrupted by sub-100ms latencies, we hypothesized that implicit sensorimotor learning may be particularly sensitive to these short latencies. Remarkably, we find that improving latency by just 60ms, from 85 to 25ms in latency-optimized experiments, increases implicit learning by 50% and proportionally decreases explicit learning, resulting in a dramatic reorganization of sensorimotor memory. We go on to show that implicit sensorimotor learning is considerably more sensitive to latencies in the sub-100ms range than at higher latencies, in line with the latency-specific neural plasticity that has been observed. This suggests a clear benefit for latency reduction in computer-based training that involves implicit sensorimotor learning and that across-study differences in implicit motor learning might often be explained by disparities in feedback latency.
Collapse
|
5
|
Jang J, Shadmehr R, Albert ST. A software tool for at-home measurement of sensorimotor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571359. [PMID: 38168264 PMCID: PMC10760058 DOI: 10.1101/2023.12.12.571359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sensorimotor adaptation is traditionally studied in well-controlled laboratory settings with specialized equipment. However, recent public health concerns such as the COVID-19 pandemic, as well as a desire to recruit a more diverse study population, have led the motor control community to consider at-home study designs. At-home motor control experiments are still rare because of the requirement to write software that can be easily used by anyone on any platform. To this end, we developed software that runs locally on a personal computer. The software provides audiovisual instructions and measures the ability of the subject to control the cursor in the context of visuomotor perturbations. We tested the software on a group of at-home participants and asked whether the adaptation principles inferred from in-lab measurements were reproducible in the at-home setting. For example, we manipulated the perturbations to test whether there were changes in adaptation rates (savings and interference), whether adaptation was associated with multiple timescales of memory (spontaneous recovery), and whether we could selectively suppress subconscious learning (delayed feedback, perturbation variability) or explicit strategies (limited reaction time). We found remarkable similarity between in-lab and at-home behaviors across these experimental conditions. Thus, we developed a software tool that can be used by research teams with little or no programming experience to study mechanisms of adaptation in an at-home setting.
Collapse
Affiliation(s)
- Jihoon Jang
- Laboratory for Computational Motor Control, Department of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore MD
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore MD
| | - Scott T Albert
- Laboratory for Computational Motor Control, Department of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore MD
| |
Collapse
|
6
|
Roth AM, Calalo JA, Lokesh R, Sullivan SR, Grill S, Jeka JJ, van der Kooij K, Carter MJ, Cashaback JGA. Reinforcement-based processes actively regulate motor exploration along redundant solution manifolds. Proc Biol Sci 2023; 290:20231475. [PMID: 37848061 PMCID: PMC10581769 DOI: 10.1098/rspb.2023.1475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
From a baby's babbling to a songbird practising a new tune, exploration is critical to motor learning. A hallmark of exploration is the emergence of random walk behaviour along solution manifolds, where successive motor actions are not independent but rather become serially dependent. Such exploratory random walk behaviour is ubiquitous across species' neural firing, gait patterns and reaching behaviour. The past work has suggested that exploratory random walk behaviour arises from an accumulation of movement variability and a lack of error-based corrections. Here, we test a fundamentally different idea-that reinforcement-based processes regulate random walk behaviour to promote continual motor exploration to maximize success. Across three human reaching experiments, we manipulated the size of both the visually displayed target and an unseen reward zone, as well as the probability of reinforcement feedback. Our empirical and modelling results parsimoniously support the notion that exploratory random walk behaviour emerges by utilizing knowledge of movement variability to update intended reach aim towards recently reinforced motor actions. This mechanism leads to active and continuous exploration of the solution manifold, currently thought by prominent theories to arise passively. The ability to continually explore muscle, joint and task redundant solution manifolds is beneficial while acting in uncertain environments, during motor development or when recovering from a neurological disorder to discover and learn new motor actions.
Collapse
Affiliation(s)
- Adam M. Roth
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jan A. Calalo
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Rakshith Lokesh
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Seth R. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Stephen Grill
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
| | - John J. Jeka
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Katinka van der Kooij
- Faculty of Behavioural and Movement Science, Vrije University Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Michael J. Carter
- Department of Kinesiology, McMaster University, Room 203, Ivor Wynne Centre, Hamilton, L8S 4L8, Ontario, Canada
| | - Joshua G. A. Cashaback
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
7
|
Teunissen L, Selen LPJ, Medendorp WP. Abrupt, but not gradual, motor adaptation biases saccadic target selection. J Neurophysiol 2023; 129:733-748. [PMID: 36812151 DOI: 10.1152/jn.00223.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Motor costs influence movement selection. These costs could change when movements are adapted in response to errors. When the motor system attributes the encountered errors to an external cause, appropriate movement selection requires an update of the movement goal, which prompts the selection of a different control policy. However, when errors are attributed to an internal cause, the initially selected control policy could remain unchanged, but the internal forward model of the body needs to be updated, resulting in an online correction of the movement. We hypothesized that external attribution of errors leads to the selection of a different control policy, and thus to a change in the expected cost of movements. This should also affect subsequent motor decisions. Conversely, internal attribution of errors may (initially) only evoke online corrections, and thus is expected to leave the motor decision process unchanged. We tested this hypothesis using a saccadic adaptation paradigm, designed to change the relative motor cost of two targets. Motor decisions were measured using a target selection task between the two saccadic targets before and after adaptation. Adaptation was induced by either abrupt or gradual perturbation schedules, which are thought to induce more external or internal attribution of errors, respectively. By taking individual variability into account, our results show that saccadic decisions shift toward the least costly target after adaptation, but only when the perturbation is abruptly, and not gradually, introduced. We suggest that credit assignment of errors not only influences motor adaptation but also subsequent motor decisions.NEW & NOTEWORTHY Decisions between potential motor actions are influenced by their costs, but costs change when movements are adapted. Using a saccadic target selection task, we show that target preference shifts after abrupt, but not after gradual adaptation. We suggest that this difference emerges because abrupt adaptation results in target remapping, and thus directly influences cost calculations, whereas gradual adaptation is mainly driven by corrections to a forward model that is not involved in cost calculations.
Collapse
Affiliation(s)
- Lonneke Teunissen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Luc P J Selen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Yokoi A, Weiler J. Pupil diameter tracked during motor adaptation in humans. J Neurophysiol 2022; 128:1224-1243. [PMID: 36197019 PMCID: PMC9722266 DOI: 10.1152/jn.00021.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Pupil diameter, under constant illumination, is known to reflect individuals' internal states, such as surprise about observation and environmental uncertainty. Despite the growing use of pupillometry in cognitive learning studies as an additional measure for examining internal states, few studies have used pupillometry in human motor learning studies. Here, we provide the first detailed characterization of pupil diameter changes in a short-term reach adaptation paradigm. We measured pupil changes in 121 human participants while they adapted to abrupt, gradual, or switching force field conditions. Sudden increases in movement error caused by the introduction/reversal of the force field resulted in strong phasic pupil dilation during movement accompanied by a transient increase in tonic premovement baseline pupil diameter in subsequent trials. In contrast, pupil responses were reduced when the force field was gradually introduced, indicating that large, unexpected errors drove the changes in pupil responses. Interestingly, however, error-induced pupil responses gradually became insensitive after experiencing multiple force field reversals. We also found an association between baseline pupil diameter and incidental knowledge of the gradually introduced perturbation. Finally, in all experiments, we found a strong co-occurrence of larger baseline pupil diameter with slower reaction and movement times after each rest break. Collectively, these results suggest that tonic baseline pupil diameter reflects one's belief about environmental uncertainty, whereas phasic pupil dilation during movement reflects surprise about a sensory outcome (i.e., movement error), and both effects are modulated by novelty. Our results provide a new approach for nonverbally assessing participants' internal states during motor learning.NEW & NOTEWORTHY Pupil diameter is known as a noninvasive window into individuals' internal states. Despite the growing use of pupillometry in cognitive learning studies, it receives little attention in motor learning studies. Here, we characterized the pupil responses in a short-term reach adaptation paradigm by measuring pupil diameter of human participants while they adapted to abrupt, gradual, or switching force field conditions. Our results demonstrate how surprise and uncertainty reflected in pupil diameter develop during motor adaptation.
Collapse
Affiliation(s)
- Atsushi Yokoi
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Jeffrey Weiler
- Schulich School of Medicine and Dentistry, Western University, London Ontario, Canada
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Ontario, Canada
- The Brain and Mind Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Areshenkoff C, Gale DJ, Standage D, Nashed JY, Flanagan JR, Gallivan JP. Neural excursions from manifold structure explain patterns of learning during human sensorimotor adaptation. eLife 2022; 11:e74591. [PMID: 35438633 PMCID: PMC9018069 DOI: 10.7554/elife.74591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Humans vary greatly in their motor learning abilities, yet little is known about the neural mechanisms that underlie this variability. Recent neuroimaging and electrophysiological studies demonstrate that large-scale neural dynamics inhabit a low-dimensional subspace or manifold, and that learning is constrained by this intrinsic manifold architecture. Here, we asked, using functional MRI, whether subject-level differences in neural excursion from manifold structure can explain differences in learning across participants. We had subjects perform a sensorimotor adaptation task in the MRI scanner on 2 consecutive days, allowing us to assess their learning performance across days, as well as continuously measure brain activity. We find that the overall neural excursion from manifold activity in both cognitive and sensorimotor brain networks is associated with differences in subjects' patterns of learning and relearning across days. These findings suggest that off-manifold activity provides an index of the relative engagement of different neural systems during learning, and that subject differences in patterns of learning and relearning are related to reconfiguration processes occurring in cognitive and sensorimotor networks.
Collapse
Affiliation(s)
- Corson Areshenkoff
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
- Department of Psychology, Queen's UniversityKingstonCanada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - Dominic Standage
- School of Psychology, Centre for Computational Neuroscience and Cognitive Robotics, University of BirminghamBirminghamUnited Kingdom
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
- Department of Psychology, Queen's UniversityKingstonCanada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
- Department of Psychology, Queen's UniversityKingstonCanada
- Department of Biomedical and Molecular Sciences, Queen's UniversityKingstonCanada
| |
Collapse
|
10
|
Vandevoorde K, Vollenkemper L, Schwan C, Kohlhase M, Schenck W. Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks. SENSORS (BASEL, SWITZERLAND) 2022; 22:2481. [PMID: 35408094 PMCID: PMC9002555 DOI: 10.3390/s22072481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
Abstract
Humans learn movements naturally, but it takes a lot of time and training to achieve expert performance in motor skills. In this review, we show how modern technologies can support people in learning new motor skills. First, we introduce important concepts in motor control, motor learning and motor skill learning. We also give an overview about the rapid expansion of machine learning algorithms and sensor technologies for human motion analysis. The integration between motor learning principles, machine learning algorithms and recent sensor technologies has the potential to develop AI-guided assistance systems for motor skill training. We give our perspective on this integration of different fields to transition from motor learning research in laboratory settings to real world environments and real world motor tasks and propose a stepwise approach to facilitate this transition.
Collapse
Affiliation(s)
- Koenraad Vandevoorde
- Center for Applied Data Science (CfADS), Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (L.V.); (C.S.); (M.K.)
| | | | | | | | - Wolfram Schenck
- Center for Applied Data Science (CfADS), Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (L.V.); (C.S.); (M.K.)
| |
Collapse
|
11
|
Albert ST, Jang J, Modchalingam S, 't Hart BM, Henriques D, Lerner G, Della-Maggiore V, Haith AM, Krakauer JW, Shadmehr R. Competition between parallel sensorimotor learning systems. eLife 2022; 11:e65361. [PMID: 35225229 PMCID: PMC9068222 DOI: 10.7554/elife.65361] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor learning is supported by at least two parallel systems: a strategic process that benefits from explicit knowledge and an implicit process that adapts subconsciously. How do these systems interact? Does one system's contributions suppress the other, or do they operate independently? Here, we illustrate that during reaching, implicit and explicit systems both learn from visual target errors. This shared error leads to competition such that an increase in the explicit system's response siphons away resources that are needed for implicit adaptation, thus reducing its learning. As a result, steady-state implicit learning can vary across experimental conditions, due to changes in strategy. Furthermore, strategies can mask changes in implicit learning properties, such as its error sensitivity. These ideas, however, become more complex in conditions where subjects adapt using multiple visual landmarks, a situation which introduces learning from sensory prediction errors in addition to target errors. These two types of implicit errors can oppose each other, leading to another type of competition. Thus, during sensorimotor adaptation, implicit and explicit learning systems compete for a common resource: error.
Collapse
Affiliation(s)
- Scott T Albert
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| | - Jihoon Jang
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
- Vanderbilt University School of MedicineNashvilleUnited States
| | | | | | - Denise Henriques
- Department of Kinesiology and Health Science, York UniversityTorontoCanada
| | - Gonzalo Lerner
- IFIBIO Houssay, Deparamento de Fisiología y Biofísia, Facultad de Medicina, Universidad de Buenos AiresBuenos AiresArgentina
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Deparamento de Fisiología y Biofísia, Facultad de Medicina, Universidad de Buenos AiresBuenos AiresArgentina
| | - Adrian M Haith
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - John W Krakauer
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
- The Santa Fe InstituteSanta FeUnited States
| | - Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
12
|
Wijeyaratnam DO, Cheng-Boivin Z, Bishouty RD, Cressman EK. The influence of awareness on implicit visuomotor adaptation. Conscious Cogn 2022; 99:103297. [PMID: 35176593 DOI: 10.1016/j.concog.2022.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
It is well documented that reaches are adapted when reaching with a visuomotor distortion (i.e., rotated cursor feedback). Less clear is the influence of awareness on visuomotor adaptation, where awareness encompasses knowledge of the changes in one's reaches and the visuomotor distortion itself. In the current experiment, we asked if awareness governs the magnitude of implicit (i.e., unconscious) visuomotor adaptation achieved, independent of how the distortion is introduced (i.e., abruptly vs. gradually introduced visuomotor distortion), and hence initial errors experienced. Participants were divided into two groups that differed with respect to how the visuomotor distortion was introduced (i.e., Abrupt vs. Gradual Groups) and reached in a virtual environment where a cursor on the screen misrepresented the position of their hand. Participants completed three blocks of 150 reach training trials in the following order: aligned cursor feedback (baseline), rotated cursor feedback (adaptation) and aligned cursor feedback (washout). For the Abrupt Group, the cursor was immediately rotated 45° clockwise (CW) relative to hand motion in the adaptation block, whereas in the Gradual Group, the 45° cursor rotation was gradually introduced over adaptation trials. Following reach training, participants' awareness of changes in their reaches and the visuomotor distortion were established based on a drawing task, where participants drew the path their hand took to get the cursor on target, as well as a post-experiment questionnaire. Participants were subsequently divided into the following 3 groups: Abrupt-Aware (n = 16), Gradual-Aware (n = 11) and Gradual-Unaware (n = 14). Results revealed that errors differed for the Gradual-Unaware Group at the end of adaptation training compared to the Gradual-Aware Group and at the start of the washout block compared to the Abrupt-Aware Group. Errors in the two aware groups did not differ from each other. These results suggest that awareness may lead to reduced implicit adaptation, regardless of the size of initial errors experienced.
Collapse
Affiliation(s)
| | | | | | - Erin K Cressman
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
13
|
Weightman M, Brittain JS, Miall RC, Jenkinson N. Residual errors in visuomotor adaptation persist despite extended motor preparation periods. J Neurophysiol 2022; 127:519-528. [PMID: 35044854 PMCID: PMC8836731 DOI: 10.1152/jn.00301.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A consistent finding in sensorimotor adaptation is a persistent undershoot of full compensation, such that performance asymptotes with residual errors greater than seen at baseline. This behavior has been attributed to limiting factors within the implicit adaptation system, which reaches a suboptimal equilibrium between trial-by-trial learning and forgetting. However, recent research has suggested that allowing longer motor planning periods prior to movement eliminates these residual errors. The additional planning time allows required cognitive processes to be completed before movement onset, thus increasing accuracy. Here, we looked to extend these findings by investigating the relationship between increased motor preparation time and the size of imposed visuomotor rotation (30°, 45°, or 60°), with regard to the final asymptotic level of adaptation. We found that restricting preparation time to 0.35 s impaired adaptation for moderate and larger rotations, resulting in larger residual errors compared to groups with additional preparation time. However, we found that even extended preparation time failed to eliminate persistent errors, regardless of magnitude of cursor rotation. Thus, the asymptote of adaptation was significantly less than the degree of imposed rotation, for all experimental groups. In addition, there was a positive relationship between asymptotic error and implicit retention. These data suggest that a prolonged motor preparation period is insufficient to reliably achieve complete adaptation, and therefore, our results suggest that factors beyond that of planning time contribute to asymptotic adaptation levels.NEW & NOTEWORTHY Residual errors in sensorimotor adaptation are commonly attributed to an equilibrium between trial-by-trial learning and forgetting. Recent research suggested that allowing sufficient time for mental rotation eliminates these errors. In a number of experimental conditions, we show that although restricted motor preparation time does limit adaptation-consistent with mental rotation-extending preparation time fails to eliminate the residual errors in motor adaptation.
Collapse
Affiliation(s)
- Matthew Weightman
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,3MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom,4Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - John-Stuart Brittain
- 2School of Psychology, University of Birmingham, Birmingham, United Kingdom,4Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - R. Chris Miall
- 2School of Psychology, University of Birmingham, Birmingham, United Kingdom,3MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom,4Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Ned Jenkinson
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,3MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom,4Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Therrien AS, Wong AL. Mechanisms of Human Motor Learning Do Not Function Independently. Front Hum Neurosci 2022; 15:785992. [PMID: 35058767 PMCID: PMC8764186 DOI: 10.3389/fnhum.2021.785992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Human motor learning is governed by a suite of interacting mechanisms each one of which modifies behavior in distinct ways and rely on different neural circuits. In recent years, much attention has been given to one type of motor learning, called motor adaptation. Here, the field has generally focused on the interactions of three mechanisms: sensory prediction error SPE-driven, explicit (strategy-based), and reinforcement learning. Studies of these mechanisms have largely treated them as modular, aiming to model how the outputs of each are combined in the production of overt behavior. However, when examined closely the results of some studies also suggest the existence of additional interactions between the sub-components of each learning mechanism. In this perspective, we propose that these sub-component interactions represent a critical means through which different motor learning mechanisms are combined to produce movement; understanding such interactions is critical to advancing our knowledge of how humans learn new behaviors. We review current literature studying interactions between SPE-driven, explicit, and reinforcement mechanisms of motor learning. We then present evidence of sub-component interactions between SPE-driven and reinforcement learning as well as between SPE-driven and explicit learning from studies of people with cerebellar degeneration. Finally, we discuss the implications of interactions between learning mechanism sub-components for future research in human motor learning.
Collapse
|
15
|
Assessing explicit processes does not influence the magnitude of implicit processes. Neurosci Lett 2022; 766:136341. [PMID: 34801641 DOI: 10.1016/j.neulet.2021.136341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022]
Abstract
Implicit (unconscious) and explicit (strategy) processes have been shown to contribute to visuomotor adaptation. Current methods, such as the Process Dissociation Procedure (PDP) and the Verbal Report Framework (VRF), simultaneously evaluate both implicit and explicit contributions to visuomotor adaptation. It is unclear whether the act of assessing explicit adaptation leads to variations in the magnitude of implicit adaptation observed. To address this question, four groups of participants adapted their reaches to a 40° clockwise visuomotor rotation. Implicit and explicit adaptation were assessed in a PDP-IE group and a VRF-IE group following 3 blocks of rotated reach training trials. In contrast, only implicit adaptation was assessed at the same time points for a PDP-I group and VRF-I group. Results indicated a similar magnitude of implicit adaptation regardless of whether explicit adaptation was assessed or not. Thus, assessing explicit adaptation simultaneously with implicit adaptation following reach adaptation does not influence the magnitude of implicit adaptation established via the PDP and VRF methods.
Collapse
|
16
|
Bernier PM, Mathew J, Danion FR. Composition and decomposition of visuomotor maps during manual tracking. J Neurophysiol 2021; 126:1685-1697. [PMID: 34614368 DOI: 10.1152/jn.00058.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adapting hand movements to changes in our body or the environment is essential for skilled motor behavior, as is the ability to flexibly combine experience gathered in separate contexts. However, it has been shown that when adapting hand movements to two different visuomotor perturbations in succession, interference effects can occur. Here, we investigate whether these interference effects compromise our ability to adapt to the superposition of the two perturbations. Participants tracked with a joystick, a visual target that followed a smooth but an unpredictable trajectory. Four separate groups of participants (total n = 83) completed one block of 50 trials under each of three mappings: one in which the cursor was rotated by 90° (ROTATION), one in which the cursor mimicked the behavior of a mass-spring system (SPRING), and one in which the SPRING and ROTATION mappings were superimposed (SPROT). The order of the blocks differed across groups. Although interference effects were found when switching between SPRING and ROTATION, participants who performed these blocks first performed better in SPROT than participants who had no prior experience with SPRING and ROTATION (i.e., composition). Moreover, participants who started with SPROT exhibited better performance under SPRING and ROTATION than participants who had no prior experience with each of these mappings (i.e., decomposition). Additional analyses confirmed that these effects resulted from components of learning that were specific to the rotational and spring perturbations. These results show that interference effects do not preclude the ability to compose/decompose various forms of visuomotor adaptation.NEW & NOTEWORTHY The ability to compose/decompose task representations is critical for both cognitive and behavioral flexibility. Here, we show that this ability extends to two forms of visuomotor adaptation in which humans have to perform visually guided hand movements. Despite the presence of interference effects when switching between visuomotor maps, we show that participants are able to flexibly compose or decompose knowledge acquired in previous sessions. These results further demonstrate the flexibility of sensorimotor adaptation in humans.
Collapse
Affiliation(s)
- Pierre-Michel Bernier
- Département de Kinanthropologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - James Mathew
- Institut Neurosci Timone, Aix Marseille Univ, CNRS, INT, Marseille, France.,Institute of Neuroscience, Institute of Communication & Information Technologies, Electronics & Applied Mathematics, Université Catholique de Louvain, Louvain-la-neuve, Belgium
| | - Frederic R Danion
- Institut Neurosci Timone, Aix Marseille Univ, CNRS, INT, Marseille, France.,Center for Research on Cognition and Learning (CERCA) UMR 7295, University of Poitiers, CNRS, Poitiers, France
| |
Collapse
|
17
|
Struber L, Baumont M, Barraud PA, Nougier V, Cignetti F. Brain oscillatory correlates of visuomotor adaptive learning. Neuroimage 2021; 245:118645. [PMID: 34687861 DOI: 10.1016/j.neuroimage.2021.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022] Open
Abstract
Sensorimotor adaptation involves the recalibration of the mapping between motor command and sensory feedback in response to movement errors. Although adaptation operates within individual movements on a trial-to-trial basis, it can also undergo learning when adaptive responses improve over the course of many trials. Brain oscillatory activities related to these "adaptation" and "learning" processes remain unclear. The main reason for this is that previous studies principally focused on the beta band, which confined the outcome message to trial-to-trial adaptation. To provide a wider understanding of adaptive learning, we decoded visuomotor tasks with constant, random or no perturbation from EEG recordings in different bandwidths and brain regions using a multiple kernel learning approach. These different experimental tasks were intended to separate trial-to-trial adaptation from the formation of the new visuomotor mapping across trials. We found changes in EEG power in the post-movement period during the course of the visuomotor-constant rotation task, in particular an increased (i) theta power in prefrontal region, (ii) beta power in supplementary motor area, and (iii) gamma power in motor regions. Classifying the visuomotor task with constant rotation versus those with random or no rotation, we were able to relate power changes in beta band mainly to trial-to-trial adaptation to error while changes in theta band would relate rather to the learning of the new mapping. Altogether, this suggested that there is a tight relationship between modulation of the synchronization of low (theta) and higher (essentially beta) frequency oscillations in prefrontal and sensorimotor regions, respectively, and adaptive learning.
Collapse
Affiliation(s)
- Lucas Struber
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| | - Marie Baumont
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Pierre-Alain Barraud
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Vincent Nougier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Fabien Cignetti
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
18
|
Abstract
Actions often require the selection of a specific goal amongst a range of possibilities, like when a softball player must precisely position her glove to field a fast-approaching ground ball. Previous studies have suggested that during goal uncertainty the brain prepares for all potential goals in parallel and averages the corresponding motor plans to command an intermediate movement that is progressively refined as additional information becomes available. Although intermediate movements are widely observed, they could instead reflect a neural decision about the single best action choice given the uncertainty present. Here we systematically dissociate these possibilities using novel experimental manipulations and find that when confronted with uncertainty, humans generate a motor plan that optimizes task performance rather than averaging potential motor plans. In addition to accurate predictions of population-averaged changes in motor output, a novel computational model based on this performance-optimization theory accounted for a majority of the variance in individual differences between participants. Our findings resolve a long-standing question about how the brain selects an action to execute during goal uncertainty, providing fundamental insight into motor planning in the nervous system.
Collapse
Affiliation(s)
- Laith Alhussein
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| | - Maurice A Smith
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| |
Collapse
|
19
|
Hooyman A, Gordon J, Winstein C. Unique behavioral strategies in visuomotor learning: Hope for the non-learner. Hum Mov Sci 2021; 79:102858. [PMID: 34392189 DOI: 10.1016/j.humov.2021.102858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
The existence of individual differences in motor learning capability is well known but the behaviors or strategies that contribute to this variability have been vastly understudied. What performance characteristics distinguish an expert level performer from individuals who experience little to no success, those labeled non-learners? We designed a rule-based visuomotor task which requires identification (discovery) and then exploitation of specific explicit and implicit task components that requires a specific movement pattern, the task rule, for goal achievement. When participants first attempt the task, they are informed about the goal, but are naïve to the task rule. Therefore, the purpose of this experiment is to determine how acquisition of both implicit and explicit task components, the inherent elements of the task rule, reveals differing strategies associated with performance and task success. We test the hypothesis that an examination of performance will reveal sub-groups with varying levels of success. Further, for each subgroup, we expect to find a unique relationship between visual Time-in-Target feedback (a measure of success) and subsequent updating of each task component. Out of 32 non-disabled adults, we identified three distinct sub-groups: (Low Performer/Non-Learner (LP, N = 9), Moderate Performer (MP, N = 12) and High Performer (HP, N = 11)). A quantitative analysis of behavioral patterns reveals three findings: First, the LP sub-group demonstrated significantly lower task success which was associated with difficulty identifying the explicit component of the task. Second, the HP sub-group acquired the two task components in parallel over practice. Third, when both explicit and implicit component performance is plotted across sub-groups, a task component continuum emerges that seamlessly progresses from low to moderate to high performer groups. An exploratory analysis reveals that self-reported level of prior lifetime accumulation of video game and physical activity experience is a significant predictor of individual task performance (R2 = 0.50). In summary, what appears to be a key distinction between varying levels of human rule-based motor learning is the process by which feedback is used to update performance of inherent elements of the task rule. Evidence of a performance continuum and limited prior experience suggests that Low Performer/Non-Learners are generally inexperienced with these kinds of tasks, although the role of genetics and other innate learning capabilities in visuomotor learning is still largely unknown. These findings provoke new research directions toward probing the differential performance strategies associated with expertise and the development of interventions aimed to convert non-learners into learners.
Collapse
Affiliation(s)
- Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America.
| | - James Gordon
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, and Department of Neurology, Keck School of Medicine, University of Southern California, United States of America
| | - Carolee Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, and Department of Neurology, Keck School of Medicine, University of Southern California, United States of America
| |
Collapse
|
20
|
Coltman SK, van Beers RJ, Medendorp WP, Gribble PL. Sensitivity to error during visuomotor adaptation is similarly modulated by abrupt, gradual and random perturbation schedules. J Neurophysiol 2021; 126:934-945. [PMID: 34379553 DOI: 10.1152/jn.00269.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been suggested that sensorimotor adaptation involves at least two processes (i.e., fast and slow) that differ in retention and error sensitivity. Previous work has shown that repeated exposure to an abrupt force field perturbation results in greater error sensitivity for both the fast and slow processes. While this implies that the faster relearning is associated with increased error sensitivity, it remains unclear what aspects of prior experience modulate error sensitivity. In the present study, we manipulated the initial training using different perturbation schedules, thought to differentially affect fast and slow learning processes based on error magnitude, and then observed what effect prior learning had on subsequent adaptation. During initial training of a visuomotor rotation task, we exposed three groups of participants to either an abrupt, a gradual, or a random perturbation schedule. During a testing session, all three groups were subsequently exposed to an abrupt perturbation schedule. Comparing the two sessions of the control group who experienced repetition of the same perturbation, we found an increased error sensitivity for both processes. We found that the error sensitivity was increased for both the fast and slow processes, with no reliable changes in the retention, for both the gradual and structural learning groups when compared to the first session of the control group. We discuss the findings in the context of how fast and slow learning processes respond to a history of errors.
Collapse
Affiliation(s)
- Susan K Coltman
- Graduate Program in Neuroscience, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Robert J van Beers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands.,Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Paul L Gribble
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Haskins Laboratories, New Haven CT, USA
| |
Collapse
|
21
|
McInnes AN, Lipp OV, Tresilian JR, Vallence AM, Marinovic W. Premovement inhibition can protect motor actions from interference by response-irrelevant sensory stimulation. J Physiol 2021; 599:4389-4406. [PMID: 34339524 DOI: 10.1113/jp281849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Suppression of corticospinal excitability is reliably observed during preparation for a range of motor actions, leading to the belief that this preparatory inhibition is a physiologically obligatory component of motor preparation. The neurophysiological function of this suppression is uncertain. We restricted the time available for participants to engage in preparation and found no evidence for preparatory inhibition. The function of preparatory inhibition can be inferred from our findings that sensory stimulation can disrupt motor output in the absence of preparatory inhibition, but enhance motor output when inhibition is present. These findings suggest preparatory inhibition may be a strategic process which acts to protect prepared actions from external interference. Our findings have significant theoretical implications for preparatory processes. Findings may also have a pragmatic benefit in that acoustic stimulation could be used therapeutically to facilitate movement, but only if the action can be prepared well in advance. ABSTRACT Shortly before movement initiation, the corticospinal system undergoes a transient suppression. This phenomenon has been observed across a range of motor tasks, suggesting that it may be an obligatory component of movement preparation. We probed whether this was also the case when the urgency to perform a motor action was high, in a situation where little time was available to engage in preparatory processes. We controlled the urgency of an impending motor action by increasing or decreasing the foreperiod duration in an anticipatory timing task. Transcranial magnetic stimulation (TMS; experiment 1) or a loud acoustic stimulus (LAS; experiment 2) were used to examine how corticospinal and subcortical excitability were modulated during motor preparation. Preparatory inhibition of the corticospinal tract was absent when movement urgency was high, though motor actions were initiated on time. In contrast, subcortical circuits were progressively inhibited as the time to prepare increased. Interestingly, movement force and vigour were reduced by both TMS and the LAS when movement urgency was high, and enhanced when movement urgency was low. These findings indicate that preparatory inhibition may not be an obligatory component of motor preparation. The behavioural effects we observed in the absence of preparatory inhibition were induced by both TMS and the LAS, suggesting that accessory sensory stimulation may disrupt motor output when such stimulation is presented in the absence of preparatory inhibition. We conclude that preparatory inhibition may be an adaptive strategy which can serve to protect the prepared motor action from external interference.
Collapse
Affiliation(s)
- Aaron N McInnes
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Western Australia, Australia
| | - Ottmar V Lipp
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Western Australia, Australia.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Ann-Maree Vallence
- School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, Australia
| | - Welber Marinovic
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Albert ST, Jang J, Sheahan HR, Teunissen L, Vandevoorde K, Herzfeld DJ, Shadmehr R. An implicit memory of errors limits human sensorimotor adaptation. Nat Hum Behav 2021; 5:920-934. [PMID: 33542527 DOI: 10.1038/s41562-020-01036-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/24/2020] [Indexed: 01/30/2023]
Abstract
During extended motor adaptation, learning appears to saturate despite persistence of residual errors. This adaptation limit is not fixed but varies with perturbation variance; when variance is high, residual errors become larger. These changes in total adaptation could relate to either implicit or explicit learning systems. Here, we found that when adaptation relied solely on the explicit system, residual errors disappeared and learning was unaltered by perturbation variability. In contrast, when learning depended entirely, or in part, on implicit learning, residual errors reappeared. Total implicit adaptation decreased in the high-variance environment due to changes in error sensitivity, not in forgetting. These observations suggest a model in which the implicit system becomes more sensitive to errors when they occur in a consistent direction. Thus, residual errors in motor adaptation are at least in part caused by an implicit learning system that modulates its error sensitivity in response to the consistency of past errors.
Collapse
Affiliation(s)
- Scott T Albert
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Jihoon Jang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hannah R Sheahan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lonneke Teunissen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Koenraad Vandevoorde
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - David J Herzfeld
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Maresch J, Mudrik L, Donchin O. Measures of explicit and implicit in motor learning: what we know and what we don't. Neurosci Biobehav Rev 2021; 128:558-568. [PMID: 34214514 DOI: 10.1016/j.neubiorev.2021.06.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Abstract
Adaptation tasks are a key tool in characterizing the contribution of explicit and implicit processes to sensorimotor learning. However, different assumptions and ideas underlie methods used to measure these processes, leading to inconsistencies between studies. For instance, it is still unclear explicit and implicit combine additively. Cognitive studies of explicit and implicit processes show how non-additivity and bias in measurement can distort results. We argue that to understand explicit and implicit processes in visuomotor adaptation, we need a stronger characterization of the phenomenology and a richer set of models to test it on.
Collapse
Affiliation(s)
- Jana Maresch
- Department of Brain and Cognitive Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel.
| | - Liad Mudrik
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, PO Box 39040, Tel Aviv, 69978, Israel.
| | - Opher Donchin
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Be'er Sheva, 8410501, Israel.
| |
Collapse
|
24
|
Yang CS, Cowan NJ, Haith AM. De novo learning versus adaptation of continuous control in a manual tracking task. eLife 2021; 10:e62578. [PMID: 34169838 PMCID: PMC8266385 DOI: 10.7554/elife.62578] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
How do people learn to perform tasks that require continuous adjustments of motor output, like riding a bicycle? People rely heavily on cognitive strategies when learning discrete movement tasks, but such time-consuming strategies are infeasible in continuous control tasks that demand rapid responses to ongoing sensory feedback. To understand how people can learn to perform such tasks without the benefit of cognitive strategies, we imposed a rotation/mirror reversal of visual feedback while participants performed a continuous tracking task. We analyzed behavior using a system identification approach, which revealed two qualitatively different components of learning: adaptation of a baseline controller and formation of a new, task-specific continuous controller. These components exhibited different signatures in the frequency domain and were differentially engaged under the rotation/mirror reversal. Our results demonstrate that people can rapidly build a new continuous controller de novo and can simultaneously deploy this process with adaptation of an existing controller.
Collapse
Affiliation(s)
- Christopher S Yang
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Noah J Cowan
- Department of Mechanical Engineering, Laboratory for Computational Sensing and Robotics, Johns Hopkins UniversityBaltimoreUnited States
| | - Adrian M Haith
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
25
|
Assessing and defining explicit processes in visuomotor adaptation. Exp Brain Res 2021; 239:2025-2041. [PMID: 33909111 DOI: 10.1007/s00221-021-06109-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
The Process Dissociation Procedure (PDP) and Verbal Report Framework (VRF) reveal that both explicit (conscious) and implicit (unconscious) processes contribute to visuomotor adaptation. We looked to determine whether these two assessment methods establish similar processes underlying visuomotor adaptation by comparing the magnitude of explicit and implicit adaptation over time between the two assessments and to post-experiment assessments of awareness of the visuomotor distortion. Three groups of participants (PDP, VRF, VRF No-Cursor) completed three blocks of reach training in a virtual environment with a cursor rotated 40° clockwise relative to hand motion. Explicit and implicit adaptations were assessed immediately following each block, and again 5 min later. The VRF No-Cursor group completed the same assessment trials as the VRF group, but no visual feedback was presented during explicit and implicit assessment. Finally, participants completed a post-experiment questionnaire and a drawing task to assess their awareness of the visuomotor rotation and changes in reaches at the end of the experiment, respectively. We found that all groups adapted their reaches to the rotation. Averaged across participants, the magnitude and retention of explicit and implicit adaptations were similar between the PDP group and VRF group, with the VRF group demonstrating greater implicit adaptation than the VRF No-Cursor group. Furthermore, the magnitude of explicit adaptation established in the VRF group was not related to participant's post-experiment awareness of the visuomotor distortion nor how they had changed their reaches, as observed in the PDP group and VRF No-Cursor group. Together, these results indicate that, explicit adaptation established via typical VRF methods does not reflect one's awareness of the visuomotor distortion at the end of the experiment, and hence the established processes underlying visuomotor adaptation are dependent on method of assessment (i.e., PDP versus VRF).
Collapse
|
26
|
Prolonged response time helps eliminate residual errors in visuomotor adaptation. Psychon Bull Rev 2021; 28:834-844. [PMID: 33483935 PMCID: PMC8219572 DOI: 10.3758/s13423-020-01865-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
One persistent curiosity in visuomotor adaptation tasks is that participants often do not reach maximal performance. This incomplete asymptote has been explained as a consequence of obligatory computations within the implicit adaptation system, such as an equilibrium between learning and forgetting. A body of recent work has shown that in standard adaptation tasks, cognitive strategies operate alongside implicit learning. We reasoned that incomplete learning in adaptation tasks may primarily reflect a speed-accuracy tradeoff on time-consuming motor planning. Across three experiments, we find evidence supporting this hypothesis, showing that hastened motor planning may primarily lead to under-compensation. When an obligatory waiting period was administered before movement start, participants were able to fully counteract imposed perturbations (Experiment 1). Inserting the same delay between trials – rather than during movement planning – did not induce full compensation, suggesting that the motor planning interval influences the learning asymptote (Experiment 2). In the last experiment (Experiment 3), we asked participants to continuously report their movement intent. We show that emphasizing explicit re-aiming strategies (and concomitantly increasing planning time) also lead to complete asymptotic learning. Findings from all experiments support the hypothesis that incomplete adaptation is, in part, the result of an intrinsic speed-accuracy tradeoff, perhaps related to cognitive strategies that require parametric attentional reorienting from the visual target to the goal.
Collapse
|
27
|
Ruttle JE, 't Hart BM, Henriques DYP. Implicit motor learning within three trials. Sci Rep 2021; 11:1627. [PMID: 33452363 PMCID: PMC7810862 DOI: 10.1038/s41598-021-81031-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
In motor learning, the slow development of implicit learning is traditionally taken for granted. While much is known about training performance during adaptation to a perturbation in reaches, saccades and locomotion, little is known about the time course of the underlying implicit processes during normal motor adaptation. Implicit learning is characterized by both changes in internal models and state estimates of limb position. Here, we measure both as reach aftereffects and shifts in hand localization in our participants, after every training trial. The observed implicit changes were near asymptote after only one to three perturbed training trials and were not predicted by a two-rate model's slow process that is supposed to capture implicit learning. Hence, we show that implicit learning is much faster than conventionally believed, which has implications for rehabilitation and skills training.
Collapse
Affiliation(s)
- Jennifer E Ruttle
- Centre for Vision Research, York University, Toronto, Canada. .,Department of Psychology, York University, Toronto, Canada.
| | - Bernard Marius 't Hart
- Centre for Vision Research, York University, Toronto, Canada.,School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Denise Y P Henriques
- Centre for Vision Research, York University, Toronto, Canada.,Department of Psychology, York University, Toronto, Canada.,School of Kinesiology and Health Science, York University, Toronto, Canada
| |
Collapse
|
28
|
Bouchard JM, Cressman EK. Intermanual transfer and retention of visuomotor adaptation to a large visuomotor distortion are driven by explicit processes. PLoS One 2021; 16:e0245184. [PMID: 33428665 PMCID: PMC7799748 DOI: 10.1371/journal.pone.0245184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/24/2020] [Indexed: 12/04/2022] Open
Abstract
Reaching with a visuomotor distortion in a virtual environment leads to reach adaptation in the trained hand, and in the untrained hand. In the current study we asked if reach adaptation in the untrained (right) hand is due to transfer of explicit adaptation (EA; strategic changes in reaches) and/or implicit adaptation (IA; unconscious changes in reaches) from the trained (left) hand, and if this transfer changes depending on instructions provided. We further asked if EA and IA are retained in both the trained and untrained hands. Participants (n = 60) were divided into 3 groups (Instructed (provided with instructions on how to counteract the visuomotor distortion), Non-Instructed (no instructions provided), and Control (EA not assessed)). EA and IA were assessed in both the trained and untrained hands immediately following rotated reach training with a 40° visuomotor distortion, and again 24 hours later by having participants reach in the absence of cursor feedback. Participants were to reach (1) so that the cursor landed on the target (EA + IA), and (2) so that their hand landed on the target (IA). Results revealed that, while initial EA observed in the trained hand was greater for the Instructed versus Non-Instructed group, the full extent of EA transferred between hands for both groups and was retained across days. IA observed in the trained hand was greatest in the Non-Instructed group. However, IA did not significantly transfer between hands for any of the three groups. Limited retention of IA was observed in the trained hand. Together, these results suggest that while initial EA and IA in the trained hand are dependent on instructions provided, transfer and retention of visuomotor adaptation to a large visuomotor distortion are driven almost exclusively by EA.
Collapse
Affiliation(s)
| | - Erin K. Cressman
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
29
|
Javidialsaadi M, Wang J. Lack of interlimb transfer following visuomotor adaptation in a person with congenital mirror movements despite the awareness of the visuomotor perturbation. Brain Cogn 2020; 147:105653. [PMID: 33221664 DOI: 10.1016/j.bandc.2020.105653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022]
Abstract
There is a controversy regarding whether visuomotor adaptation heavily involves both implicit and explicit learning processes or not. Likewise, another controversy exists regarding whether interlimb transfer of visuomotor adaptation is related to explicit processes or not. To address the latter issue, we examined interlimb transfer of visuomotor adaptation in an individual with congenital mirror movements, 'DB'. DB has been tested previously using an experimental paradigm in which neurologically intact individuals demonstrated substantial transfer. DB, however, showed no transfer due to impaired interhemispheric communications. In that study, DB was unaware of the visuomotor perturbation. Here, we informed him of the perturbation prior to the experiment to determine whether providing the information would increase interlimb transfer. DB first adapted to a visuomotor rotation with the left arm, then with the right arm during reaching movements. Data from the present study were compared against those from our previous study. Results indicate no transfer across the arms despite the fact that he was aware of the perturbation. Considering overall findings in the literature, we suggest that interlimb transfer does not depend on one's awareness, although its extent can increase when individuals rely on cognitive strategies to deal with perturbations (c.f., Werner et al., 2019).
Collapse
Affiliation(s)
- Mousa Javidialsaadi
- Department of Kinesiology, University of Wisconsin - Milwaukee, Milwaukee, WI, 53201, USA
| | - Jinsung Wang
- Department of Kinesiology, University of Wisconsin - Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
30
|
Gastrock RQ, Modchalingam S, 't Hart BM, Henriques DYP. External error attribution dampens efferent-based predictions but not proprioceptive changes in hand localization. Sci Rep 2020; 10:19918. [PMID: 33199805 PMCID: PMC7669896 DOI: 10.1038/s41598-020-76940-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022] Open
Abstract
In learning and adapting movements in changing conditions, people attribute the errors they experience to a combined weighting of internal or external sources. As such, error attribution that places more weight on external sources should lead to decreased updates in our internal models for movement of the limb or estimating the position of the effector, i.e. there should be reduced implicit learning. However, measures of implicit learning are the same whether or not we induce explicit adaptation with instructions about the nature of the perturbation. Here we evoke clearly external errors by either demonstrating the rotation on every trial, or showing the hand itself throughout training. Implicit reach aftereffects persist, but are reduced in both groups. Only for the group viewing the hand, changes in hand position estimates suggest that predicted sensory consequences are not updated, but only rely on recalibrated proprioception. Our results show that estimating the position of the hand incorporates source attribution during motor learning, but recalibrated proprioception is an implicit process unaffected by external error attribution.
Collapse
Affiliation(s)
- Raphael Q Gastrock
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada. .,Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Shanaathanan Modchalingam
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
| | | | - Denise Y P Henriques
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada.,Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
31
|
Ranganathan R, Tomlinson AD, Lokesh R, Lin TH, Patel P. A tale of too many tasks: task fragmentation in motor learning and a call for model task paradigms. Exp Brain Res 2020; 239:1-19. [PMID: 33170341 DOI: 10.1007/s00221-020-05908-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022]
Abstract
Motor learning encompasses a broad set of phenomena that requires a diverse set of experimental paradigms. However, excessive variation in tasks across studies creates fragmentation that can adversely affect the collective advancement of knowledge. Here, we show that motor learning studies tend toward extreme fragmentation in the choice of tasks, with almost no overlap between task paradigms across studies. We argue that this extreme level of task fragmentation poses serious theoretical and methodological barriers to advancing the field. To address these barriers, we propose the need for developing common 'model' task paradigms which could be widely used across labs. Combined with the open sharing of methods and data, we suggest that these model task paradigms could be an important step in increasing the robustness of the motor learning literature and facilitate the cumulative process of science.
Collapse
Affiliation(s)
- Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA.
| | - Aimee D Tomlinson
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA
| | - Rakshith Lokesh
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA
| | - Tzu-Hsiang Lin
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA
| | - Priya Patel
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA
| |
Collapse
|
32
|
Hadjiosif AM, Krakauer JW. The explicit/implicit distinction in studies of visuomotor learning: Conceptual and methodological pitfalls. Eur J Neurosci 2020; 53:499-503. [PMID: 32979218 DOI: 10.1111/ejn.14984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/09/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Alkis M Hadjiosif
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.,Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
33
|
Maresch J, Werner S, Donchin O. Methods matter: Your measures of explicit and implicit processes in visuomotor adaptation affect your results. Eur J Neurosci 2020; 53:504-518. [PMID: 32844482 DOI: 10.1111/ejn.14945] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
Visuomotor rotations are frequently used to study the different processes underlying motor adaptation. Explicit aiming strategies and implicit recalibration are two of these processes. Various methods, which differ in their underlying assumptions, have been used to dissociate the two processes. Direct methods, such as verbal reports, assume explicit knowledge to be verbalizable, where indirect methods, such as the exclusion, assume that explicit knowledge is controllable. The goal of this study was thus to directly compare verbal reporting with exclusion in two different conditions: during consistent reporting and during intermittent reporting. Our results show that our two conditions lead to a dissociation between the measures. In the consistent reporting group, all measures showed similar results. However, in the intermittent reporting group, verbal reporting showed more explicit re-aiming and less implicit adaptation than exclusion. Curiously, when exclusion was measured again, after the end of learning, the differences were no longer apparent. We suspect this may reflect selective decay in implicit adaptation, as has been reported previously. All told, our results clearly indicate that methods of measurement can affect the amount of explicit re-aiming and implicit adaptation that is measured. Since it has been previously shown that both explicit re-aiming and implicit adaptation have multiple components, discrepancies between these different methods may arise because different measures reflect different components.
Collapse
Affiliation(s)
- Jana Maresch
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Susen Werner
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Opher Donchin
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Institute of Movement and Neurosciences, German Sport University, Cologne, Germany.,Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
34
|
Enhanced visuomotor learning and generalization in expert surgeons. Hum Mov Sci 2020; 71:102621. [DOI: 10.1016/j.humov.2020.102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
|
35
|
Vyas S, O'Shea DJ, Ryu SI, Shenoy KV. Causal Role of Motor Preparation during Error-Driven Learning. Neuron 2020; 106:329-339.e4. [PMID: 32053768 PMCID: PMC7185427 DOI: 10.1016/j.neuron.2020.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
Current theories suggest that an error-driven learning process updates trial-by-trial to facilitate motor adaptation. How this process interacts with motor cortical preparatory activity-which current models suggest plays a critical role in movement initiation-remains unknown. Here, we evaluated the role of motor preparation during visuomotor adaptation. We found that preparation time was inversely correlated to variance of errors on current trials and mean error on subsequent trials. We also found causal evidence that intracortical microstimulation during motor preparation was sufficient to disrupt learning. Surprisingly, stimulation did not affect current trials, but instead disrupted the update computation of a learning process, thereby affecting subsequent trials. This is consistent with a Bayesian estimation framework where the motor system reduces its learning rate by virtue of lowering error sensitivity when faced with uncertainty. This interaction between motor preparation and the error-driven learning system may facilitate new probes into mechanisms underlying trial-by-trial adaptation.
Collapse
Affiliation(s)
- Saurabh Vyas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Daniel J O'Shea
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Krishna V Shenoy
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Yin C, Wei K. Savings in sensorimotor adaptation without an explicit strategy. J Neurophysiol 2020; 123:1180-1192. [DOI: 10.1152/jn.00524.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hallmark of long-term retention of sensorimotor adaptation is a faster relearning when similar perturbations are encountered again. However, what processes underlie this saving effect is in debate. Though motor adaptation is traditionally viewed as a type of procedural learning, its savings has been recently shown to be solely based on a quick recall of explicit adaptation strategy. Here, we showed that adaptation to a novel error-invariant perturbation without an explicit strategy could enable subsequent savings. We further showed that adaptation to gradual perturbations could enable savings, which was supported by enhanced implicit learning. Our study provides supporting evidence that long-term retention of motor adaptation is possible without forming or recalling a cognitive strategy, and the interplay between implicit and explicit learning critically depends on the specifics of learning protocol and available sensory feedback. NEW & NOTEWORTHY Savings in motor learning sometimes refers to faster learning when one encounters the same perturbation again. Previous studies assert that forming a cognitive strategy for countering perturbations is necessary for savings. We used novel experimental techniques to prevent the formation of a cognitive strategy during initial adaptation and found that savings still existed during relearning. Our findings suggest that savings in sensorimotor adaptation do not exclusively depend on forming and recalling an explicit strategy.
Collapse
Affiliation(s)
- Cong Yin
- Capital University of Physical Education and Sports, Beijing, China
| | - Kunlin Wei
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
37
|
Task Errors Drive Memories That Improve Sensorimotor Adaptation. J Neurosci 2020; 40:3075-3088. [PMID: 32029533 DOI: 10.1523/jneurosci.1506-19.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 11/21/2022] Open
Abstract
Traditional views of sensorimotor adaptation (i.e., adaptation of movements to perturbed sensory feedback) emphasize the role of automatic, implicit correction of sensory prediction errors. However, latent memories formed during sensorimotor adaptation, manifest as improved relearning (e.g., savings), have recently been attributed to strategic corrections of task errors (failures to achieve task goals). To dissociate contributions of task errors and sensory prediction errors to latent sensorimotor memories, we perturbed target locations to remove or enforce task errors during learning and/or test, with male/female human participants. Adaptation improved after learning in all conditions where participants were permitted to correct task errors, and did not improve whenever we prevented correction of task errors. Thus, previous correction of task errors was both necessary and sufficient to improve adaptation. In contrast, a history of sensory prediction errors was neither sufficient nor obligatory for improved adaptation. Limiting movement preparation time showed that the latent memories driven by learning to correct task errors take at least two forms: a time-consuming but flexible component, and a rapidly expressible, inflexible component. The results provide strong support for the idea that movement corrections driven by a failure to successfully achieve movement goals underpin motor memories that manifest as savings. Such persistent memories are not exclusively mediated by time-consuming strategic processes but also comprise a rapidly expressible but inflexible component. The distinct characteristics of these putative processes suggest dissociable underlying mechanisms, and imply that identification of the neural basis for adaptation and savings will require methods that allow such dissociations.SIGNIFICANCE STATEMENT Latent motor memories formed during sensorimotor adaptation manifest as improved adaptation when sensorimotor perturbations are reencountered. Conflicting theories suggest that this "savings" is underpinned by different mechanisms, including a memory of successful actions, a memory of errors, or an aiming strategy to correct task errors. Here we show that learning to correct task errors is sufficient to show improved subsequent adaptation with respect to naive performance, even when tested in the absence of task errors. In contrast, a history of sensory prediction errors is neither sufficient nor obligatory for improved adaptation. Finally, we show that latent sensorimotor memories driven by task errors comprise at least two distinct components: a time-consuming, flexible component, and a rapidly expressible, inflexible component.
Collapse
|
38
|
Bromberg Z, Donchin O, Haar S. Eye Movements during Visuomotor Adaptation Represent Only Part of the Explicit Learning. eNeuro 2019; 6:ENEURO.0308-19.2019. [PMID: 31776177 PMCID: PMC6978919 DOI: 10.1523/eneuro.0308-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/03/2019] [Accepted: 11/09/2019] [Indexed: 11/21/2022] Open
Abstract
Visuomotor rotations are learned through a combination of explicit strategy and implicit recalibration. However, measuring the relative contribution of each remains a challenge and the possibility of multiple explicit and implicit components complicates the issue. Recent interest has focused on the possibility that eye movements reflects explicit strategy. Here we compared eye movements during adaptation to two accepted measures of explicit learning: verbal report and the exclusion test. We found that while reporting, all subjects showed a match among all three measures. However, when subjects did not report their intention, the eye movements of some subjects suggested less explicit adaptation than what was measured in an exclusion test. Interestingly, subjects whose eye movements did match their exclusion could be clustered into the following two subgroups: fully implicit learners showing no evidence of explicit adaptation and explicit learners with little implicit adaptation. Subjects showing a mix of both explicit and implicit adaptation were also those where eye movements showed less explicit adaptation than did exclusion. Thus, our results support the idea of multiple components of explicit learning as only part of the explicit learning is reflected in the eye movements. Individual subjects may use explicit components that are reflected in the eyes or those that are not or some mixture of the two. Analysis of reaction times suggests that the explicit components reflected in the eye movements involve longer reaction times. This component, according to recent literature, may be related to mental rotation.
Collapse
Affiliation(s)
- Zohar Bromberg
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
| | - Opher Donchin
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
| | - Shlomi Haar
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
39
|
Lack of generalization between explicit and implicit visuomotor learning. PLoS One 2019; 14:e0224099. [PMID: 31622443 PMCID: PMC6797192 DOI: 10.1371/journal.pone.0224099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/05/2019] [Indexed: 11/19/2022] Open
Abstract
Visuomotor adaptation has been thought to occur implicitly, although recent findings suggest that it involves both explicit and implicit processes. Here, we investigated generalization between an explicit condition, in which subjects reached toward imaginary targets under a veridical visuomotor condition, and an implicit condition, in which subjects reached toward visual targets under a 30-degree counterclockwise rotation condition. In experiment 1, two groups of healthy young adults first experienced either the explicit or the implicit condition, then the other condition. The third group experienced the explicit, then the implicit condition with an instruction that the same cognitive strategy could be used in both conditions. Results showed that initial explicit learning did not facilitate subsequent implicit learning, or vice versa, in the first two groups. Subjects in the third group performed better at the beginning of the implicit condition, but still had to adapt to the rotation gradually. In experiment 2, three additional subject groups were tested. One group experienced the explicit, then an implicit condition in which the rotation direction was opposite (30-degree clockwise rotation). Generalization between the conditions was still minimal in that group. Two other groups experienced either the explicit or implicit condition, then performed reaching movements without visual feedback. Those who experienced the explicit condition did not demonstrate aftereffects, while those who experienced the implicit condition did. Collectively, these findings suggest that visuomotor adaptation primarily involves implicit processes, and that explicit processes can add up in a complementary fashion as individuals become increasingly aware of the perturbation.
Collapse
|
40
|
Huberdeau DM, Krakauer JW, Haith AM. Practice induces a qualitative change in the memory representation for visuomotor learning. J Neurophysiol 2019; 122:1050-1059. [DOI: 10.1152/jn.00830.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adaptation of our movements to changes in the environment is known to be supported by multiple learning processes that operate in parallel. One is an implicit recalibration process driven by sensory-prediction errors; the other process counters the perturbation through more deliberate compensation. Prior experience is known to enable adaptation to occur more rapidly, a phenomenon known as “savings,” but exactly how experience alters each underlying learning process remains unclear. We measured the relative contributions of implicit recalibration and deliberate compensation to savings across 2 days of practice adapting to a visuomotor rotation. The rate of implicit recalibration showed no improvement with repeated practice. Instead, practice led to deliberate compensation being expressed even when preparation time was very limited. This qualitative change is consistent with the proposal that practice establishes a cached association linking target locations to appropriate motor output, facilitating a transition from deliberate to automatic action selection. NEW & NOTEWORTHY Recent research has shown that savings for visuomotor adaptation is attributable to retrieval of intentional, strategic compensation. This does not seem consistent with the implicit nature of memory for motor skills and calls into question the validity of visuomotor adaptation of reaching movements as a model for motor skill learning. Our findings suggest a solution: that additional practice adapting to a visuomotor perturbation leads to the caching of the initially explicit strategy for countering it.
Collapse
Affiliation(s)
- David M. Huberdeau
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W. Krakauer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adrian M. Haith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
41
|
Wijeyaratnam DO, Chua R, Cressman EK. Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment. Exp Brain Res 2019; 237:1431-1444. [PMID: 30895342 DOI: 10.1007/s00221-019-05515-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/09/2019] [Indexed: 12/24/2022]
Abstract
Human movements are remarkably adaptive. We are capable of completing movements in a novel visuomotor environment with similar accuracy to those performed in a typical environment. In the current study, we examined if the control processes underlying movements under typical conditions were different from those underlying novel visuomotor conditions. 16 participants were divided into two groups, one receiving continuous visual feedback during all reaches (CF), and the other receiving terminal feedback regarding movement endpoint (TF). Participants trained in a virtual environment by completing 150 reaches to three targets when (1) a cursor accurately represented their hand motion (i.e., typical environment) and (2) a cursor was rotated 45° clockwise relative to their hand motion (i.e., novel environment). Analyses of within-trial measures across 150 reaching trials revealed that participants were able to demonstrate similar movement outcomes (i.e., movement time and angular errors) regardless of visual feedback or reaching environment by the end of reach training. Furthermore, a reduction in variability across several measures (i.e., reaction time, movement time, time after peak velocity, and jerk score) over time showed that participants improved the consistency of their movements in both reaching environments. However, participants took more time and were less consistent in the timing of initiating their movements when reaching in a novel environment compared to reaching in a typical environment, even at the end of training. As well, angular error variability at different proportions of the movement trajectory was consistently greater when reaching in a novel environment across trials and within a trial. Together, the results suggest a greater contribution of offline control processes and less effective online corrective processes when reaching in a novel environment compared to when reaching in a typical environment.
Collapse
Affiliation(s)
- Darrin O Wijeyaratnam
- School of Human Kinetics, University of Ottawa, 125 University Private, Room 360, Ottawa, ON, K1N 6N5, Canada
| | - Romeo Chua
- School of Kinesiology, University of British Columbia, 6108 Thunderbird Boulevard, Osborne Centre Unit 2, Room 205, Vancouver, BC, V6T 1Z1, Canada
| | - Erin K Cressman
- School of Human Kinetics, University of Ottawa, 125 University Private, Room 360, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
42
|
|
43
|
Wong AL, Marvel CL, Taylor JA, Krakauer JW. Can patients with cerebellar disease switch learning mechanisms to reduce their adaptation deficits? Brain 2019; 142:662-673. [PMID: 30689760 PMCID: PMC6391651 DOI: 10.1093/brain/awy334] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 11/12/2022] Open
Abstract
Systematic perturbations in motor adaptation tasks are primarily countered by learning from sensory-prediction errors, with secondary contributions from other learning processes. Despite the availability of these additional processes, particularly the use of explicit re-aiming to counteract observed target errors, patients with cerebellar degeneration are surprisingly unable to compensate for their sensory-prediction error deficits by spontaneously switching to another learning mechanism. We hypothesized that if the nature of the task was changed-by allowing vision of the hand, which eliminates sensory-prediction errors-patients could be induced to preferentially adopt aiming strategies to solve visuomotor rotations. To test this, we first developed a novel visuomotor rotation paradigm that provides participants with vision of their hand in addition to the cursor, effectively setting the sensory-prediction error signal to zero. We demonstrated in younger healthy control subjects that this promotes a switch to strategic re-aiming based on target errors. We then showed that with vision of the hand, patients with cerebellar degeneration could also switch to an aiming strategy in response to visuomotor rotations, performing similarly to age-matched participants (older controls). Moreover, patients could retrieve their learned aiming solution after vision of the hand was removed (although they could not improve beyond what they retrieved), and retain it for at least 1 year. Both patients and older controls, however, exhibited impaired overall adaptation performance compared to younger healthy controls (age 18-33 years), likely due to age-related reductions in spatial and working memory. Patients also failed to generalize, i.e. they were unable to adopt analogous aiming strategies in response to novel rotations. Hence, there appears to be an inescapable obligatory dependence on sensory-prediction error-based learning-even when this system is impaired in patients with cerebellar disease. The persistence of sensory-prediction error-based learning effectively suppresses a switch to target error-based learning, which perhaps explains the unexpectedly poor performance by patients with cerebellar degeneration in visuomotor adaptation tasks.
Collapse
Affiliation(s)
- Aaron L Wong
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan A Taylor
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
Leow LA, Marinovic W, de Rugy A, Carroll TJ. Task errors contribute to implicit aftereffects in sensorimotor adaptation. Eur J Neurosci 2018; 48:3397-3409. [PMID: 30339299 DOI: 10.1111/ejn.14213] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/30/2023]
Abstract
Perturbations of sensory feedback evoke sensory prediction errors (discrepancies between predicted and actual sensory outcomes of movements), and reward prediction errors (discrepancies between predicted rewards and actual rewards). When our task is to hit a target, we expect to succeed in hitting the target, and so we experience a reward prediction error if the perturbation causes us to miss it. These discrepancies between intended task outcomes and actual task outcomes, termed "task errors," are thought to drive the use of strategic processes to restore success, although their role is incompletely understood. Here, as participants adapted to a 30° rotation of cursor feedback representing hand position, we investigated the role of task errors in sensorimotor adaptation: during target-reaching, we either removed task errors by moving the target mid-movement to align with cursor feedback of hand position, or enforced task error by moving the target away from the cursor feedback of hand position, by 20-30° randomly (clockwise in half the trials, counterclockwise in half the trials). Removing task errors not only reduced the extent of adaptation during exposure to the perturbation, but also reduced the amount of post-adaptation aftereffects that persisted despite explicit knowledge of the perturbation removal. Hence, task errors contribute to implicit adaptation resulting from sensory prediction errors. This suggests that the system which predicts the sensory consequences of actions via exposure to sensory prediction errors is also sensitive to reward prediction errors.
Collapse
Affiliation(s)
- Li-Ann Leow
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | | | - Aymar de Rugy
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, UMR 5287, Université de Bordeaux, St Lucia, France
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
45
|
Sadnicka A, Galea JM, Chen JC, Warner TT, Bhatia KP, Rothwell JC, Edwards MJ. Delineating cerebellar mechanisms in DYT11 myoclonus-dystonia. Mov Disord 2018; 33:1956-1961. [PMID: 30334277 DOI: 10.1002/mds.27517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/28/2018] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Recent research has highlighted the role of the cerebellum in the pathophysiology of myoclonus-dystonia syndrome as a result of mutations in the ɛ-sarcoglycan gene (DYT11). Specifically, a cerebellar-dependent saccadic adaptation task is dramatically impaired in this patient group. OBJECTIVES The objective of this study was to investigate whether saccadic deficits coexist with impairments of limb adaptation to provide a potential mechanism linking cerebellar dysfunction to the movement disorder within symptomatic body regions. METHODS Limb adaptation to visuomotor (visual feedback rotated by 30°) and forcefield (force applied by robot to deviate arm) perturbations were examined in 5 patients with DYT11 and 10 aged-matched controls. RESULTS Patients with DYT11 successfully adapted to both types of perturbation. Modelled and averaged summary metrics that captured adaptation behaviors were equivalent to the control group across conditions. CONCLUSIONS DYT11 is not characterized by a uniform deficit in adaptation. The previously observed large deficit in saccadic adaption is not reflected in an equivalent deficit in limb adaptation in symptomatic body regions. We suggest potential mechanisms at the root of this discordance and identify key research questions that need future study. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Sadnicka
- Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Motor Control and Movement Disorder Group, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK
| | - Joseph M Galea
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Jui-Cheng Chen
- Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, China Medical University Hospital, Taiwan
| | - Thomas T Warner
- Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kailash P Bhatia
- Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - John C Rothwell
- Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Mark J Edwards
- Motor Control and Movement Disorder Group, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK
| |
Collapse
|
46
|
de Brouwer AJ, Albaghdadi M, Flanagan JR, Gallivan JP. Using gaze behavior to parcellate the explicit and implicit contributions to visuomotor learning. J Neurophysiol 2018; 120:1602-1615. [PMID: 29995600 PMCID: PMC6230798 DOI: 10.1152/jn.00113.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/22/2022] Open
Abstract
Successful motor performance relies on our ability to adapt to changes in the environment by learning novel mappings between motor commands and sensory outcomes. Such adaptation is thought to involve two distinct mechanisms: an implicit, error-based component linked to slow learning and an explicit, strategic component linked to fast learning and savings (i.e., faster relearning). Because behavior, at any given moment, is the resultant combination of these two processes, it has remained a challenge to parcellate their relative contributions to performance. The explicit component to visuomotor rotation (VMR) learning has recently been measured by having participants verbally report their aiming strategy used to counteract the rotation. However, this procedure has been shown to magnify the explicit component. Here we tested whether task-specific eye movements, a natural component of reach planning, but poorly studied in motor learning tasks, can provide a direct readout of the state of the explicit component during VMR learning. We show, by placing targets on a visible ring and including a delay between target presentation and reach onset, that individual differences in gaze patterns during sensorimotor learning are linked to participants' rates of learning and their expression of savings. Specifically, we find that participants who, during reach planning, naturally fixate an aimpoint rotated away from the target location, show faster initial adaptation and readaptation 24 h later. Our results demonstrate that gaze behavior cannot only uniquely identify individuals who implement cognitive strategies during learning but also how their implementation is linked to differences in learning. NEW & NOTEWORTHY Although it is increasingly well appreciated that sensorimotor learning is driven by two separate components, an error-based process and a strategic process, it has remained a challenge to identify their relative contributions to performance. Here we demonstrate that task-specific eye movements provide a direct read-out of explicit strategies during sensorimotor learning in the presence of visual landmarks. We further show that individual differences in gaze behavior are linked to learning rate and savings.
Collapse
Affiliation(s)
- Anouk J de Brouwer
- Centre for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| | | | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
- Department of Psychology, Queen's University , Kingston, Ontario , Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
- Department of Psychology, Queen's University , Kingston, Ontario , Canada
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
47
|
Abstract
Humans and animals can flexibly switch rules to generate the appropriate response to the same sensory stimulus, e.g., we kick a soccer ball toward a friend on our team, but we kick the ball away from a friend who is traded to an opposing team. Most motor learning experiments have relied on a fixed rule; therefore, the effects of switching rules on motor learning are unclear. Here, we study the availability of motor learning effects when a rule in the training phase is different from a rule in the probe phase. Our results suggest that switching a rule causes partial rather than perfect availability. To understand the neural mechanisms inherent in our results, we verify that a computational model can explain our experimental results when each neural unit has different activities, but the total population activity is the same in the same planned movement with different rules. Thus, we conclude that switching rules causes modulations in individual neural activities under the same population activity, resulting in a partial transfer of learning effects for the same planned movements. Our results indicate that sports training and rehabilitation should include various situations even when the same motions are required.
Collapse
|
48
|
Interlimb Generalization of Learned Bayesian Visuomotor Prior Occurs in Extrinsic Coordinates. eNeuro 2018; 5:eN-CFN-0183-18. [PMID: 30131969 PMCID: PMC6102376 DOI: 10.1523/eneuro.0183-18.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/24/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022] Open
Abstract
Recent work suggests that the brain represents probability distributions and performs Bayesian integration during sensorimotor learning. However, our understanding of the neural representation of this learning remains limited. To begin to address this, we performed two experiments. In the first experiment, we replicated the key behavioral findings of Körding and Wolpert (2004), demonstrating that humans can perform in a Bayes-optimal manner by combining information about their own sensory uncertainty and a statistical distribution of lateral shifts encountered in a visuomotor adaptation task. In the second experiment, we extended these findings by testing whether visuomotor learning occurring during the same task generalizes from one limb to the other, and relatedly, whether this learning is represented in an extrinsic or intrinsic reference frame. We found that the learned mean of the distribution of visuomotor shifts generalizes to the opposite limb only when the perturbation is congruent in extrinsic coordinates, indicating that the underlying representation of learning acquired during training is available to the untrained limb and is coded in an extrinsic reference frame.
Collapse
|
49
|
Codol O, Holland PJ, Galea JM. The relationship between reinforcement and explicit control during visuomotor adaptation. Sci Rep 2018; 8:9121. [PMID: 29904096 PMCID: PMC6002524 DOI: 10.1038/s41598-018-27378-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/01/2018] [Indexed: 11/22/2022] Open
Abstract
The motor system’s ability to adapt to environmental changes is essential for maintaining accurate movements. Such adaptation recruits several distinct systems: cerebellar sensory-prediction error learning, success-based reinforcement, and explicit control. Although much work has focused on the relationship between cerebellar learning and explicit control, there is little research regarding how reinforcement and explicit control interact. To address this, participants first learnt a 20° visuomotor displacement. After reaching asymptotic performance, binary, hit-or-miss feedback (BF) was introduced either with or without visual feedback, the latter promoting reinforcement. Subsequently, retention was assessed using no-feedback trials, with half of the participants in each group being instructed to stop aiming off target. Although BF led to an increase in retention of the visuomotor displacement, instructing participants to stop re-aiming nullified this effect, suggesting explicit control is critical to BF-based reinforcement. In a second experiment, we prevented the expression or development of explicit control during BF performance, by either constraining participants to a short preparation time (expression) or by introducing the displacement gradually (development). Both manipulations strongly impaired BF performance, suggesting reinforcement requires both recruitment and expression of an explicit component. These results emphasise the pivotal role explicit control plays in reinforcement-based motor learning.
Collapse
Affiliation(s)
- Olivier Codol
- School of Psychology, University of Birmingham, Birmingham, UK.
| | - Peter J Holland
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Joseph M Galea
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
50
|
Holland P, Codol O, Galea JM. Contribution of explicit processes to reinforcement-based motor learning. J Neurophysiol 2018. [PMID: 29537918 DOI: 10.1152/jn.00901.2017] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite increasing interest in the role of reward in motor learning, the underlying mechanisms remain ill defined. In particular, the contribution of explicit processes to reward-based motor learning is unclear. To address this, we examined subjects' ( n = 30) ability to learn to compensate for a gradually introduced 25° visuomotor rotation with only reward-based feedback (binary success/failure). Only two-thirds of subjects ( n = 20) were successful at the maximum angle. The remaining subjects initially followed the rotation but after a variable number of trials began to reach at an insufficiently large angle and subsequently returned to near-baseline performance ( n = 10). Furthermore, those who were successful accomplished this via a large explicit component, evidenced by a reduction in reach angle when they were asked to remove any strategy they employed. However, both groups displayed a small degree of remaining retention even after the removal of this explicit component. All subjects made greater and more variable changes in reach angle after incorrect (unrewarded) trials. However, subjects who failed to learn showed decreased sensitivity to errors, even in the initial period in which they followed the rotation, a pattern previously found in parkinsonian patients. In a second experiment, the addition of a secondary mental rotation task completely abolished learning ( n = 10), while a control group replicated the results of the first experiment ( n = 10). These results emphasize a pivotal role of explicit processes during reinforcement-based motor learning, and the susceptibility of this form of learning to disruption has important implications for its potential therapeutic benefits. NEW & NOTEWORTHY We demonstrate that learning a visuomotor rotation with only reward-based feedback is principally accomplished via the development of a large explicit component. Furthermore, this form of learning is susceptible to disruption with a secondary task. The results suggest that future experiments utilizing reward-based feedback should aim to dissect the roles of implicit and explicit reinforcement learning systems. Therapeutic motor learning approaches based on reward should be aware of the sensitivity to disruption.
Collapse
Affiliation(s)
- Peter Holland
- School of Psychology, University of Birmingham , Birmingham , United Kingdom
| | - Olivier Codol
- School of Psychology, University of Birmingham , Birmingham , United Kingdom
| | - Joseph M Galea
- School of Psychology, University of Birmingham , Birmingham , United Kingdom
| |
Collapse
|