1
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
2
|
Kolling LJ, Tatti R, Lowry T, Loeven AM, Fadool JM, Fadool DA. Modulating the Excitability of Olfactory Output Neurons Affects Whole-Body Metabolism. J Neurosci 2022; 42:5966-5990. [PMID: 35710623 PMCID: PMC9337614 DOI: 10.1523/jneurosci.0190-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/29/2023] Open
Abstract
Metabolic state can alter olfactory sensitivity, but it is unknown whether the activity of the olfactory bulb (OB) may fine tune metabolic homeostasis. Our objective was to use CRISPR gene editing in male and female mice to enhance the excitability of mitral/tufted projection neurons (M/TCs) of the OB to test for improved metabolic health. Ex vivo slice recordings of MCs in CRISPR mice confirmed increased excitability due the targeted loss of Kv1.3 channels, which resulted in a less negative resting membrane potential (RMP), enhanced action potential (AP) firing, and insensitivity to the selective channel blocker margatoxin (MgTx). CRISPR mice exhibited enhanced odor discrimination using a habituation/dishabituation paradigm. CRISPR mice were challenged for 25 weeks with a moderately high-fat (MHF) diet, and compared with littermate controls, male mice were resistance to diet-induced obesity (DIO). Female mice did not exhibit DIO. CRISPR male mice gained less body weight, accumulated less white adipose tissue, cleared a glucose challenge more quickly, and had less serum leptin and liver triglycerides. CRISPR male mice consumed equivalent calories as control littermates, and had unaltered energy expenditure (EE) and locomotor activity, but used more fats for metabolic substrate over that of carbohydrates. Counter to CRISPR-engineered mice, by using chemogenetics to decrease M/TC excitability in male mice, activation of inhibitory designer receptors exclusively activated by designer drugs (DREADDs) caused a decrease in odor discrimination, and resulted in a metabolic profile that was obesogenic, mice had reduced EE and oxygen consumption (VO2). We conclude that the activity of M/TC projection neurons canonically carries olfactory information and simultaneously can regulate whole-body metabolism.SIGNIFICANCE STATEMENT The olfactory system drives food choice, and olfactory sensitivity is strongly correlated to hunger and fullness. Olfactory function thereby influences nutritional balance and obesity outcomes. Obesity has become a health and financial crisis in America, shortening life expectancy and increasing the severity of associated illnesses. It is expected that 51% of Americans will be obese by the year 2030. Using CRISPR gene editing and chemogenetic approaches, we discovered that changing the excitability of output neurons in the olfactory bulb (OB) affects metabolism and body weight stabilization in mice. Our results suggest that long-term therapeutic targeting of OB activity to higher processing centers may be a future clinical treatment of obesity or type II Diabetes.
Collapse
Affiliation(s)
- Louis John Kolling
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, Florida 32306
| | - Roberta Tatti
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
| | - Troy Lowry
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
| | - Ashley M Loeven
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
| | - James M Fadool
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
- Program in Neuroscience, The Florida State University, Tallahassee, Florida 32306
| | - Debra Ann Fadool
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, Florida 32306
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
- Program in Neuroscience, The Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
3
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
4
|
Estadella I, Pedrós-Gámez O, Colomer-Molera M, Bosch M, Sorkin A, Felipe A. Endocytosis: A Turnover Mechanism Controlling Ion Channel Function. Cells 2020; 9:E1833. [PMID: 32759790 PMCID: PMC7463639 DOI: 10.3390/cells9081833] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/08/2023] Open
Abstract
Ion channels (IChs) are transmembrane proteins that selectively drive ions across membranes. The function of IChs partially relies on their abundance and proper location in the cell, fine-tuned by the delicate balance between secretory, endocytic, and degradative pathways. The disruption of this balance is associated with several diseases, such as Liddle's and long QT syndromes. Because of the vital role of these proteins in human health and disease, knowledge of ICh turnover is essential. Clathrin-dependent and -independent mechanisms have been the primary mechanisms identified with ICh endocytosis and degradation. Several molecular determinants recognized by the cellular internalization machinery have been discovered. Moreover, specific conditions can trigger the endocytosis of many IChs, such as the activation of certain receptors, hypokalemia, and some drugs. Ligand-dependent receptor activation primarily results in the posttranslational modification of IChs and the recruitment of important mediators, such as β-arrestins and ubiquitin ligases. However, endocytosis is not a final fate. Once internalized into endosomes, IChs are either sorted to lysosomes for degradation or recycled back to the plasma membrane. Rab proteins are crucial participants during these turnover steps. In this review, we describe the major ICh endocytic pathways, the signaling inputs triggering ICh internalization, and the key mediators of this essential cellular process.
Collapse
Affiliation(s)
- Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Oriol Pedrós-Gámez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Manel Bosch
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| |
Collapse
|
5
|
Wang X, Duan J, Fu W, Yin Z, Sheng J, Lei Z, Wang H. Decreased expression of NEDD4L contributes to NSCLC progression and metastasis. Biochem Biophys Res Commun 2019; 513:398-404. [PMID: 30967264 DOI: 10.1016/j.bbrc.2019.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023]
Abstract
Recent evidence indicated that neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L) has a critical role in the regulation of cellular processes such as apoptosis, transport and metastasis, and is downregulated in several types of cancers. However, the role of NEDD4L in non-small cell lung cancer (NSCLC) has not been fully elucidated. In this study, we demonstrated that NEDD4L was downregulated in NSCLCs. This downregulation correlated with lymph node invasion, advanced stage and poor survival. In vitro experiments revealed that NEDD4L significantly suppressed cell proliferation, migration and invasion abilities. Further in vivo assay demonstrated that knocking down of NEDD4L enhanced the tumor metastasis of NSCLC cells. Moreover, we found that Polycomb group protein enhancer of zeste homologue 2 (EZH2) mediated H3K27 methylation was involved in the downregulation of NEDD4L. Knocking down of EZH2 restored the expression of NEDD4L. Further examined by luciferase reporter assay indicated the EZH2 regulated the transcription activity of NEDD4L. In clinical samples, EZH2 was inversely correlated with NEDD4L expression. In summary, NEDD4L acted as a tumor suppressor gene in NSCLC and targeting EZH2 could upregulate NEDD4L expression, which might serve as a novel approach for NSCLC.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jin Duan
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Weiping Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Zhaowu Yin
- Department of Oncology, The People's Hospital of Tengchong County, Baoshan, 679100, China
| | - Jianing Sheng
- Department of Oncology, The People's Hospital of Tengchong County, Baoshan, 679100, China
| | - Zhuyun Lei
- Department of Oncology, The People's Hospital of Tengchong County, Baoshan, 679100, China.
| | - Han Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
6
|
Zelinka CP, Sotolongo-Lopez M, Fadool JM. Targeted disruption of the endogenous zebrafish rhodopsin locus as models of rapid rod photoreceptor degeneration. Mol Vis 2018; 24:587-602. [PMID: 30210230 PMCID: PMC6128699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/24/2018] [Indexed: 12/05/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a collection of genetic disorders that results in the degeneration of light-sensitive photoreceptor cells, leading to blindness. RP is associated with more than 70 loci that may display dominant or recessive modes of inheritance, but mutations in the gene encoding the visual pigment rhodopsin (RHO) are the most frequent cause. In an effort to develop precise mutations in zebrafish as novel models of photoreceptor degeneration, we describe the generation and germline transmission of a series of novel clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-induced insertion and deletion (indel) mutations in the major zebrafish rho locus, rh1-1. Methods One- or two-cell staged zebrafish embryos were microinjected with in vitro transcribed mRNA encoding Cas9 and a single guide RNA (gRNA). Mutations were detected by restriction fragment length polymorphism (RFLP) and DNA sequence analyses in injected embryos and offspring. Immunolabeling with rod- and cone-specific antibodies was used to test for histological and cellular changes. Results Using gRNAs that targeted highly conserved regions of rh1-1, a series of dominant and recessive alleles were recovered that resulted in the rapid degeneration of rod photoreceptors. No effect on cones was observed. Targeting the 5'-coding sequence of rh1-1 led to the recovery of several indels similar to disease-associated alleles. A frame shift mutation leading to a premature stop codon (T17*) resulted in rod degeneration when brought to homozygosity. Immunoblot and fluorescence labeling with a Rho-specific antibody suggest that this is indeed a null allele, illustrating that the Rho expression is essential for rod survival. Two in-frame mutations were recovered that disrupted the highly conserved N-linked glycosylation consensus sequence at N15. Larvae heterozygous for either of the alleles demonstrated rapid rod degeneration. Targeting of the 3'-coding region of rh1-1 resulted in the recovery of an allele encoding a premature stop codon (S347*) upstream of the conserved VSPA sorting sequence and a second in-frame allele that disrupted the putative phosphorylation site at S339. Both alleles resulted in rod death in a dominant inheritance pattern. Following the loss of the targeting sequence, immunolabeling for Rho was no longer restricted to the rod outer segment, but it was also localized to the plasma membrane. Conclusions The efficiency of CRISPR/Cas9 for gene targeting, coupled with the large number of mutations associated with RP, provided a backdrop for the rapid isolation of novel alleles in zebrafish that phenocopy disease. These novel lines will provide much needed in-vivo models for high throughput screens of compounds or genes that protect from photoreceptor degeneration.
Collapse
Affiliation(s)
- Christopher P. Zelinka
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| | | | - James M. Fadool
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| |
Collapse
|
7
|
Khatun A, Shimozawa M, Kito H, Kawaguchi M, Fujimoto M, Ri M, Kajikuri J, Niwa S, Fujii M, Ohya S. Transcriptional Repression and Protein Degradation of the Ca 2+-Activated K + Channel K Ca1.1 by Androgen Receptor Inhibition in Human Breast Cancer Cells. Front Physiol 2018; 9:312. [PMID: 29713287 PMCID: PMC5911984 DOI: 10.3389/fphys.2018.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/14/2018] [Indexed: 01/14/2023] Open
Abstract
The large-conductance Ca2+-activated K+ channel KCa1.1 plays an important role in the promotion of breast cancer cell proliferation and metastasis. The androgen receptor (AR) is proposed as a therapeutic target for AR-positive advanced triple-negative breast cancer. We herein investigated the effects of a treatment with antiandrogens on the functional activity, activation kinetics, transcriptional expression, and protein degradation of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, voltage-sensitive dye imaging, and whole-cell patch clamp recording. A treatment with the antiandrogen bicalutamide or enzalutamide for 48 h significantly suppressed (1) depolarization responses induced by paxilline (PAX), a specific KCa1.1 blocker and (2) PAX-sensitive outward currents induced by the depolarizing voltage step. The expression levels of KCa1.1 transcripts and proteins were significantly decreased in MDA-MB-453 cells, and the protein degradation of KCa1.1 mainly contributed to reductions in KCa1.1 activity. Among the eight regulatory β and γ subunits, LRRC26 alone was expressed at high levels in MDA-MB-453 cells and primary and metastatic breast cancer tissues, whereas no significant changes were observed in the expression levels of LRRC26 and activation kinetics of PAX-sensitive outward currents in MDA-MB-453 cells by the treatment with antiandrogens. The treatment with antiandrogens up-regulated the expression of the ubiquitin E3 ligases, FBW7, MDM2, and MDM4 in MDA-MB-453 cells, and the protein degradation of KCa1.1 was significantly inhibited by the respective siRNA-mediated blockade of FBW7 and MDM2. Based on these results, we concluded that KCa1.1 is an androgen-responsive gene in AR-positive breast cancer cells, and its down-regulation through enhancements in its protein degradation by FBW7 and/or MDM2 may contribute, at least in part, to the antiproliferative and antimetastatic effects of antiandrogens in breast cancer cells.
Collapse
Affiliation(s)
- Anowara Khatun
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Motoki Shimozawa
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroaki Kito
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayu Kawaguchi
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayu Fujimoto
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Moe Ri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satomi Niwa
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masanori Fujii
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Susumu Ohya
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
8
|
Bell GA, Fadool DA. Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice. Physiol Behav 2017; 174:104-113. [PMID: 28259806 PMCID: PMC5639911 DOI: 10.1016/j.physbeh.2017.02.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5μg/μl of insulin twice daily for 30 and 60days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice did not perform differently than controls, regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3 fold increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors - as reported to elicit a modulatory effect with acute administration. This leads to two alternative interpretations regarding long-term insulin IND in mice: 1) It causes an initial stage of insulin resistance to dampen the behaviors that would normally be modulated under acute insulin IND, but ability to clear a glucose challenge is still retained, or 2) There is a lack of behavioral modulation at high concentration of insulin attributed to the twice daily intervals of hyperinsulinemia caused by insulin IND administration without any insulin resistance, per se.
Collapse
Affiliation(s)
- Genevieve A Bell
- Department of Biological Science and Program in Neuroscience, The Florida State University, Tallahassee, FL 32306-4295, United States
| | - Debra Ann Fadool
- Department of Biological Science and Program in Neuroscience, The Florida State University, Tallahassee, FL 32306-4295, United States; Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL 32306-4380, United States.
| |
Collapse
|
9
|
de la Cruz A, Vera-Zambrano A, Peraza DA, Valenzuela C, Zapata JM, Perez-Chacon G, Gonzalez T. Fludarabine Inhibits K V1.3 Currents in Human B Lymphocytes. Front Pharmacol 2017; 8:177. [PMID: 28408885 PMCID: PMC5374215 DOI: 10.3389/fphar.2017.00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Fludarabine (F-ara-A) is a purine analog commonly used in the treatment of indolent B cell malignancies that interferes with different aspects of DNA and RNA synthesis. KV1.3 K+ channels are membrane proteins involved in the maintenance of K+ homeostasis and the resting potential of the cell, thus controlling signaling events, proliferation and apoptosis in lymphocytes. Here we show that F-ara-A inhibits KV currents in human B lymphocytes. Our data indicate that KV1.3 is expressed in both BL2 and Dana B cell lines, although total KV1.3 levels were higher in BL2 than in Dana cells. However, KV currents in the plasma membrane were similar in both cell lines and were abrogated by the specific KV1.3 channel inhibitor PAP-1, indicating that KV1.3 accounts for most of the KV currents in these cell lines. F-ara-A, at a concentration (3.5 μM) similar to that achieved in the plasma of fludarabine phosphate-treated patients (3 μM), inhibited KV1.3 currents by 61 ± 6.3% and 52.3 ± 6.3% in BL2 and Dana B cells, respectively. The inhibitory effect of F-ara-A was concentration-dependent and showed an IC50 value of 0.36 ± 0.04 μM and a nH value of 1.07 ± 0.15 in BL2 cells and 0.34 ± 0.13 μM (IC50 ) and 0.77 ± 0.11 (nH ) in Dana cells. F-ara-A inhibition of plasma membrane KV1.3 was observed irrespective of its cytotoxic effect on the cells, BL2 cells being sensitive and Dana cells resistant to F-ara-A cytotoxicity. Interestingly, PAP-1, at concentrations as high as 10 μM, did not affect the viability of BL2 and Dana cells, indicating that blockage of KV1.3 in these cells is not toxic. Finally, F-ara-A had no effect on ectopically expressed KV1.3 channels, suggesting an indirect mechanism of current inhibition. In summary, our results describe the inhibitory effect of F-ara-A on the activity of KV1.3 channel. Although KV1.3 inhibition is not sufficient to induce cell death, further research is needed to determine whether it might still contribute to F-ara-A cytotoxicity in sensitive cells or be accountable for some of the clinical side effects of the drug.
Collapse
Affiliation(s)
- Alicia de la Cruz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain
| | - Alba Vera-Zambrano
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain.,Departamento de Bioquímica, Universidad Autónoma de MadridMadrid, Spain
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain
| | - Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPaz)Madrid, Spain
| | - Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPaz)Madrid, Spain
| | - Teresa Gonzalez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de MadridMadrid, Spain.,Departamento de Bioquímica, Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPaz)Madrid, Spain
| |
Collapse
|
10
|
Martínez-Mármol R, Styrczewska K, Pérez-Verdaguer M, Vallejo-Gracia A, Comes N, Sorkin A, Felipe A. Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein kinase C-dependent modulation. Sci Rep 2017; 7:42395. [PMID: 28186199 PMCID: PMC5301257 DOI: 10.1038/srep42395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022] Open
Abstract
The voltage-dependent potassium channel Kv1.3 plays essential physiological functions in the immune system. Kv1.3, regulating the membrane potential, facilitates downstream Ca2+ -dependent pathways and becomes concentrated in specific membrane microdomains that serve as signaling platforms. Increased and/or delocalized expression of the channel is observed at the onset of several autoimmune diseases. In this work, we show that adenosine (ADO), which is a potent endogenous modulator, stimulates PKC, thereby causing immunosuppression. PKC activation triggers down-regulation of Kv1.3 by inducing a clathrin-mediated endocytic event that targets the channel to lysosomal-degradative compartments. Therefore, the abundance of Kv1.3 at the cell surface decreases, which is clearly compatible with an effective anti-inflammatory response. This mechanism requires ubiquitination of Kv1.3, catalyzed by the E3 ubiquitin-ligase Nedd4-2. Postsynaptic density protein 95 (PSD-95), a member of the MAGUK family, recruits Kv1.3 into lipid-raft microdomains and protects the channel against ubiquitination and endocytosis. Therefore, the Kv1.3/PSD-95 association fine-tunes the anti-inflammatory response in leukocytes. Because Kv1.3 is a promising multi-therapeutic target against human pathologies, our results have physiological relevance. In addition, this work elucidates the ADO-dependent PKC-mediated molecular mechanism that triggers immunomodulation by targeting Kv1.3 in leukocytes.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Molecular Physiology laboratory, Departament de Bioquímica i Biomedicna Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain.,Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Katarzyna Styrczewska
- Molecular Physiology laboratory, Departament de Bioquímica i Biomedicna Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mireia Pérez-Verdaguer
- Molecular Physiology laboratory, Departament de Bioquímica i Biomedicna Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Albert Vallejo-Gracia
- Molecular Physiology laboratory, Departament de Bioquímica i Biomedicna Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Núria Comes
- Molecular Physiology laboratory, Departament de Bioquímica i Biomedicna Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain.,Laboratory of Neurophysiology, Universitat de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Antonio Felipe
- Molecular Physiology laboratory, Departament de Bioquímica i Biomedicna Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Khatun A, Fujimoto M, Kito H, Niwa S, Suzuki T, Ohya S. Down-Regulation of Ca 2+-Activated K⁺ Channel K Ca1.1 in Human Breast Cancer MDA-MB-453 Cells Treated with Vitamin D Receptor Agonists. Int J Mol Sci 2016; 17:ijms17122083. [PMID: 27973439 PMCID: PMC5187883 DOI: 10.3390/ijms17122083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022] Open
Abstract
Vitamin D (VD) reduces the risk of breast cancer and improves disease prognoses. Potential VD analogs are being developed as therapeutic agents for breast cancer treatments. The large-conductance Ca2+-activated K+ channel KCa1.1 regulates intracellular Ca2+ signaling pathways and is associated with high grade tumors and poor prognoses. In the present study, we examined the effects of treatments with VD receptor (VDR) agonists on the expression and activity of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, flow cytometry, and voltage-sensitive dye imaging. Treatments with VDR agonists for 72 h markedly decreased the expression levels of KCa1.1 transcripts and proteins in MDA-MB-453 cells, resulting in the significant inhibition of depolarization responses induced by paxilline, a specific KCa1.1 blocker. The specific proteasome inhibitor MG132 suppressed VDR agonist-induced decreases in KCa1.1 protein expression. These results suggest that KCa1.1 is a new downstream target of VDR signaling and the down-regulation of KCa1.1 through the transcriptional repression of KCa1.1 and enhancement of KCa1.1 protein degradation contribute, at least partly, to the antiproliferative effects of VDR agonists in breast cancer cells.
Collapse
Affiliation(s)
- Anowara Khatun
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Mayu Fujimoto
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Satomi Niwa
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 403-8334, Japan.
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
12
|
Kovach CP, Al Koborssy D, Huang Z, Chelette BM, Fadool JM, Fadool DA. Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel. Front Physiol 2016; 7:178. [PMID: 27242550 PMCID: PMC4871887 DOI: 10.3389/fphys.2016.00178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
Gene-targeted deletion of the potassium channel Kv1.3 (Kv1.3−∕−) results in “Super-smeller” mice with a sensory phenotype that includes an increased olfactory ability linked to changes in olfactory circuitry, increased abundance of olfactory cilia, and increased expression of odorant receptors and the G-protein, Golf. Kv1.3−∕− mice also have a metabolic phenotype including lower body weight and decreased adiposity, increased total energy expenditure (TEE), increased locomotor activity, and resistance to both diet- and genetic-induced obesity. We explored two cellular aspects to elucidate the mechanism by which loss of Kv1.3 channel in the olfactory bulb (OB) may enhance glucose utilization and metabolic rate. First, using in situ hybridization we find that Kv1.3 and the insulin-dependent glucose transporter type 4 (GLUT4) are co-localized to the mitral cell layer of the OB. Disruption of Kv1.3 conduction via construction of a pore mutation (W386F Kv1.3) was sufficient to independently translocate GLUT4 to the plasma membrane in HEK 293 cells. Because olfactory sensory perception and the maintenance of action potential (AP) firing frequency by mitral cells of the OB is highly energy demanding and Kv1.3 is also expressed in mitochondria, we next explored the structure of this organelle in mitral cells. We challenged wildtype (WT) and Kv1.3−∕− male mice with a moderately high-fat diet (MHF, 31.8 % kcal fat) for 4 months and then examined OB ultrastructure using transmission electron microscopy. In WT mice, mitochondria were significantly enlarged following diet-induced obesity (DIO) and there were fewer mitochondria, likely due to mitophagy. Interestingly, mitochondria were significantly smaller in Kv1.3−∕− mice compared with that of WT mice. Similar to their metabolic resistance to DIO, the Kv1.3−∕− mice had unchanged mitochondria in terms of cross sectional area and abundance following a challenge with modified diet. We are very interested to understand how targeted disruption of the Kv1.3 channel in the OB can modify TEE. Our study demonstrates that Kv1.3 regulates mitochondrial structure and alters glucose utilization; two important metabolic changes that could drive whole system changes in metabolism initiated at the OB.
Collapse
Affiliation(s)
- Christopher P Kovach
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Dolly Al Koborssy
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | - Zhenbo Huang
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | | | - James M Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Debra A Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA; Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|