1
|
Garau C, Hayes J, Chiacchierini G, McCutcheon JE, Apergis-Schoute J. Involvement of A13 dopaminergic neurons in prehensile movements but not reward in the rat. Curr Biol 2023; 33:4786-4797.e4. [PMID: 37816347 DOI: 10.1016/j.cub.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Tyrosine hydroxylase (TH)-containing neurons of the dopamine (DA) cell group A13 are well positioned to impact known DA-related functions as their descending projections innervate target regions that regulate vigilance, sensory integration, and motor execution. Despite this connectivity, little is known regarding the functionality of A13-DA circuits. Using TH-specific loss-of-function methodology and techniques to monitor population activity in transgenic rats in vivo, we investigated the contribution of A13-DA neurons in reward and movement-related actions. Our work demonstrates a role for A13-DA neurons in grasping and handling of objects but not reward. A13-DA neurons responded strongly when animals grab and manipulate food items, whereas their inactivation or degeneration prevented animals from successfully doing so-a deficit partially attributed to a reduction in grip strength. By contrast, there was no relation between A13-DA activity and food-seeking behavior when animals were tested on a reward-based task that did not include a reaching/grasping response. Motivation for food was unaffected, as goal-directed behavior for food items was in general intact following A13 neuronal inactivation/degeneration. An anatomical investigation confirmed that A13-DA neurons project to the superior colliculus (SC) and also demonstrated a novel A13-DA projection to the reticular formation (RF). These results establish a functional role for A13-DA neurons in prehensile actions that are uncoupled from the motivational factors that contribute to the initiation of forelimb movements and help position A13-DA circuits into the functional framework regarding centrally located DA populations and their ability to coordinate movement.
Collapse
Affiliation(s)
- Celia Garau
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK.
| | - Jessica Hayes
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Giulia Chiacchierini
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Physiology and Pharmacology, La Sapienza University of Rome, 00185 Rome, Italy; Laboratory of Neuropsychopharmacology, Santa Lucia Foundation, 00143 Rome, Italy
| | - James E McCutcheon
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037 Tromsø, Norway
| | - John Apergis-Schoute
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
2
|
Prabhu NG, Himmelbach M. Activity in the human superior colliculus associated with reaching for tactile targets. Neuroimage 2023; 280:120322. [PMID: 37586443 DOI: 10.1016/j.neuroimage.2023.120322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
The superior colliculus (SC) plays a major role in orienting movements of eyes and the head and in the allocation of attention. Functions of the SC have been mostly investigated in animal models, including non-human primates. Differences in the SC's anatomy and function between different species question extrapolations of these studies to humans without further validation. Few electrophysiological and neuroimaging studies in animal models and humans have reported a role of the SC in visually guided reaching movements. Using BOLD fMRI imaging, we sought to decipher if the SC is also active during reaching movements guided by tactile stimulation. Participants executed reaching movements to visual and tactile target positions. When contrasted against visual and tactile stimulation without reaching, we found increased SC activity with reaching not only for visual but also for tactile targets. We conclude that the SC's involvement in reaching does not rely on visual inputs. It is also independent from a specific sensory modality. Our results indicate a general involvement of the human SC in upper limb reaching movements.
Collapse
Affiliation(s)
- Nikhil G Prabhu
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany; International Max Planck Research School in Cognitive and Systems Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Marc Himmelbach
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
3
|
Lupkin SM, McGinty VB. Monkeys exhibit human-like gaze biases in economic decisions. eLife 2023; 12:e78205. [PMID: 37497784 PMCID: PMC10465126 DOI: 10.7554/elife.78205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
In economic decision-making individuals choose between items based on their perceived value. For both humans and nonhuman primates, these decisions are often carried out while shifting gaze between the available options. Recent studies in humans suggest that these shifts in gaze actively influence choice, manifesting as a bias in favor of the items that are viewed first, viewed last, or viewed for the overall longest duration in a given trial. This suggests a mechanism that links gaze behavior to the neural computations underlying value-based choices. In order to identify this mechanism, it is first necessary to develop and validate a suitable animal model of this behavior. To this end, we have created a novel value-based choice task for macaque monkeys that captures the essential features of the human paradigms in which gaze biases have been observed. Using this task, we identified gaze biases in the monkeys that were both qualitatively and quantitatively similar to those in humans. In addition, the monkeys' gaze biases were well-explained using a sequential sampling model framework previously used to describe gaze biases in humans-the first time this framework has been used to assess value-based decision mechanisms in nonhuman primates. Together, these findings suggest a common mechanism that can explain gaze-related choice biases across species, and open the way for mechanistic studies to identify the neural origins of this behavior.
Collapse
Affiliation(s)
- Shira M Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewarkUnited States
- Behavioral and Neural Sciences Graduate Program, Rutgers UniversityNewarkUnited States
| | - Vincent B McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewarkUnited States
| |
Collapse
|
4
|
Kasuga S, Crevecoeur F, Cross KP, Balalaie P, Scott SH. Integration of proprioceptive and visual feedback during online control of reaching. J Neurophysiol 2021; 127:354-372. [PMID: 34907796 PMCID: PMC8794063 DOI: 10.1152/jn.00639.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Visual and proprioceptive feedback both contribute to perceptual decisions, but it remains unknown how these feedback signals are integrated together or consider factors such as delays and variance during online control. We investigated this question by having participants reach to a target with randomly applied mechanical and/or visual disturbances. We observed that the presence of visual feedback during a mechanical disturbance did not increase the size of the muscle response significantly but did decrease variance, consistent with a dynamic Bayesian integration model. In a control experiment, we verified that vision had a potent influence when mechanical and visual disturbances were both present but opposite in sign. These results highlight a complex process for multisensory integration, where visual feedback has a relatively modest influence when the limb is mechanically disturbed, but a substantial influence when visual feedback becomes misaligned with the limb. NEW & NOTEWORTHY Visual feedback is more accurate, but proprioceptive feedback is faster. How should you integrate these sources of feedback to guide limb movement? As predicted by dynamic Bayesian models, the size of the muscle response to a mechanical disturbance was essentially the same whether visual feedback was present or not. Only under artificial conditions, such as when shifting the position of a cursor representing hand position, can one observe a muscle response from visual feedback.
Collapse
Affiliation(s)
- Shoko Kasuga
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Frédéric Crevecoeur
- Institute of Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kevin Patrick Cross
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Parsa Balalaie
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Abekawa N, Gomi H, Diedrichsen J. Gaze control during reaching is flexibly modulated to optimize task outcome. J Neurophysiol 2021; 126:816-826. [PMID: 34320845 DOI: 10.1152/jn.00134.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When reaching for an object with the hand, the gaze is usually directed at the target. In a laboratory setting, fixation is strongly maintained at the reach target until the reaching is completed, a phenomenon known as "gaze anchoring." While conventional accounts of such tight eye-hand coordination have often emphasized the internal synergetic linkage between both motor systems, more recent optimal control theories regard motor coordination as the adaptive solution to task requirements. We here investigated to what degree gaze control during reaching is modulated by task demands. We adopted a gaze-anchoring paradigm in which participants had to reach for a target location. During the reach, they additionally had to make a saccadic eye movement to a salient visual cue presented at locations other than the target. We manipulated the task demands by independently changing reward contingencies for saccade reaction time (RT) and reaching accuracy. On average, both saccade RTs and reach error varied systematically with reward condition, with reach accuracy improving when the saccade was delayed. The distribution of the saccade RTs showed two types of eye movements: fast saccades with short RTs, and voluntary saccade with longer RTs. Increased reward for high reach accuracy reduced the probability of fast saccades but left their latency unchanged. The results suggest that gaze anchoring acts through a suppression of fast saccades, a mechanism that can be adaptively adjusted to the current task demands.NEW & NOTEWORTHY During visually guided reaching, our eyes usually fixate the target and saccades elsewhere are delayed ("gaze anchoring"). We here show that the degree of gaze anchoring is flexibly modulated by the reward contingencies of saccade latency and reach accuracy. Reach error became larger when saccades occurred earlier. These results suggest that early saccades are costly for reaching and the brain modulates inhibitory online coordination from the hand to the eye system depending on task requirements.
Collapse
Affiliation(s)
- Naotoshi Abekawa
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan
| | - Jörn Diedrichsen
- The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
6
|
de Brouwer AJ, Flanagan JR, Spering M. Functional Use of Eye Movements for an Acting System. Trends Cogn Sci 2021; 25:252-263. [PMID: 33436307 DOI: 10.1016/j.tics.2020.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Movements of the eyes assist vision and support hand and body movements in a cooperative way. Despite their strong functional coupling, different types of movements are usually studied independently. We integrate knowledge from behavioral, neurophysiological, and clinical studies on how eye movements are coordinated with goal-directed hand movements and how they facilitate motor learning. Understanding the coordinated control of eye and hand movements can provide important insights into brain functions that are essential for performing or learning daily tasks in health and disease. This knowledge can also inform applications such as robotic manipulation and clinical rehabilitation.
Collapse
Affiliation(s)
- Anouk J de Brouwer
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada.
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada; Department of Psychology, Queen's University, Kingston, Canada
| | - Miriam Spering
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Sergio LE, Gorbet DJ, Adams MS, Dobney DM. The Effects of Mild Traumatic Brain Injury on Cognitive-Motor Integration for Skilled Performance. Front Neurol 2020; 11:541630. [PMID: 33041992 PMCID: PMC7525090 DOI: 10.3389/fneur.2020.541630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023] Open
Abstract
Adults exposed to blast and blunt impact often experience mild traumatic brain injury, affecting neural functions related to sensory, cognitive, and motor function. In this perspective article, we will review the effects of impact and blast exposure on functional performance that requires the integration of these sensory, cognitive, and motor control systems. We describe cognitive-motor integration and how it relates to successfully navigating skilled activities crucial for work, duty, sport, and even daily life. We review our research on the behavioral effects of traumatic impact and blast exposure on cognitive-motor integration in both younger and older adults, and the neural networks that are involved in these types of skills. Overall, we have observed impairments in rule-based skilled performance as a function of both physical impact and blast exposure. The extent of these impairments depended on the age at injury and the sex of the individual. It appears, however, that cognitive-motor integration deficits can be mitigated by the level of skill expertise of the affected individual, suggesting that such experience imparts resiliency in the brain networks that underly the control of complex visuomotor performance. Finally, we discuss the next steps needed to comprehensively understand the impact of trauma and blast exposure on functional movement control.
Collapse
Affiliation(s)
- Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
| | - Meaghan S. Adams
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Vision-Science to Application (VISTA) Program, York University, Toronto, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Danielle M. Dobney
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Vision-Science to Application (VISTA) Program, York University, Toronto, ON, Canada
| |
Collapse
|
8
|
Hadjidimitrakis K, Ghodrati M, Breveglieri R, Rosa MGP, Fattori P. Neural coding of action in three dimensions: Task- and time-invariant reference frames for visuospatial and motor-related activity in parietal area V6A. J Comp Neurol 2020; 528:3108-3122. [PMID: 32080849 DOI: 10.1002/cne.24889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Goal-directed movements involve a series of neural computations that compare the sensory representations of goal location and effector position, and transform these into motor commands. Neurons in posterior parietal cortex (PPC) control several effectors (e.g., eye, hand, foot) and encode goal location in a variety of spatial coordinate systems, including those anchored to gaze direction, and to the positions of the head, shoulder, or hand. However, there is little evidence on whether reference frames depend also on the effector and/or type of motor response. We addressed this issue in macaque PPC area V6A, where previous reports using a fixate-to-reach in depth task, from different starting arm positions, indicated that most units use mixed body/hand-centered coordinates. Here, we applied singular value decomposition and gradient analyses to characterize the reference frames in V6A while the animals, instead of arm reaching, performed a nonspatial motor response (hand lift). We found that most neurons used mixed body/hand coordinates, instead of "pure" body-, or hand-centered coordinates. During the task progress the effect of hand position on activity became stronger compared to target location. Activity consistent with body-centered coding was present only in a subset of neurons active early in the task. Applying the same analyses to a population of V6A neurons recorded during the fixate-to-reach task yielded similar results. These findings suggest that V6A neurons use consistent reference frames between spatial and nonspatial motor responses, a functional property that may allow the integration of spatial awareness and movement control.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Masoud Ghodrati
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain function, Monash University, Clayton, Victoria, Australia
| | - Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello G P Rosa
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain function, Monash University, Clayton, Victoria, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Gorbet DJ, Sergio LE. Looking up while reaching out: the neural correlates of making eye and arm movements in different spatial planes. Exp Brain Res 2018; 237:57-70. [DOI: 10.1007/s00221-018-5395-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
10
|
Whishaw IQ, Karl JM, Humphrey NK. Dissociation of the Reach and the Grasp in the destriate (V1) monkey Helen: a new anatomy for the dual visuomotor channel theory of reaching. Exp Brain Res 2016; 234:2351-62. [DOI: 10.1007/s00221-016-4640-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/24/2016] [Indexed: 11/25/2022]
|
11
|
Jóhannesson ÓI, Thornton IM, Smith IJ, Chetverikov A, Kristjánsson Á. Visual Foraging With Fingers and Eye Gaze. Iperception 2016; 7:2041669516637279. [PMID: 27433323 PMCID: PMC4934673 DOI: 10.1177/2041669516637279] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a) The fact that a sizeable number of observers (in particular during gaze foraging) had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b) While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints.
Collapse
Affiliation(s)
| | - Ian M Thornton
- Department of Cognitive Science, University of Malta, Malta
| | - Irene J Smith
- Faculty of Psychology, University of Iceland, Iceland
| | - Andrey Chetverikov
- Faculty of Psychology, University of Iceland, Iceland; Department of Psychology, Saint Petersburg State University, Saint Petersburg, Russia; Cognitive Research Lab, Russian Academy of National Economy and Public Administration, Moscow, Russia
| | - Árni Kristjánsson
- Faculty of Psychology, University of Iceland, Iceland; Institute of Cognitive Neuroscience, University College London, UK
| |
Collapse
|
12
|
Hutchinson M, Isa T, Molloy A, Kimmich O, Williams L, Molloy F, Moore H, Healy DG, Lynch T, Walsh C, Butler J, Reilly RB, Walsh R, O'Riordan S. Cervical dystonia: a disorder of the midbrain network for covert attentional orienting. Front Neurol 2014; 5:54. [PMID: 24803911 PMCID: PMC4009446 DOI: 10.3389/fneur.2014.00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/03/2014] [Indexed: 01/30/2023] Open
Abstract
While the pathogenesis of cervical dystonia remains unknown, recent animal and clinical experimental studies have indicated its probable mechanisms. Abnormal temporal discrimination is a mediational endophenotype of cervical dystonia and informs new concepts of disease pathogenesis. Our hypothesis is that both abnormal temporal discrimination and cervical dystonia are due to a disorder of the midbrain network for covert attentional orienting caused by reduced gamma-aminobutyric acid (GABA) inhibition, resulting, in turn, from as yet undetermined, genetic mutations. Such disinhibition is (a) subclinically manifested by abnormal temporal discrimination due to prolonged duration firing of the visual sensory neurons in the superficial laminae of the superior colliculus and (b) clinically manifested by cervical dystonia due to disinhibited burst activity of the cephalomotor neurons of the intermediate and deep laminae of the superior colliculus. Abnormal temporal discrimination in unaffected first-degree relatives of patients with cervical dystonia represents a subclinical manifestation of defective GABA activity both within the superior colliculus and from the substantia nigra pars reticulata. A number of experiments are required to prove or disprove this hypothesis.
Collapse
Affiliation(s)
- Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences , Okazaki , Japan
| | - Anna Molloy
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Okka Kimmich
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Laura Williams
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Fiona Molloy
- Department of Neurophysiology, Beaumont Hospital , Dublin , Ireland
| | | | - Daniel G Healy
- Department of Neurology, Beaumont Hospital , Dublin , Ireland
| | - Tim Lynch
- Dublin Neurological Institute, Mater Misericordiae Hospital , Dublin , Ireland
| | - Cathal Walsh
- Department of Statistics, Trinity College Dublin , Dublin , Ireland
| | - John Butler
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard Walsh
- Department of Neurology, The Adelaide and Meath Hospital , Dublin , Ireland
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| |
Collapse
|
13
|
Arm movements induced by electrical microstimulation in the superior colliculus of the macaque monkey. J Neurosci 2014; 34:3350-63. [PMID: 24573292 DOI: 10.1523/jneurosci.0443-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuronal activity in the deep layers of the macaque (Macaca mulatta) superior colliculus (SC) and the underlying reticular formation is correlated with the initiation and execution of arm movements (Werner, 1993). Although the correlation of this activity with EMGs of proximal arm muscles is as strong as in motor cortex (Werner et al., 1997a; Stuphorn et al., 1999), little is known about the influence of electrical microstimulation in the SC on the initiation and trajectories of arm movements. Our experiments on three macaque monkeys clearly show that arm movements can be elicited by electrical microstimulation in the deep layers of the lateral SC and underlying reticular formation. The most extensively trained monkey, M1, extended his arm toward the screen in front of him more or less stereotypically upon electrical SC stimulation. In two other monkeys, M2 and M3, a larger repertoire of arm movements were elicited, categorized into three movement types, and compared before (M3) and after (M2 and M3) training: twitch (56% vs. 62%), lift (6% vs. 5%), and extend (37% vs. 32%), respectively. Therefore, arm movements induced by electrical stimulation in the monkey SC represent a further component of the functional repertoire of the SC using its impact on motoneurons in the spinal cord, probably via premotor neurons in the brainstem, as well as on structures involved in executing more complex movements such as target-directed reaching. Therefore, the macaque SC could be involved directly in the initiation, execution, and amendment of arm and hand movements.
Collapse
|
14
|
Merker B. The efference cascade, consciousness, and its self: naturalizing the first person pivot of action control. Front Psychol 2013; 4:501. [PMID: 23950750 PMCID: PMC3738861 DOI: 10.3389/fpsyg.2013.00501] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/16/2013] [Indexed: 11/13/2022] Open
Abstract
The 20 billion neurons of the neocortex have a mere hundred thousand motor neurons by which to express cortical contents in overt behavior. Implemented through a staggered cortical "efference cascade" originating in the descending axons of layer five pyramidal cells throughout the neocortical expanse, this steep convergence accomplishes final integration for action of cortical information through a system of interconnected subcortical way stations. Coherent and effective action control requires the inclusion of a continually updated joint "global best estimate" of current sensory, motivational, and motor circumstances in this process. I have previously proposed that this running best estimate is extracted from cortical probabilistic preliminaries by a subcortical neural "reality model" implementing our conscious sensory phenomenology. As such it must exhibit first person perspectival organization, suggested to derive from formating requirements of the brain's subsystem for gaze control, with the superior colliculus at its base. Gaze movements provide the leading edge of behavior by capturing targets of engagement prior to contact. The rotation-based geometry of directional gaze movements places their implicit origin inside the head, a location recoverable by cortical probabilistic source reconstruction from the rampant primary sensory variance generated by the incessant play of collicularly triggered gaze movements. At the interface between cortex and colliculus lies the dorsal pulvinar. Its unique long-range inhibitory circuitry may precipitate the brain's global best estimate of its momentary circumstances through multiple constraint satisfaction across its afferents from numerous cortical areas and colliculus. As phenomenal content of our sensory awareness, such a global best estimate would exhibit perspectival organization centered on a purely implicit first person origin, inherently incapable of appearing as a phenomenal content of the sensory space it serves.
Collapse
|
15
|
Vergence neurons identified in the rostral superior colliculus code smooth eye movements in 3D space. J Neurosci 2013; 33:7274-84. [PMID: 23616536 DOI: 10.1523/jneurosci.2268-12.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rostral superior colliculus (rSC) encodes position errors for multiple types of eye movements, including microsaccades, small saccades, smooth pursuit, and fixation. Here we address whether the rSC contributes to the development of neural signals that are suitable for controlling vergence eye movements. We use both single-unit recording and microstimulation techniques in monkey to answer this question. We found that vergence eye movements can be evoked using microstimulation in the rSC. Moreover, among the previously described neurons in rSC, we recorded a novel population of neurons that either increased (i.e., convergence neurons) or decreased (i.e., divergence neurons) their activity during vergence eye movements. In particular, these neurons dynamically encoded changes in vergence angle during vergence tracking, fixation in 3D space and the slow binocular realignment that occurs after disconjugate saccades, but were completely unresponsive during conjugate or the rapid component of disconjugate saccades (i.e., fast vergence) and conjugate smooth pursuit. Together, our microstimulation and single-neuron results suggest that the SC plays a role in the generation of signals required to precisely align the eyes toward targets in 3D space. We propose that accurate maintenance of 3D eye position, critical for the perception of stereopsis, may be mediated via the rSC.
Collapse
|
16
|
Meek BP, Shelton P, Marotta JJ. Posterior cortical atrophy: visuomotor deficits in reaching and grasping. Front Hum Neurosci 2013; 7:294. [PMID: 23801956 PMCID: PMC3689034 DOI: 10.3389/fnhum.2013.00294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022] Open
Abstract
Posterior Cortical Atrophy (PCA) is a rare clinical syndrome characterized by the predominance of higher-order visual disturbances such as optic ataxia, a characteristic of Balint's syndrome. Deficits result from progressive neurodegeneration of occipito-temporal and occipito-parietal cortices. The current study sought to explore the visuomotor functioning of four individuals with PCA by testing their ability to reach out and grasp real objects under various viewing conditions. Experiment 1 had participants reach out and grasp simple, rectangular blocks under visually- and memory-guided conditions. Experiment 2 explored participants' abilities to accurately reach for objects located in their visual periphery. This investigation revealed that PCA patients demonstrate many of the same deficits that have been previously reported in other individuals with optic ataxia, such as “magnetic misreaching”—a pathological reaching bias toward the point of visual fixation when grasping peripheral targets. Unlike many other individuals with optic ataxia, however, the patients in the current study also show symptoms indicative of damage to the more perceptual stream of visual processing, including abolished grip scaling during memory-guided grasping and deficits in face and object identification. These investigations are the first to perform a quantitative analysis of the visuomotor deficits exhibited by patients with PCA. Critically, this study helps characterize common symptoms of PCA, a vital first step for generating effective diagnostic criteria and therapeutic strategies for this understudied neurodegenerative disorder.
Collapse
Affiliation(s)
- Benjamin P Meek
- Perception and Action Laboratory, Department of Psychology, University of Manitoba Winnipeg, MB, Canada
| | | | | |
Collapse
|
17
|
Dissociation of reach-related and visual signals in the human superior colliculus. Neuroimage 2013; 82:61-7. [PMID: 23727531 DOI: 10.1016/j.neuroimage.2013.05.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/06/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022] Open
Abstract
Electrophysiological and micro-stimulation studies in non-human animal species indicated that the superior colliculus (SC) plays a role in the control of upper limb movements. In our previous work we found reach-related signals in the deep superior colliculus in humans. Here we show that also signals in more dorsal locations are correlated with the execution of arm movements. We instructed healthy participants to reach for visual targets either presented in the left or in the right visual hemifield during an fMRI measurement. Visual stimulation was dissociated from movement execution using a pro- and anti-reaching task. Thereby, we successfully differentiated between signals at these locations induced by the visual input of target presentations on the one hand and by the execution of arm movements on the other hand. Extending our previous report, the results of this study are in good agreement with the observed anatomical distribution of reach-related neurons in macaques. Obviously, reach-related signals can be found across a considerable depth range also in humans.
Collapse
|
18
|
Abstract
Neurophysiological studies in nonhuman species indicated that neurons in the superior colliculus (SC) are involved in the control of upper limb movements. These findings suggested that the SC represents a crucial hub in a general sensorimotor network, including skeletomotor as much as oculomotor functions. In contrast to the SC in the various animal models, the human SC is largely unknown territory. In particular, it is unknown whether findings of reach-related activity in the nonhuman SC can be extrapolated to humans. Using fMRI we found signal increases at superficial/intermediate and deep locations at the SC during the execution of arm movements. In contrast, signals related to saccade execution were confined to the superficial and intermediate locations. Although targets for reaching were presented in the left and right hemifields under central fixation, we found a lateralization of reach-related signals with respect to the active arm. In contrast, saccade-related activity was bilateral, in agreement with the bilateral target presentation and the resulting directions of saccades. Our results suggest that the human SC not only contributes to the coordination of eye movements and spatial shifts of attentions but also to the sensorimotor control of arm movements.
Collapse
|
19
|
Borra E, Gerbella M, Rozzi S, Tonelli S, Luppino G. Projections to the Superior Colliculus From Inferior Parietal, Ventral Premotor, and Ventrolateral Prefrontal Areas Involved in Controlling Goal-Directed Hand Actions in the Macaque. Cereb Cortex 2012; 24:1054-65. [DOI: 10.1093/cercor/bhs392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Keeping the world at hand: rapid visuomotor processing for hand–object interactions. Exp Brain Res 2012; 219:421-8. [DOI: 10.1007/s00221-012-3089-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 03/25/2012] [Indexed: 11/26/2022]
|
21
|
Hagan MA, Dean HL, Pesaran B. Spike-field activity in parietal area LIP during coordinated reach and saccade movements. J Neurophysiol 2011; 107:1275-90. [PMID: 22157119 PMCID: PMC3311693 DOI: 10.1152/jn.00867.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The posterior parietal cortex is situated between visual and motor areas and supports coordinated visually guided behavior. Area LIP in the intraparietal sulcus contains representations of visual space and has been extensively studied in the context of saccades. However, area LIP has not been studied during coordinated movements, so it is not known whether saccadic representations in area LIP are influenced by coordinated behavior. Here, we studied spiking and local field potential (LFP) activity in area LIP while subjects performed coordinated reaches and saccades or saccades alone to remembered target locations to test whether activity in area LIP is influenced by the presence of a coordinated reach. We find that coordination significantly changes the activity of individual neurons in area LIP, increasing or decreasing the firing rate when a reach is made with a saccade compared with when a saccade is made alone. Analyzing spike-field coherence demonstrates that area LIP neurons whose firing rate is suppressed during the coordinated task have activity temporally correlated with nearby LFP activity, which reflects the synaptic activity of populations of neurons. Area LIP neurons whose firing rate increases during the coordinated task do not show significant spike-field coherence. Furthermore, LFP power in area LIP is suppressed and does not increase when a coordinated reach is made with a saccade. These results demonstrate that area LIP neurons display different responses to coordinated reach and saccade movements, and that different spike rate responses are associated with different patterns of correlated activity. The population of neurons whose firing rate is suppressed is coherently active with local populations of LIP neurons. Overall, these results suggest that area LIP plays a role in coordinating visually guided actions through suppression of coherent patterns of saccade-related activity.
Collapse
Affiliation(s)
- Maureen A Hagan
- Center for Neural Science, New York University, New York, NY, USA
| | | | | |
Collapse
|
22
|
Reyes-Puerta V, Philipp R, Lindner W, Hoffmann KP. Neuronal activity in the superior colliculus related to saccade initiation during coordinated gaze-reach movements. Eur J Neurosci 2011; 34:1966-82. [DOI: 10.1111/j.1460-9568.2011.07911.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Abstract
The mammalian superior colliculus (SC) and its nonmammalian homolog, the optic tectum, constitute a major node in processing sensory information, incorporating cognitive factors, and issuing motor commands. The resulting action-to orient toward or away from a stimulus-can be accomplished as an integrated movement across oculomotor, cephalomotor, and skeletomotor effectors. The SC also participates in preserving fixation during intersaccadic intervals. This review highlights the repertoire of movements attributed to SC function and analyzes the significance of results obtained from causality-based experiments (microstimulation and inactivation). The mechanisms potentially used to decode the population activity in the SC into an appropriate movement command are also discussed.
Collapse
Affiliation(s)
- Neeraj J Gandhi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
24
|
Benko W, Ries M, Wiggs EA, Brady RO, Schiffmann R, FitzGibbon EJ. The saccadic and neurological deficits in type 3 Gaucher disease. PLoS One 2011; 6:e22410. [PMID: 21799847 PMCID: PMC3140522 DOI: 10.1371/journal.pone.0022410] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/21/2011] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Our objective was to characterize the saccadic eye movements in patients with type 3 Gaucher disease (chronic neuronopathic) in relationship to neurological and neurophysiological abnormalities. For approximately 4 years, we prospectively followed a cohort of 15 patients with Gaucher type 3, ages 8-28 years, by measuring saccadic eye movements using the scleral search coil method. We found that patients with type 3 Gaucher disease had a significantly higher regression slope of duration vs amplitude and peak duration vs amplitude compared to healthy controls for both horizontal and vertical saccades. Saccadic latency was significantly increased for horizontal saccades only. Downward saccades were more affected than upward saccades. Saccade abnormalities increased over time in some patients reflecting the slowly progressive nature of the disease. Phase plane plots showed individually characteristic patterns of abnormal saccade trajectories. Oculo-manual dexterity scores on the Purdue Pegboard test were low in virtually all patients, even in those with normal cognitive function. Vertical saccade peak duration vs amplitude slope significantly correlated with IQ and with the performance on the Purdue Pegboard but not with the brainstem and somatosensory evoked potentials. We conclude that, in patients with Gaucher disease type 3, saccadic eye movements and oculo-manual dexterity are representative neurological functions for longitudinal studies and can probably be used as endpoints for therapeutic clinical trials. TRIAL REGISTRATION ClinicalTrials.gov NCT00001289.
Collapse
Affiliation(s)
- William Benko
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Markus Ries
- University Children's Hospital, Pediatric Neurology, Heidelberg, Germany
| | - Edythe A. Wiggs
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Roscoe O. Brady
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raphael Schiffmann
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, United States of America
| | - Edmond J. FitzGibbon
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
25
|
The relative timing between eye and hand in rapid sequential pointing is affected by time pressure, but not by advance knowledge. Exp Brain Res 2011; 213:99-109. [DOI: 10.1007/s00221-011-2782-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/19/2011] [Indexed: 10/18/2022]
|
26
|
Effects of hand termination and accuracy constraint on eye–hand coordination during sequential two-segment movements. Exp Brain Res 2010; 207:197-211. [DOI: 10.1007/s00221-010-2456-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
|