1
|
Striemer CL, Morrill A. Direction of visual shift and hand congruency enhance spatial realignment during visuomotor adaptation. Exp Brain Res 2023; 241:2475-2486. [PMID: 37658176 DOI: 10.1007/s00221-023-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Although prism adaptation has been studied extensively for over 100 years to better understand how the motor system adapts to sensory perturbations, very few studies have systematically studied how the combination of the hand used to adapt, and the direction of visual shift, might influence adaptation. Given that sensory inputs and motor outputs from the same side are processed (at least initially) in the same hemisphere, we wondered whether there might be differences in how people adapt when the hand used and the direction of visual shift were congruent (e.g., adapting to rightward shifting prisms with the right hand), compared to incongruent (e.g., adapting to rightward shifting prisms with the left hand). In Experiment 1 we re-analyzed a previously published dataset (Striemer, Enns, and Whitwell Striemer et al., Cortex 115:201-215, 2019a) in which healthy adults (n = 17) adapted to 17° leftward or rightward optically displacing prisms using their left or right hand (tested in separate sessions, counterbalanced). Our results revealed a "congruency effect" such that adaptation aftereffects were significantly larger for reaches performed without visual feedback (i.e., straight-ahead pointing) when the direction of prism shift and the hand used were congruent, compared to incongruent. We replicated this same congruency effect in Experiment 2 in a new group of participants (n = 25). We suggest that a better understanding of the cognitive and neural mechanisms underlying the congruency effect will allow researchers to build more precise models of visuomotor learning, and may lead to the development of more effective applications of prism adaptation for the treatment of attentional disorders following brain damage.
Collapse
Affiliation(s)
- Christopher L Striemer
- Department of Psychology, MacEwan University, 10700 - 104 Avenue, Edmonton, AB, T5J 4S2, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| | - Adam Morrill
- Department of Psychology, MacEwan University, 10700 - 104 Avenue, Edmonton, AB, T5J 4S2, Canada
| |
Collapse
|
2
|
Shimizu T, Tsutsumi R, Shimizu K, Tominaga N, Nagai M, Ugawa Y, Nishiyama K, Hanajima R. Differential effects of thyrotropin releasing hormone (TRH) on motor execution and motor adaptation process in patients with spinocerebellar degeneration. J Neurol Sci 2020; 415:116927. [PMID: 32474221 DOI: 10.1016/j.jns.2020.116927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The cerebellum is known to play a crucial role in sensori-motor adaptation, which includes the prism adaptation. TRH has been widely used as a treatment for cerebellar ataxia in Japan, however effects of TRH on cerebellar adaptation process have not been studied. Here, we studied effects of TRH treatment on the prism adaptation task. METHODS Eighteen spinocerebellar degeneration (SCD) patients participated in this study. The participants received intravenous injection of 2 mg/day protirelin tartrate once a day for 14 days. In the prism adaptation task, the participants reached to the target on the screen wearing wedge prisms. We compared the Scale for Assessment and Rating of Ataxia (SARA), baseline errors and the aftereffect (AE) of the prism adaptation task between before and after TRH therapy. RESULTS TRH therapy improved SARA significantly (p = .005). Multiple regression analysis revealed that improvement of SARA score was mainly due to improvement of "Stance" category score. TRH decreased baseline errors of the prism adaptation task (p = .021), while unaffected AEs (p = .252). CONCLUSION TRH differentially affected clinical cerebellar ataxia including baseline reaching performance in the prism adaptation task, whereas TRH did not affect the learning process of prism adaptation. Different cerebellar functional aspects may underlie the learning process of sensori-motor adaptation and simple motor execution (clinically evaluated cerebellar ataxia).
Collapse
Affiliation(s)
- Takahiro Shimizu
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan; Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Ryosuke Tsutsumi
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazutaka Shimizu
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naomi Tominaga
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan; Department of General Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Makiko Nagai
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazutoshi Nishiyama
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan; Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
3
|
Bando K, Honda T, Ishikawa K, Takahashi Y, Mizusawa H, Hanakawa T. Impaired Adaptive Motor Learning Is Correlated With Cerebellar Hemispheric Gray Matter Atrophy in Spinocerebellar Ataxia Patients: A Voxel-Based Morphometry Study. Front Neurol 2019; 10:1183. [PMID: 31803128 PMCID: PMC6871609 DOI: 10.3389/fneur.2019.01183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: To evaluate the degree to which recently proposed parameters measured via a prism adaptation task are correlated with changes in cerebellar structure, specifically gray matter volume (GMV), in patients with spinocerebellar degeneration (SCD). Methods: We performed whole-brain voxel-based morphometry (VBM) analysis on 3-dimensional T1-weighted images obtained from 23 patients with SCD [Spinocerebellar ataxia type 6 (SCA6), 31 (SCA31), 3/Machado-Joseph disease (SCA3/MJD), and sporadic cortical cerebellar atrophy (CCA)] and 21 sex- and age-matched healthy controls (HC group). We quantified a composite index representing adaptive motor learning abilities in a hand-reaching task with prism adaptation. After controlling for age, sex, and total intracranial volume, we analyzed group-wise differences in GMV and regional GMV correlations with the adaptive learning index. Results: Compared with the HC group, the SCD group showed reduced adaptive learning abilities and smaller GMV widely in the lobules IV-VIII in the bilateral cerebellar hemispheres. In the SCD group, the adaptive learning index was correlated with cerebellar hemispheric atrophy in the right lobule VI, the left Crus I. Additionally, GMV of the left supramarginal gyrus showed a correlation with the adaptive learning index in the SCD group, while the supramarginal region did not accompany reduction of GMV. Conclusions: This study indicated that a composite index derived from a prism adaptation task was correlated with GMV of the lateral cerebellum and the supramarginal gyrus in patients with SCD. This study should contribute to the development of objective biomarkers for disease severity and progression in SCD.
Collapse
Affiliation(s)
- Kyota Bando
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takeru Honda
- Motor Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Takahashi
- National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hidehiro Mizusawa
- National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Huberdeau DM, Krakauer JW, Haith AM. Practice induces a qualitative change in the memory representation for visuomotor learning. J Neurophysiol 2019; 122:1050-1059. [DOI: 10.1152/jn.00830.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adaptation of our movements to changes in the environment is known to be supported by multiple learning processes that operate in parallel. One is an implicit recalibration process driven by sensory-prediction errors; the other process counters the perturbation through more deliberate compensation. Prior experience is known to enable adaptation to occur more rapidly, a phenomenon known as “savings,” but exactly how experience alters each underlying learning process remains unclear. We measured the relative contributions of implicit recalibration and deliberate compensation to savings across 2 days of practice adapting to a visuomotor rotation. The rate of implicit recalibration showed no improvement with repeated practice. Instead, practice led to deliberate compensation being expressed even when preparation time was very limited. This qualitative change is consistent with the proposal that practice establishes a cached association linking target locations to appropriate motor output, facilitating a transition from deliberate to automatic action selection. NEW & NOTEWORTHY Recent research has shown that savings for visuomotor adaptation is attributable to retrieval of intentional, strategic compensation. This does not seem consistent with the implicit nature of memory for motor skills and calls into question the validity of visuomotor adaptation of reaching movements as a model for motor skill learning. Our findings suggest a solution: that additional practice adapting to a visuomotor perturbation leads to the caching of the initially explicit strategy for countering it.
Collapse
Affiliation(s)
- David M. Huberdeau
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W. Krakauer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adrian M. Haith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Sensorimotor maps can be dynamically calibrated using an adaptive-filter model of the cerebellum. PLoS Comput Biol 2019; 15:e1007187. [PMID: 31295248 PMCID: PMC6622474 DOI: 10.1371/journal.pcbi.1007187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/16/2019] [Indexed: 11/19/2022] Open
Abstract
Substantial experimental evidence suggests the cerebellum is involved in calibrating sensorimotor maps. Consistent with this involvement is the well-known, but little understood, massive cerebellar projection to maps in the superior colliculus. Map calibration would be a significant new role for the cerebellum given the ubiquity of map representations in the brain, but how it could perform such a task is unclear. Here we investigated a dynamic method for map calibration, based on electrophysiological recordings from the superior colliculus, that used a standard adaptive-filter cerebellar model. The method proved effective for complex distortions of both unimodal and bimodal maps, and also for predictive map-based tracking of moving targets. These results provide the first computational evidence for a novel role for the cerebellum in dynamic sensorimotor map calibration, of potential importance for coordinate alignment during ongoing motor control, and for map calibration in future biomimetic systems. This computational evidence also provides testable experimental predictions concerning the role of the connections between cerebellum and superior colliculus in previously observed dynamic coordinate transformations. The human brain contains a structure known as the cerebellum, which contains a vast number of neurons–around 80% of the total ~90 billion. We believe the cerebellum is involved in learning motor skills, and so is vitally important for accurately controlling the movements of our body, amongst other things. However, like most regions of the brain, we still do not fully understand the role of the cerebellum and evidence for new roles is appearing all the time. One such new role is in the calibration of sensorimotor maps in the brain that link our sensory perception to motor function, such as when a visual stimulus causes a redirect of our gaze. We investigated this problem by connecting a mathematical model of the cerebellar cortical microcircuit to simulated sensory maps in the superior colliculus that are used to control orienting movements. We found the error signal generated by inaccurate orienting movements could be used to accurately calibrate sensorimotor maps, and to allow predictive tracking of moving targets. This finding points to a potentially widespread role for the cerebellum in calibrating the sensorimotor maps that are ubiquitous in the brain and could prove useful in controlling the movements of multi-joint robots.
Collapse
|
6
|
Schieber MH. Stimulating Cerebellar Outflow Reveals Temporal Control of Motor Cortical Activity. Cell Rep 2019; 27:2525-2526. [PMID: 31141678 DOI: 10.1016/j.celrep.2019.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nashef et al. (2019) show that high-frequency stimulation of the superior cerebellar peduncle produces a temporary cerebellar deficit. While the deficit is present, motor cortex neurons that receive cerebellar input maintain their directional tuning but lose their noise correlation.
Collapse
Affiliation(s)
- Marc H Schieber
- Departments of Neurology, Neuroscience, and Biomedical Engineering and the Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
7
|
Striemer CL, Enns JT, Whitwell RL. Visuomotor adaptation in the absence of input from early visual cortex. Cortex 2019; 115:201-215. [PMID: 30849551 DOI: 10.1016/j.cortex.2019.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
Prism adaptation is a time-honored tool for studying how the motor system adapts to sensory perturbations. Past research on the neural substrates of prism adaptation has implicated the posterior parietal cortex (PPC) and the cerebellum, under the assumption that these structures gain their visual input from the dominant retinogeniculate pathway to V1. Here we question whether this pathway is even required for visuomotor adaptation to occur. To investigate this, we examined prism adaptation in 'MC', someone who is blind to static stimuli following bilateral lesions that encompass much of her occipital cortex and the caudal-most areas of ventrotemporal cortex. Remarkably, MC shows evidence of prism adaptation that is similar to healthy control participants. First, when pointing with either the left or the right hand, MC shows spatial realignment; the classical after-effect exhibited by most people when adapting to displacing prisms. Second, MC demonstrates strategic recalibration - a reduction in her pointing error over time - that is similar in magnitude to healthy controls. These findings suggest that the geniculostriate pathway is not necessary for visuomotor adaptation to take place. Alternatively, we suggest that an extrageniculostriate pathway which provides visual inputs to the cerebellum from area MT and the PPC via the dorsolateral pons plays a significant and appreciable role in the guidance of unconscious automatic visuomotor adaptation.
Collapse
Affiliation(s)
- Christopher L Striemer
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - James T Enns
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert L Whitwell
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Abstract
In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition.
Collapse
|
9
|
White JJ, Sillitoe RV. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nat Commun 2017; 8:14912. [PMID: 28374839 PMCID: PMC5382291 DOI: 10.1038/ncomms14912] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/14/2017] [Indexed: 01/13/2023] Open
Abstract
Theories of cerebellar function place the inferior olive to cerebellum connection at the centre of motor behaviour. One possible implication of this is that disruption of olivocerebellar signalling could play a major role in initiating motor disease. To test this, we devised a mouse genetics approach to silence glutamatergic signalling only at olivocerebellar synapses. The resulting mice had a severe neurological condition that mimicked the early-onset twisting, stiff limbs and tremor that is observed in dystonia, a debilitating movement disease. By blocking olivocerebellar excitatory neurotransmission, we eliminated Purkinje cell complex spikes and induced aberrant cerebellar nuclear activity. Pharmacologically inhibiting the erratic output of the cerebellar nuclei in the mutant mice improved movement. Furthermore, deep brain stimulation directed to the interposed cerebellar nuclei reduced dystonia-like postures in these mice. Collectively, our data uncover a neural mechanism by which olivocerebellar dysfunction promotes motor disease phenotypes and identify the cerebellar nuclei as a therapeutic target for surgical intervention. Dystonia is thought to be driven by impairments in cerebellar signalling. The authors use a mouse genetic approach to silence excitatory transmission in the inferior olive to cerebellum pathway, resulting in dystonia-like signs in the animals which can be alleviated using DBS stimulation of the pathway.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Koppen H, Boele HJ, Palm-Meinders IH, Koutstaal BJ, Horlings CG, Koekkoek BK, van der Geest J, Smit AE, van Buchem MA, Launer LJ, Terwindt GM, Bloem BR, Kruit MC, Ferrari MD, De Zeeuw CI. Cerebellar function and ischemic brain lesions in migraine patients from the general population. Cephalalgia 2016; 37:177-190. [PMID: 27059879 DOI: 10.1177/0333102416643527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective The objective of this article is to obtain detailed quantitative assessment of cerebellar function and structure in unselected migraine patients and controls from the general population. Methods A total of 282 clinically well-defined participants (migraine with aura n = 111; migraine without aura n = 89; non-migraine controls n = 82; age range 43-72; 72% female) from a population-based study were subjected to a range of sensitive and validated cerebellar tests that cover functions of all main parts of the cerebellar cortex, including cerebrocerebellum, spinocerebellum, and vestibulocerebellum. In addition, all participants underwent magnetic resonance imaging (MRI) of the brain to screen for cerebellar lesions. As a positive control, the same cerebellar tests were conducted in 13 patients with familial hemiplegic migraine type 1 (FHM1; age range 19-64; 69% female) all carrying a CACNA1A mutation known to affect cerebellar function. Results MRI revealed cerebellar ischemic lesions in 17/196 (8.5%) migraine patients and 3/79 (4%) controls, which were always located in the posterior lobe except for one control. With regard to the cerebellar tests, there were no differences between migraine patients with aura, migraine patients without aura, and controls for the: (i) Purdue-pegboard test for fine motor skills (assembly scores p = 0.1); (ii) block-design test for visuospatial ability (mean scaled scores p = 0.2); (iii) prism-adaptation task for limb learning (shift scores p = 0.8); (iv) eyeblink-conditioning task for learning-dependent timing (peak-time p = 0.1); and (v) body-sway test for balance capabilities (pitch velocity score under two-legs stance condition p = 0.5). Among migraine patients, those with cerebellar ischaemic lesions performed worse than those without lesions on the assembly scores of the pegboard task ( p < 0.005), but not on the primary outcome measures of the other tasks. Compared with controls and non-hemiplegic migraine patients, FHM1 patients showed substantially more deficits on all primary outcomes, including Purdue-peg assembly ( p < 0.05), block-design scaled score ( p < 0.001), shift in prism-adaptation ( p < 0.001), peak-time of conditioned eyeblink responses ( p < 0.05) and pitch-velocity score during stance-sway test ( p < 0.001). Conclusions Unselected migraine patients from the general population show normal cerebellar functions despite having increased prevalence of ischaemic lesions in the cerebellar posterior lobe. Except for an impaired pegboard test revealing deficits in fine motor skills, these lesions appear to have little functional impact. In contrast, all cerebellar functions were significantly impaired in participants with FHM1.
Collapse
Affiliation(s)
- Hille Koppen
- 1 Department of Neurology, Haga Hospital, The Netherlands.,2 Department of Neurology, Leiden University Medical Center, The Netherlands
| | - Henk-Jan Boele
- 3 Department of Neuroscience, Erasmus Medical Center, The Netherlands
| | | | | | - Corinne Gc Horlings
- 5 Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, The Netherlands
| | - Bas K Koekkoek
- 3 Department of Neuroscience, Erasmus Medical Center, The Netherlands
| | - Jos van der Geest
- 3 Department of Neuroscience, Erasmus Medical Center, The Netherlands
| | - Albertine E Smit
- 3 Department of Neuroscience, Erasmus Medical Center, The Netherlands
| | - Mark A van Buchem
- 4 Department of Radiology, Leiden University Medical Center, The Netherlands
| | - Lenore J Launer
- 6 Laboratory of Epidemiology, Demography and Biometry, National Institutes of Health, USA
| | - Gisela M Terwindt
- 2 Department of Neurology, Leiden University Medical Center, The Netherlands
| | - Bas R Bloem
- 5 Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, The Netherlands
| | - Mark C Kruit
- 4 Department of Radiology, Leiden University Medical Center, The Netherlands
| | - Michel D Ferrari
- 2 Department of Neurology, Leiden University Medical Center, The Netherlands
| | - Chris I De Zeeuw
- 3 Department of Neuroscience, Erasmus Medical Center, The Netherlands.,7 Netherlands Institute for Neuroscience, Royal Academy of Arts & Sciences (KNAW), The Netherlands
| |
Collapse
|
11
|
McDougle SD, Ivry RB, Taylor JA. Taking Aim at the Cognitive Side of Learning in Sensorimotor Adaptation Tasks. Trends Cogn Sci 2016; 20:535-544. [PMID: 27261056 PMCID: PMC4912867 DOI: 10.1016/j.tics.2016.05.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022]
Abstract
Sensorimotor adaptation tasks have been used to characterize processes responsible for calibrating the mapping between desired outcomes and motor commands. Research has focused on how this form of error-based learning takes place in an implicit and automatic manner. However, recent work has revealed the operation of multiple learning processes, even in this simple form of learning. This review focuses on the contribution of cognitive strategies and heuristics to sensorimotor learning, and how these processes enable humans to rapidly explore and evaluate novel solutions to enable flexible, goal-oriented behavior. This new work points to limitations in current computational models, and how these must be updated to describe the conjoint impact of multiple processes in sensorimotor learning.
Collapse
Affiliation(s)
- Samuel D McDougle
- Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| | - Jordan A Taylor
- Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Panico F, Sagliano L, Grossi D, Trojano L. Cerebellar cathodal tDCS interferes with recalibration and spatial realignment during prism adaptation procedure in healthy subjects. Brain Cogn 2016; 105:1-8. [DOI: 10.1016/j.bandc.2016.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/04/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
|
13
|
Hanajima R, Shadmehr R, Ohminami S, Tsutsumi R, Shirota Y, Shimizu T, Tanaka N, Terao Y, Tsuji S, Ugawa Y, Uchimura M, Inoue M, Kitazawa S. Modulation of error-sensitivity during a prism adaptation task in people with cerebellar degeneration. J Neurophysiol 2015; 114:2460-71. [PMID: 26311179 DOI: 10.1152/jn.00145.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/14/2015] [Indexed: 12/18/2022] Open
Abstract
Cerebellar damage can profoundly impair human motor adaptation. For example, if reaching movements are perturbed abruptly, cerebellar damage impairs the ability to learn from the perturbation-induced errors. Interestingly, if the perturbation is imposed gradually over many trials, people with cerebellar damage may exhibit improved adaptation. However, this result is controversial, since the differential effects of gradual vs. abrupt protocols have not been observed in all studies. To examine this question, we recruited patients with pure cerebellar ataxia due to cerebellar cortical atrophy (n = 13) and asked them to reach to a target while viewing the scene through wedge prisms. The prisms were computer controlled, making it possible to impose the full perturbation abruptly in one trial, or build up the perturbation gradually over many trials. To control visual feedback, we employed shutter glasses that removed visual feedback during the reach, allowing us to measure trial-by-trial learning from error (termed error-sensitivity), and trial-by-trial decay of motor memory (termed forgetting). We found that the patients benefited significantly from the gradual protocol, improving their performance with respect to the abrupt protocol by exhibiting smaller errors during the exposure block, and producing larger aftereffects during the postexposure block. Trial-by-trial analysis suggested that this improvement was due to increased error-sensitivity in the gradual protocol. Therefore, cerebellar patients exhibited an improved ability to learn from error if they experienced those errors gradually. This improvement coincided with increased error-sensitivity and was present in both groups of subjects, suggesting that control of error-sensitivity may be spared despite cerebellar damage.
Collapse
Affiliation(s)
- Ritsuko Hanajima
- Department of Neurology, University of Tokyo Hospital, Tokyo, Japan; Department of Neurology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan;
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Shinya Ohminami
- Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Ryosuke Tsutsumi
- Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; Department of Neurology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yuichiro Shirota
- Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Takahiro Shimizu
- Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Nobuyuki Tanaka
- Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yasuo Terao
- Department of Neurology, University of Tokyo Hospital, Tokyo, Japan; Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, University of Tokyo Hospital, Tokyo, Japan; Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Motoaki Uchimura
- Dynamic Brain Network Laboratory, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, Japan; Department of Brain Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masato Inoue
- Department of Neurophysiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, Japan; Department of Brain Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Neurophysiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
The functional neuroimaging evidence of cerebellar involvement in the simple cognitive task. Brain Imaging Behav 2015; 8:480-6. [PMID: 24473731 DOI: 10.1007/s11682-014-9290-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cerebellar involvement in cognitive functions has been revealed in numerous anatomical, clinical and neuroimaging studies and several hypotheses about potential the role of the cerebellum in higher level brain function have been established. The aim of this study was to show involvement of the cerebellum in simple cognitive tasks. For this matter, we contrasted two tasks from the same semantic domain with specific cognitive content and level of practice: counting forward and counting backward. Twelve volunteers participated in this fMRI study and they were asked to perform both tasks within the same number range (1 to 30 and vice versa). Results showed greater activation in the right cerebellum for the task of counting forward than for counting backward, while for counting backward greater activation was found in prefrontal cortex, supplementary motor area, and anterior cingulate of both hemispheres. Our results correlate with already established hypotheses about cerebellar role in precise and smooth control, not only in well-trained motor but in well trained cognitive tasks as well.
Collapse
|
15
|
Abstract
A number of studies have focused on the role of specific brain regions, such as the dorsal anterior cingulate cortex during trials on which participants make errors, whereas others have implicated a host of more widely distributed regions in the human brain. Previous work has proposed that there are multiple cognitive control networks, raising the question of whether error-related activity can be found in each of these networks. Thus, to examine error-related activity broadly, we conducted a meta-analysis consisting of 12 tasks that included both error and correct trials. These tasks varied by stimulus input (visual, auditory), response output (button press, speech), stimulus category (words, pictures), and task type (e.g., recognition memory, mental rotation). We identified 41 brain regions that showed a differential fMRI BOLD response to error and correct trials across a majority of tasks. These regions displayed three unique response profiles: (1) fast, (2) prolonged, and (3) a delayed response to errors, as well as a more canonical response to correct trials. These regions were found mostly in several control networks, each network predominantly displaying one response profile. The one exception to this "one network, one response profile" observation is the frontoparietal network, which showed prolonged response profiles (all in the right hemisphere), and fast profiles (all but one in the left hemisphere). We suggest that, in the place of a single localized error mechanism, these findings point to a large-scale set of error-related regions across multiple systems that likely subserve different functions.
Collapse
|
16
|
Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movement. PLoS One 2015; 10:e0119376. [PMID: 25785588 PMCID: PMC4364988 DOI: 10.1371/journal.pone.0119376] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/30/2015] [Indexed: 12/01/2022] Open
Abstract
The cerebellum plays important roles in motor coordination and learning. However, motor learning has not been quantitatively evaluated clinically. It thus remains unclear how motor learning is influenced by cerebellar diseases or aging, and is related with incoordination. Here, we present a new application for testing human cerebellum-dependent motor learning using prism adaptation. In our paradigm, the participant wearing prism-equipped goggles touches their index finger to the target presented on a touchscreen in every trial. The whole test consisted of three consecutive sessions: (1) 50 trials with normal vision (BASELINE), (2) 100 trials wearing the prism that shifts the visual field 25° rightward (PRISM), and (3) 50 trials without the prism (REMOVAL). In healthy subjects, the prism-induced finger-touch error, i.e., the distance between touch and target positions, was decreased gradually by motor learning through repetition of trials. We found that such motor learning could be quantified using the “adaptability index (AI)”, which was calculated by multiplying each probability of [acquisition in the last 10 trials of PRISM], [retention in the initial five trials of REMOVAL], and [extinction in the last 10 trials of REMOVAL]. The AI of cerebellar patients less than 70 years old (mean, 0.227; n = 62) was lower than that of age-matched healthy subjects (0.867, n = 21; p < 0.0001). While AI did not correlate with the magnitude of dysmetria in ataxic patients, it declined in parallel with disease progression, suggesting a close correlation between the impaired cerebellar motor leaning and the dysmetria. Furthermore, AI decreased with aging in the healthy subjects over 70 years old compared with that in the healthy subjects less than 70 years old. We suggest that our paradigm of prism adaptation may allow us to quantitatively assess cerebellar motor learning in both normal and diseased conditions.
Collapse
|
17
|
Abstract
The mechanisms underlying cerebellar learning are reviewed with an emphasis on old arguments and new perspectives on eyeblink conditioning. Eyeblink conditioning has been used for decades a model system for elucidating cerebellar learning mechanisms. The standard model of the mechanisms underlying eyeblink conditioning is that there two synaptic plasticity processes within the cerebellum that are necessary for acquisition of the conditioned response: (1) long-term depression (LTD) at parallel fiber-Purkinje cell synapses and (2) long-term potentiation (LTP) at mossy fiber-interpositus nucleus synapses. Additional Purkinje cell plasticity mechanisms may also contribute to eyeblink conditioning including LTP, excitability, and entrainment of deep nucleus activity. Recent analyses of the sensory input pathways necessary for eyeblink conditioning indicate that the cerebellum regulates its inputs to facilitate learning and maintain plasticity. Cerebellar learning during eyeblink conditioning is therefore a dynamic interactive process which maximizes responding to significant stimuli and suppresses responding to irrelevant or redundant stimuli. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
|
18
|
Abstract
Opinion is divided on what the exact function of the cerebellum is. Experiments are summarized that support the following views: (1) the cerebellum is a combiner of multiple movement factors; (2) it contains anatomically fixed permanent focal representation of individual body parts (muscles and segments) and movement modes (e.g., vestibular driven vs. cognitive driven); (3) it contains flexible changing representations/memory of physical properties of the body parts including muscle strength, segment inertia, joint viscosity, and segmental interaction torques (dynamics); (4) it contains mechanisms for learning and storage of the properties in item no. 3 through trial-and-error practice; (5) it provides for linkage of body parts, motor modes, and motordynamics via the parallel fiber system; (6) it combines and integrates the many factors so as to initiate coordinated movements of the many body parts; (7) it is thus enabled to play the unique role of initiating coordinated movements; and (8) this unique causative role is evidenced by the fact that: (a) electrical stimulation of the cerebellum can initiate compound coordinated movements; (b) in naturally initiated compound movements, cerebellar discharge precedes that in downstream target structures such as motor cerebral cortex; and (c) cerebellar ablation abolishes the natural production of compound movements in the awake alert individuals.
Collapse
Affiliation(s)
- W T Thach
- Departments of Neurobiology,, Washington University School Of Medicine, St Louis, MO, 63110, USA,
| |
Collapse
|
19
|
Transfer of memory trace of cerebellum-dependent motor learning in human prism adaptation: A model study. Neural Netw 2013; 47:72-80. [DOI: 10.1016/j.neunet.2013.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/19/2022]
|
20
|
Lewis RF, Nicoucar K, Gong W, Haburcakova C, Merfeld DM. Adaptation of vestibular tone studied with electrical stimulation of semicircular canal afferents. J Assoc Res Otolaryngol 2013; 14:331-40. [PMID: 23423561 DOI: 10.1007/s10162-013-0376-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/31/2013] [Indexed: 11/26/2022] Open
Abstract
Damage to one vestibular labyrinth or nerve causes a central tone imbalance, reflected by prominent spontaneous nystagmus. Central adaptive mechanisms eliminate the nystagmus over several days, and the mechanisms underlying this process have received extensive study. The characteristics of vestibular compensation when the tone imbalance is presented gradually or repeatedly have never been studied. We used high-frequency electrical stimulation of semicircular canal afferents to generate a vestibular tone imbalance and recorded the nystagmus produced when the stimulation was started abruptly or gradually and when it was repeatedly cycled on and off. In the acute-onset protocol, brisk nystagmus occurred when stimulation started, gradually resolved within 1 day, and reversed direction when the stimulation was stopped after 1 week. Repeated stimulation cycles resulted in progressively smaller nystagmus responses. In the slow-onset protocol, minimal nystagmus occurred while the stimulation ramped-up to its maximum rate over 12 h, but a reversal still occurred when the stimulation was stopped after 1 week, and repeated stimulation cycles did not affect this pattern. The absence of nystagmus during the 12 h ramp of stimulation demonstrates that central vestibular tone can rebalance relatively quickly, and the reduction in the stimulation-off nystagmus with repeated cycles of the acute-onset but not the slow-onset stimulation suggests that dual-state adaptation may have occurred with the former paradigm but not the latter.
Collapse
Affiliation(s)
- Richard F Lewis
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
21
|
Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem 2011; 18:666-77. [PMID: 21969489 DOI: 10.1101/lm.2023011] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning.
Collapse
Affiliation(s)
- John H Freeman
- Department of Psychology and Neuroscience Program, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|