1
|
Vélez-Fort M, Cossell L, Porta L, Clopath C, Margrie TW. Motor and vestibular signals in the visual cortex permit the separation of self versus externally generated visual motion. Cell 2025:S0092-8674(25)00101-1. [PMID: 39978344 DOI: 10.1016/j.cell.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Knowing whether we are moving or something in the world is moving around us is possibly the most critical sensory discrimination we need to perform. How the brain and, in particular, the visual system solves this motion-source separation problem is not known. Here, we find that motor, vestibular, and visual motion signals are used by the mouse primary visual cortex (VISp) to differentially represent the same visual flow information according to whether the head is stationary or experiencing passive versus active translation. During locomotion, we find that running suppresses running-congruent translation input and that translation signals dominate VISp activity when running and translation speed become incongruent. This cross-modal interaction between the motor and vestibular systems was found throughout the cortex, indicating that running and translation signals provide a brain-wide egocentric reference frame for computing the internally generated and actual speed of self when moving through and sensing the external world.
Collapse
Affiliation(s)
- Mateo Vélez-Fort
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Lee Cossell
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Laura Porta
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Claudia Clopath
- Sainsbury Wellcome Centre, University College London, London, UK; Bioengineering Department, Imperial College London, London, UK
| | - Troy W Margrie
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
2
|
Zobeiri OA, Cullen KE. Cerebellar Purkinje cells in male macaques combine sensory and motor information to predict the sensory consequences of active self-motion. Nat Commun 2024; 15:4003. [PMID: 38734715 PMCID: PMC11088633 DOI: 10.1038/s41467-024-48376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Accurate perception and behavior rely on distinguishing sensory signals arising from unexpected events from those originating from our own voluntary actions. In the vestibular system, sensory input that is the consequence of active self-motion is canceled early at the first central stage of processing to ensure postural and perceptual stability. However, the source of the required cancellation signal was unknown. Here, we show that the cerebellum combines sensory and motor-related information to predict the sensory consequences of active self-motion. Recordings during attempted but unrealized head movements in two male rhesus monkeys, revealed that the motor-related signals encoded by anterior vermis Purkinje cells explain their altered sensitivity to active versus passive self-motion. Further, a model combining responses from ~40 Purkinje cells accounted for the cancellation observed in early vestibular pathways. These findings establish how cerebellar Purkinje cells predict sensory outcomes of self-movements, resolving a long-standing issue of sensory signal suppression during self-motion.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Cano-Ferrer X, Tran-Van-Minh A, Rancz E. RPM: An open-source Rotation Platform for open- and closed-loop vestibular stimulation in head-fixed Mice. J Neurosci Methods 2024; 401:110002. [PMID: 37925080 DOI: 10.1016/j.jneumeth.2023.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Head fixation allows the recording and presentation of controlled stimuli and is used to study neural processes underlying spatial navigation. However, it disrupts the head direction system because of the lack of vestibular stimulation. To overcome this limitation, we developed a novel rotation platform which can be driven by the experimenter (open-loop) or by animal movement (closed-loop). The platform is modular, affordable, easy to build and open source. Additional modules presented here include cameras for monitoring eye movements, visual virtual reality, and a micro-manipulator for positioning various probes for recording or optical interference. We demonstrate the utility of the platform by recording eye movements and showing the robust activation of head-direction cells. This novel experimental apparatus combines the advantages of head fixation and intact vestibular activity in the horizontal plane. The open-loop mode can be used to study e.g., vestibular sensory representation and processing, while the closed-loop mode allows animals to navigate in rotational space, providing a better substrate for 2-D navigation in virtual environments. The full build documentation is maintained at https://ranczlab.github.io/RPM/.
Collapse
Affiliation(s)
- Xavier Cano-Ferrer
- The Francis Crick Institute, Cortical Circuits Laboratory, London NW1 1AT, UK; The Francis Crick Institute, Making Science and Technology Platform, London NW1 1AT, UK
| | | | - Ede Rancz
- The Francis Crick Institute, Cortical Circuits Laboratory, London NW1 1AT, UK; INMED, INSERM, Aix-Marseille Université, France.
| |
Collapse
|
4
|
Graham JA, Dumont JR, Winter SS, Brown JE, LaChance PA, Amon CC, Farnes KB, Morris AJ, Streltzov NA, Taube JS. Angular Head Velocity Cells within Brainstem Nuclei Projecting to the Head Direction Circuit. J Neurosci 2023; 43:8403-8424. [PMID: 37871964 PMCID: PMC10711713 DOI: 10.1523/jneurosci.0581-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
The sense of orientation of an animal is derived from the head direction (HD) system found in several limbic structures and depends on an intact vestibular labyrinth. However, how the vestibular system influences the generation and updating of the HD signal remains poorly understood. Anatomical and lesion studies point toward three key brainstem nuclei as key components for generating the HD signal-nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nuclei. Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To determine the types of information these brain areas convey to the HD network, we recorded neurons from these regions while female rats actively foraged in a cylindrical enclosure or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with the angular head velocity (AHV) of the rat. Two fundamental types of AHV cells were observed; (1) symmetrical AHV cells increased or decreased their firing with increases in AHV regardless of the direction of rotation, and (2) asymmetrical AHV cells responded differentially to clockwise and counterclockwise head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV, whereas firing was attenuated in other cells. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed from the vestibular nuclei that are responsible for generating the HD signal.SIGNIFICANCE STATEMENT Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of AHV cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated, some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the head of the rat in the azimuthal plane.
Collapse
Affiliation(s)
- Jalina A Graham
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Julie R Dumont
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Shawn S Winter
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Joel E Brown
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Patrick A LaChance
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Carly C Amon
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Kara B Farnes
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Ashlyn J Morris
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Nicholas A Streltzov
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Jeffrey S Taube
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| |
Collapse
|
5
|
Parker PRL, Martins DM, Leonard ESP, Casey NM, Sharp SL, Abe ETT, Smear MC, Yates JL, Mitchell JF, Niell CM. A dynamic sequence of visual processing initiated by gaze shifts. Nat Neurosci 2023; 26:2192-2202. [PMID: 37996524 PMCID: PMC11270614 DOI: 10.1038/s41593-023-01481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.
Collapse
Affiliation(s)
- Philip R L Parker
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, New Brunswick, NJ, USA
| | - Dylan M Martins
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Emmalyn S P Leonard
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Nathan M Casey
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Shelby L Sharp
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Elliott T T Abe
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Matthew C Smear
- Institute of Neuroscience and Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Jacob L Yates
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences and Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
| | - Cristopher M Niell
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
6
|
Keshavarzi S, Velez-Fort M, Margrie TW. Cortical Integration of Vestibular and Visual Cues for Navigation, Visual Processing, and Perception. Annu Rev Neurosci 2023; 46:301-320. [PMID: 37428601 PMCID: PMC7616138 DOI: 10.1146/annurev-neuro-120722-100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Despite increasing evidence of its involvement in several key functions of the cerebral cortex, the vestibular sense rarely enters our consciousness. Indeed, the extent to which these internal signals are incorporated within cortical sensory representation and how they might be relied upon for sensory-driven decision-making, during, for example, spatial navigation, is yet to be understood. Recent novel experimental approaches in rodents have probed both the physiological and behavioral significance of vestibular signals and indicate that their widespread integration with vision improves both the cortical representation and perceptual accuracy of self-motion and orientation. Here, we summarize these recent findings with a focus on cortical circuits involved in visual perception and spatial navigation and highlight the major remaining knowledge gaps. We suggest that vestibulo-visual integration reflects a process of constant updating regarding the status of self-motion, and access to such information by the cortex is used for sensory perception and predictions that may be implemented for rapid, navigation-related decision-making.
Collapse
Affiliation(s)
- Sepiedeh Keshavarzi
- The Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom;
| | - Mateo Velez-Fort
- The Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom;
| | - Troy W Margrie
- The Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom;
| |
Collapse
|
7
|
Mertens PEC, Marchesi P, Ruikes TR, Oude Lohuis M, Krijger Q, Pennartz CMA, Lansink CS. Coherent mapping of position and head direction across auditory and visual cortex. Cereb Cortex 2023; 33:7369-7385. [PMID: 36967108 PMCID: PMC10267650 DOI: 10.1093/cercor/bhad045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 09/21/2024] Open
Abstract
Neurons in primary visual cortex (V1) may not only signal current visual input but also relevant contextual information such as reward expectancy and the subject's spatial position. Such contextual representations need not be restricted to V1 but could participate in a coherent mapping throughout sensory cortices. Here, we show that spiking activity coherently represents a location-specific mapping across auditory cortex (AC) and lateral, secondary visual cortex (V2L) of freely moving rats engaged in a sensory detection task on a figure-8 maze. Single-unit activity of both areas showed extensive similarities in terms of spatial distribution, reliability, and position coding. Importantly, reconstructions of subject position based on spiking activity displayed decoding errors that were correlated between areas. Additionally, we found that head direction, but not locomotor speed or head angular velocity, was an important determinant of activity in AC and V2L. By contrast, variables related to the sensory task cues or to trial correctness and reward were not markedly encoded in AC and V2L. We conclude that sensory cortices participate in coherent, multimodal representations of the subject's sensory-specific location. These may provide a common reference frame for distributed cortical sensory and motor processes and may support crossmodal predictive processing.
Collapse
Affiliation(s)
- Paul E C Mertens
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Pietro Marchesi
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Thijs R Ruikes
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Matthijs Oude Lohuis
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Quincy Krijger
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Cyriel M A Pennartz
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Carien S Lansink
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
8
|
Graham JA, Dumont JR, Winter SS, Brown JE, LaChance PA, Amon CC, Farnes KB, Morris AJ, Streltzov NA, Taube JS. Angular head velocity cells within brainstem nuclei projecting to the head direction circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534808. [PMID: 37034640 PMCID: PMC10081164 DOI: 10.1101/2023.03.29.534808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An animal's perceived sense of orientation depends upon the head direction (HD) system found in several limbic structures and depends upon an intact peripheral vestibular labyrinth. However, how the vestibular system influences the generation, maintenance, and updating of the HD signal remains poorly understood. Anatomical and lesion studies point towards three key brainstem nuclei as being potential critical components in generating the HD signal: nucleus prepositus hypoglossi (NPH), supragenual nucleus (SGN), and dorsal paragigantocellularis reticular nuclei (PGRNd). Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To test this hypothesis, extracellular recordings were made in these areas while rats either freely foraged in a cylindrical environment or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with changes in the rat's angular head velocity (AHV). Two fundamental types of AHV cells were observed: 1) symmetrical AHV cells increased or decreased their neural firing with increases in AHV regardless of the direction of rotation; 2) asymmetrical AHV cells responded differentially to clockwise (CW) and counter-clockwise (CCW) head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV whereas others had attenuated firing. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed in the ascending vestibular pathways that are responsible for generating the HD signal. Significance Statement Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of angular head velocity (AHV) cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the rat's head in the azimuthal plane.
Collapse
|
9
|
Barri A, Wiechert MT, Jazayeri M, DiGregorio DA. Synaptic basis of a sub-second representation of time in a neural circuit model. Nat Commun 2022; 13:7902. [PMID: 36550115 PMCID: PMC9780315 DOI: 10.1038/s41467-022-35395-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Temporal sequences of neural activity are essential for driving well-timed behaviors, but the underlying cellular and circuit mechanisms remain elusive. We leveraged the well-defined architecture of the cerebellum, a brain region known to support temporally precise actions, to explore theoretically whether the experimentally observed diversity of short-term synaptic plasticity (STP) at the input layer could generate neural dynamics sufficient for sub-second temporal learning. A cerebellar circuit model equipped with dynamic synapses produced a diverse set of transient granule cell firing patterns that provided a temporal basis set for learning precisely timed pauses in Purkinje cell activity during simulated delay eyelid conditioning and Bayesian interval estimation. The learning performance across time intervals was influenced by the temporal bandwidth of the temporal basis, which was determined by the input layer synaptic properties. The ubiquity of STP throughout the brain positions it as a general, tunable cellular mechanism for sculpting neural dynamics and fine-tuning behavior.
Collapse
Affiliation(s)
- A. Barri
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France
| | - M. T. Wiechert
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France
| | - M. Jazayeri
- grid.116068.80000 0001 2341 2786McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
| | - D. A. DiGregorio
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France
| |
Collapse
|
10
|
Straka H, Lambert FM, Simmers J. Role of locomotor efference copy in vertebrate gaze stabilization. Front Neural Circuits 2022; 16:1040070. [PMID: 36569798 PMCID: PMC9780284 DOI: 10.3389/fncir.2022.1040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Vertebrate locomotion presents a major challenge for maintaining visual acuity due to head movements resulting from the intimate biomechanical coupling with the propulsive musculoskeletal system. Retinal image stabilization has been traditionally ascribed to the transformation of motion-related sensory feedback into counteracting ocular motor commands. However, extensive exploration of spontaneously active semi-intact and isolated brain/spinal cord preparations of the amphibian Xenopus laevis, have revealed that efference copies (ECs) of the spinal motor program that generates axial- or limb-based propulsion directly drive compensatory eye movements. During fictive locomotion in larvae, ascending ECs from rostral spinal central pattern generating (CPG) circuitry are relayed through a defined ascending pathway to the mid- and hindbrain ocular motor nuclei to produce conjugate eye rotations during tail-based undulatory swimming in the intact animal. In post-metamorphic adult frogs, this spinal rhythmic command switches to a bilaterally-synchronous burst pattern that is appropriate for generating convergent eye movements required for maintaining image stability during limb kick-based rectilinear forward propulsion. The transition between these two fundamentally different coupling patterns is underpinned by the emergence of altered trajectories in spino-ocular motor coupling pathways that occur gradually during metamorphosis, providing a goal-specific, morpho-functional plasticity that ensures retinal image stability irrespective of locomotor mode. Although the functional impact of predictive ECs produced by the locomotory CPG matches the spatio-temporal specificity of reactive sensory-motor responses, rather than contributing additively to image stabilization, horizontal vestibulo-ocular reflexes (VORs) are selectively suppressed during intense locomotor CPG activity. This is achieved at least in part by an EC-mediated attenuation of mechano-electrical encoding at the vestibular sensory periphery. Thus, locomotor ECs and their potential suppressive impact on vestibular sensory-motor processing, both of which have now been reported in other vertebrates including humans, appear to play an important role in the maintenance of stable vision during active body displacements.
Collapse
Affiliation(s)
- Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Hans Straka,
| | - François M. Lambert
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
11
|
Zobeiri OA, Cullen KE. Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum. eLife 2022; 11:75018. [PMID: 35467528 PMCID: PMC9075952 DOI: 10.7554/elife.75018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to accurately control our posture and perceive our spatial orientation during self-motion requires knowledge of the motion of both the head and body. However, while the vestibular sensors and nuclei directly encode head motion, no sensors directly encode body motion. Instead, the integration of vestibular and neck proprioceptive inputs is necessary to transform vestibular information into the body-centric reference frame required for postural control. The anterior vermis of the cerebellum is thought to play a key role in this transformation, yet how its Purkinje cells transform multiple streams of sensory information into an estimate of body motion remains unknown. Here, we recorded the activity of individual anterior vermis Purkinje cells in alert monkeys during passively applied whole-body, body-under-head, and head-on-body rotations. Most Purkinje cells dynamically encoded an intermediate representation of self-motion between head and body motion. Notably, Purkinje cells responded to both vestibular and neck proprioceptive stimulation with considerable heterogeneity in their response dynamics. Furthermore, their vestibular responses were tuned to head-on-body position. In contrast, targeted neurons in the deep cerebellar nuclei are known to unambiguously encode either head or body motion across conditions. Using a simple population model, we established that combining responses of~40-50 Purkinje cells could explain the responses of these deep cerebellar nuclei neurons across all self-motion conditions. We propose that the observed heterogeneity in Purkinje cell response dynamics underlies the cerebellum’s capacity to compute the dynamic representation of body motion required to ensure accurate postural control and perceptual stability in our daily lives.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
12
|
Hennestad E, Witoelar A, Chambers AR, Vervaeke K. Mapping vestibular and visual contributions to angular head velocity tuning in the cortex. Cell Rep 2021; 37:110134. [PMID: 34936869 PMCID: PMC8721284 DOI: 10.1016/j.celrep.2021.110134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Neurons that signal the angular velocity of head movements (AHV cells) are important for processing visual and spatial information. However, it has been challenging to isolate the sensory modality that drives them and to map their cortical distribution. To address this, we develop a method that enables rotating awake, head-fixed mice under a two-photon microscope in a visual environment. Starting in layer 2/3 of the retrosplenial cortex, a key area for vision and navigation, we find that 10% of neurons report angular head velocity (AHV). Their tuning properties depend on vestibular input with a smaller contribution of vision at lower speeds. Mapping the spatial extent, we find AHV cells in all cortical areas that we explored, including motor, somatosensory, visual, and posterior parietal cortex. Notably, the vestibular and visual contributions to AHV are area dependent. Thus, many cortical circuits have access to AHV, enabling a diverse integration with sensorimotor and cognitive information.
Collapse
Affiliation(s)
- Eivind Hennestad
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Aree Witoelar
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Anna R Chambers
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway.
| |
Collapse
|
13
|
Keshavarzi S, Bracey EF, Faville RA, Campagner D, Tyson AL, Lenzi SC, Branco T, Margrie TW. Multisensory coding of angular head velocity in the retrosplenial cortex. Neuron 2021; 110:532-543.e9. [PMID: 34788632 PMCID: PMC8823706 DOI: 10.1016/j.neuron.2021.10.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023]
Abstract
To successfully navigate the environment, animals depend on their ability to continuously track their heading direction and speed. Neurons that encode angular head velocity (AHV) are fundamental to this process, yet the contribution of various motion signals to AHV coding in the cortex remains elusive. By performing chronic single-unit recordings in the retrosplenial cortex (RSP) of the mouse and tracking the activity of individual AHV cells between freely moving and head-restrained conditions, we find that vestibular inputs dominate AHV signaling. Moreover, the addition of visual inputs onto these neurons increases the gain and signal-to-noise ratio of their tuning during active exploration. Psychophysical experiments and neural decoding further reveal that vestibular-visual integration increases the perceptual accuracy of angular self-motion and the fidelity of its representation by RSP ensembles. We conclude that while cortical AHV coding requires vestibular input, where possible, it also uses vision to optimize heading estimation during navigation. Angular head velocity (AHV) coding is widespread in the retrosplenial cortex (RSP) AHV cells maintain their tuning during passive motion and require vestibular input The perception of angular self-motion is improved when visual cues are present AHV coding is similarly improved when both vestibular and visual stimuli are used
Collapse
Affiliation(s)
- Sepiedeh Keshavarzi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom.
| | - Edward F Bracey
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Richard A Faville
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Dario Campagner
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom; Gatsby Computational Neuroscience Unit, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Adam L Tyson
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Stephen C Lenzi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Troy W Margrie
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom.
| |
Collapse
|
14
|
Abstract
As we actively explore the environment, our motion relative to the world stimulates numerous sensory systems. Notably, proprioceptors provide feedback about body and limb position, while the vestibular system detects and encodes head motion. When the vestibular system is functioning normally, we are unaware of a distinct sensation because vestibular information is integrated with proprioceptive and other sensory inputs to generate our sense of motion. However, patients with vestibular sensory loss experience impairments that provide important insights into the function of this essential sensory system. For these patients, everyday activities such as walking become difficult because even small head movements can produce postural and perceptual instability. This review describes recent research demonstrating how the proprioceptive and vestibular systems effectively work together to provide us with our “6th sense” during everyday activities, and in particular considers the neural computations underlying the brain’s predictive sensing of head movement during voluntary self-motion.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montréal, Canada
| |
Collapse
|
15
|
Olechowski-Bessaguet A, Grandemange R, Cardoit L, Courty E, Lambert FM, Le Ray D. Functional organization of vestibulospinal inputs on thoracic motoneurons responsible for trunk postural control in Xenopus. J Physiol 2019; 598:817-838. [PMID: 31834949 DOI: 10.1113/jp278599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Vestibulospinal reflexes participate in postural control. How this is achieved has not been investigated fully. We combined electrophysiological, neuroanatomical and imaging techniques to decipher the vestibulospinal network controlling the activation of back and limb muscles responsible for postural adjustments. We describe two distinct pathways activating either thoracic postural motoneurons alone or thoracic and lumbar motoneurons together, with the latter co-ordinating specifically hindlimb extensors and postural back muscles. ABSTRACT In vertebrates, trunk postural stabilization is known to rely mainly on direct vestibulospinal inputs on spinal axial motoneurons. However, a substantial role of central spinal commands ascending from lumbar segments is not excluded during active locomotion. In the adult Xenopus, a lumbar drive dramatically overwhelms the descending inputs onto thoracic postural motoneurons during swimming. Given that vestibulospinal fibres also project onto the lumbar segments that shelter the locomotor generators, we investigated whether such a lumbo-thoracic pathway may relay vestibular information and consequently, also be involved in the control of posture at rest. We show that thoracic postural motoneurons exhibit particular dendritic spatial organization allowing them to gather information from both sides of the cord. In response to passive head motion, these motoneurons display both early and delayed discharges, with the latter occurring in phase with ipsilateral hindlimb extensor bursts. We demonstrate that both vestibulospinal and lumbar ascending fibres converge onto postural motoneurons, and that thoracic motoneurons monosynaptically respond to the electrical stimulation of either pathway. Finally, we show that vestibulospinal fibres project to and activate lumbar interneurons with thoracic projections. Taken together, our results complete the scheme of the vestibulospinal control of posture by illustrating the existence of a novel, indirect pathway, which implicates lumbar interneurons relaying vestibular inputs to thoracic motoneurons, and participating in global body postural stabilization in the absence of active locomotion.
Collapse
Affiliation(s)
- Anne Olechowski-Bessaguet
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Raphaël Grandemange
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Elric Courty
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - François M Lambert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Didier Le Ray
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| |
Collapse
|
16
|
Brooks JX, Cullen KE. Predictive Sensing: The Role of Motor Signals in Sensory Processing. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:842-850. [PMID: 31401034 DOI: 10.1016/j.bpsc.2019.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
The strategy of integrating motor signals with sensory information during voluntary behavior is a general feature of sensory processing. It is required to distinguish externally applied (exafferent) from self-generated (reafferent) sensory inputs. This distinction, in turn, underlies our ability to achieve both perceptual stability and accurate motor control during everyday activities. In this review, we consider the results of recent experiments that have provided circuit-level insight into how motor-related inputs to sensory areas selectively cancel self-generated sensory inputs during active behaviors. These studies have revealed both common strategies and important differences across systems. Sensory reafference is suppressed at the earliest stages of central processing in the somatosensory, vestibular, and auditory systems, with the cerebellum and cerebellum-like structures playing key roles. Furthermore, motor-related inputs can also suppress reafferent responses at higher levels of processing such as the cortex-a strategy preferentially used in visual processing. These recent findings have important implications for understanding how the brain achieves the flexibility required to continuously calibrate relationships between motor signals and the resultant sensory feedback, a computation necessary for our subjective awareness that we control both our actions and their sensory consequences.
Collapse
Affiliation(s)
- Jessica X Brooks
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
17
|
Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nat Rev Neurosci 2019; 20:346-363. [PMID: 30914780 PMCID: PMC6611162 DOI: 10.1038/s41583-019-0153-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How the brain computes accurate estimates of our self-motion relative to the world and our orientation relative to gravity in order to ensure accurate perception and motor control is a fundamental neuroscientific question. Recent experiments have revealed that the vestibular system encodes this information during everyday activities using pathway-specific neural representations. Furthermore, new findings have established that vestibular signals are selectively combined with extravestibular information at the earliest stages of central vestibular processing in a manner that depends on the current behavioural goal. These findings have important implications for our understanding of the brain mechanisms that ensure accurate perception and behaviour during everyday activities and for our understanding of disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Pastor AM, Calvo PM, de la Cruz RR, Baker R, Straka H. Discharge properties of morphologically identified vestibular neurons recorded during horizontal eye movements in the goldfish. J Neurophysiol 2019; 121:1865-1878. [DOI: 10.1152/jn.00772.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Computational capability and connectivity are key elements for understanding how central vestibular neurons contribute to gaze-stabilizing eye movements during self-motion. In the well-characterized and segmentally distributed hindbrain oculomotor network of goldfish, we determined afferent and efferent connections along with discharge patterns of descending octaval nucleus (DO) neurons during different eye motions. Based on activity correlated with horizontal eye and head movements, DO neurons were categorized into two complementary groups that either increased discharge during both contraversive (type II) eye (e) and ipsiversive (type I) head (h) movements (eIIhI) or vice versa (eIhII). Matching time courses of slow-phase eye velocity and corresponding firing rates during prolonged visual and head rotation suggested direct causality in generating extraocular motor commands. The axons of the dominant eIIhI subgroup projected either ipsi- or contralaterally and terminated in the abducens nucleus, Area II, and Area I with additional recurrent collaterals of ipsilaterally projecting neurons within the parent nucleus. Distinct feedforward commissural pathways between bilateral DO neurons likely contribute to the generation of eye velocity signals in eIhII cells. The shared contribution of DO and Area II neurons to eye velocity storage likely represents an ancestral condition in goldfish that is clearly at variance with the task separation between mammalian medial vestibular and prepositus hypoglossi neurons. This difference in signal processing between fish and mammals might correlate with a larger repertoire of visuo-vestibular-driven eye movements in the latter species that potentially required a shift in sensitivity and connectivity within the hindbrain-cerebello-oculomotor network. NEW & NOTEWORTHY We describe the structure and function of neurons within the goldfish descending octaval nucleus. Our findings indicate that eye and head velocity signals are processed by vestibular and Area II velocity storage integrator circuitries whereas the velocity-to-position Area I neural integrator generates eye position solely. This ancestral condition differs from that of mammals, in which vestibular neurons generally lack eye position signals that are processed and stored within the nucleus prepositus hypoglossi.
Collapse
Affiliation(s)
- A. M. Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - P. M. Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - R. R. de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - R. Baker
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, New York
| | - H. Straka
- Department of Biology II, Ludwig-Maximillians-Universität Munich, Planegg, Germany
| |
Collapse
|
19
|
Cullen KE, Taube JS. Our sense of direction: progress, controversies and challenges. Nat Neurosci 2017; 20:1465-1473. [PMID: 29073639 PMCID: PMC10278035 DOI: 10.1038/nn.4658] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
In this Perspective, we evaluate current progress in understanding how the brain encodes our sense of direction, within the context of parallel work focused on how early vestibular pathways encode self-motion. In particular, we discuss how these systems work together and provide evidence that they involve common mechanisms. We first consider the classic view of the head direction cell and results of recent experiments in rodents and primates indicating that inputs to these neurons encode multimodal information during self-motion, such as proprioceptive and motor efference copy signals, including gaze-related information. We also consider the paradox that, while the head-direction network is generally assumed to generate a fixed representation of perceived directional heading, this computation would need to be dynamically updated when the relationship between voluntary motor command and its sensory consequences changes. Such situations include navigation in virtual reality and head-restricted conditions, since the natural relationship between visual and extravisual cues is altered.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey S Taube
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
20
|
Abstract
Eye movements provide insights about a wide range of brain functions, from sensorimotor integration to cognition; hence, the measurement of eye movements is an important tool in neuroscience research. We describe a method, based on magnetic sensing, for measuring eye movements in head-fixed and freely moving mice. A small magnet was surgically implanted on the eye, and changes in the magnet angle as the eye rotated were detected by a magnetic field sensor. Systematic testing demonstrated high resolution measurements of eye position of <0.1°. Magnetic eye tracking offers several advantages over the well-established eye coil and video-oculography methods. Most notably, it provides the first method for reliable, high-resolution measurement of eye movements in freely moving mice, revealing increased eye movements and altered binocular coordination compared to head-fixed mice. Overall, magnetic eye tracking provides a lightweight, inexpensive, easily implemented, and high-resolution method suitable for a wide range of applications.
Collapse
Affiliation(s)
- Hannah L Payne
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University, Stanford, United States
| |
Collapse
|
21
|
Persistent perceptual delay for active head movement onset relative to sound onset with and without vision. Exp Brain Res 2017; 235:3069-3079. [DOI: 10.1007/s00221-017-5026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
22
|
Dugué GP, Tihy M, Gourévitch B, Léna C. Cerebellar re-encoding of self-generated head movements. eLife 2017; 6:e26179. [PMID: 28608779 PMCID: PMC5489315 DOI: 10.7554/elife.26179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/09/2017] [Indexed: 02/01/2023] Open
Abstract
Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head movements in the rat caudal cerebellar vermis, an area essential for graviceptive functions. We found that, contrarily to peripheral vestibular inputs, most Purkinje cells exhibited a mixed sensitivity to head rotational and gravitational information and were differentially modulated by active and passive movements. In a subpopulation of cells, this mixed sensitivity underlay a tuning to rotations about an axis defined relative to gravity. Therefore, we show that the caudal vermis hosts a re-encoded, gravitationally polarized representation of self-generated head kinematics in freely moving rats.
Collapse
Affiliation(s)
- Guillaume P Dugué
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'École Normale Supérieure, Inserm U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Matthieu Tihy
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'École Normale Supérieure, Inserm U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Boris Gourévitch
- Genetics and Physiology of Hearing Laboratory, Inserm UMR1120, University Paris 6, Institut Pasteur, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'École Normale Supérieure, Inserm U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| |
Collapse
|
23
|
McCall AA, Miller DM, Yates BJ. Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes. Front Neurol 2017; 8:112. [PMID: 28396651 PMCID: PMC5366978 DOI: 10.3389/fneur.2017.00112] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
This review considers the integration of vestibular and other signals by the central nervous system pathways that participate in balance control and blood pressure regulation, with an emphasis on how this integration may modify posture-related responses in accordance with behavioral context. Two pathways convey vestibular signals to limb motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both pathways receive direct inputs from the cerebral cortex and cerebellum, and also integrate vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the responses of vestibular nucleus neurons to particular stimuli. This evidence shows that supratentorial regions modify the activity of the vestibular system, but the functional importance of descending influences on vestibulospinal reflexes acting on the limbs is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet little is known about the transformation of vestibular signals that occurs in the spinal cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also produce vestibulosympathetic responses that serve to maintain stable blood pressure. Vestibulosympathetic reflexes are mediated, at least in part, through a specialized group of reticulospinal neurons in the rostral ventrolateral medulla that project to sympathetic preganglionic neurons in the spinal cord. However, other pathways may also contribute to these responses, including those that dually participate in motor control and regulation of sympathetic nervous system activity. Vestibulosympathetic reflexes differ in conscious and decerebrate animals, indicating that supratentorial regions alter these responses. However, as with vestibular reflexes acting on the limbs, little is known about the physiological significance of descending control of vestibulosympathetic pathways.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Derek M Miller
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
24
|
Moving or being moved: that makes a difference. J Neurol 2017; 264:28-33. [DOI: 10.1007/s00415-017-8437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022]
|
25
|
Carriot J, Jamali M, Chacron MJ, Cullen KE. The statistics of the vestibular input experienced during natural self-motion differ between rodents and primates. J Physiol 2017; 595:2751-2766. [PMID: 28083981 DOI: 10.1113/jp273734] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS In order to understand how the brain's coding strategies are adapted to the statistics of the sensory stimuli experienced during everyday life, the use of animal models is essential. Mice and non-human primates have become common models for furthering our knowledge of the neuronal coding of natural stimuli, but differences in their natural environments and behavioural repertoire may impact optimal coding strategies. Here we investigated the structure and statistics of the vestibular input experienced by mice versus non-human primates during natural behaviours, and found important differences. Our data establish that the structure and statistics of natural signals in non-human primates more closely resemble those observed previously in humans, suggesting similar coding strategies for incoming vestibular input. These results help us understand how the effects of active sensing and biomechanics will differentially shape the statistics of vestibular stimuli across species, and have important implications for sensory coding in other systems. ABSTRACT It is widely believed that sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing coding. Recent evidence suggests that this is also the case for the vestibular system, which senses self-motion and in turn contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. However, little is known about the statistics of self-motion stimuli actually experienced by freely moving animals in their natural environments. Accordingly, here we examined the natural self-motion signals experienced by mice and monkeys: two species commonly used to study vestibular neural coding. First, we found that probability distributions for all six dimensions of motion (three rotations, three translations) in both species deviated from normality due to long tails. Interestingly, the power spectra of natural rotational stimuli displayed similar structure for both species and were not well fitted by power laws. This result contrasts with reports that the natural spectra of other sensory modalities (i.e. vision, auditory and tactile) instead show a power-law relationship with frequency, which indicates scale invariance. Analysis of natural translational stimuli revealed important species differences as power spectra deviated from scale invariance for monkeys but not for mice. By comparing our results to previously published data for humans, we found the statistical structure of natural self-motion stimuli in monkeys and humans more closely resemble one another. Our results thus predict that, overall, neural coding strategies used by vestibular pathways to encode natural self-motion stimuli are fundamentally different in rodents and primates.
Collapse
Affiliation(s)
- Jérome Carriot
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Mohsen Jamali
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
26
|
Kim G, Kim KS, Lee S. The integration of neural information by a passive kinetic stimulus and galvanic vestibular stimulation in the lateral vestibular nucleus. Med Biol Eng Comput 2017; 55:1621-1633. [PMID: 28176264 DOI: 10.1007/s11517-017-1618-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/25/2017] [Indexed: 02/07/2023]
Abstract
Despite an easy control and the direct effects on vestibular neurons, the clinical applications of galvanic vestibular stimulation (GVS) have been restricted because of its unclear activities as input. On the other hand, some critical conclusions have been made in the peripheral and the central processing of neural information by kinetic stimuli with different motion frequencies. Nevertheless, it is still elusive how the neural responses to simultaneous GVS and kinetic stimulus are modified during transmission and integration at the central vestibular area. To understand how the neural information was transmitted and integrated, we examined the neuronal responses to GVS, kinetic stimulus, and their combined stimulus in the vestibular nucleus. The neuronal response to each stimulus was recorded, and its responding features (amplitude and baseline) were extracted by applying the curve fitting based on a sinusoidal function. Twenty-five (96.2%) comparisons of the amplitudes showed that the amplitudes decreased during the combined stimulus (p < 0.001). However, the relations in the amplitudes (slope = 0.712) and the baselines (slope = 0.747) were linear. The neuronal effects by the different stimuli were separately estimated; the changes of the amplitudes were mainly caused by the kinetic stimulus and those of the baselines were largely influenced by GVS. Therefore, the slopes in the comparisons implied the neural sensitivity to the applied stimuli. Using the slopes, we found that the reduced amounts of the neural information were transmitted. Overall, the comparisons of the responding features demonstrated the linearity and the subadditivity in the neural transmission.
Collapse
Affiliation(s)
- Gyutae Kim
- Institute for Information and Electronics Research, Inha University, High-Tech Center #716, 100 Inharo, Namgu, Incheon, 402-751, Republic of Korea.
| | - Kyu-Sung Kim
- Institute for Information and Electronics Research, Inha University, High-Tech Center #716, 100 Inharo, Namgu, Incheon, 402-751, Republic of Korea.,Department of Otolaryngology, School of Medicine, Inha University, 27 Inhang-ro, Jung-Gu, Incheon, 400-711, Republic of Korea
| | - Sangmin Lee
- Institute for Information and Electronics Research, Inha University, High-Tech Center #716, 100 Inharo, Namgu, Incheon, 402-751, Republic of Korea.,School of Electronic/Electrical Engineering, Inha University, High-Tech Center #704, 100 Inharo, Namgu, Incheon, 402-751, Republic of Korea
| |
Collapse
|
27
|
McCall AA, Miller DM, DeMayo WM, Bourdages GH, Yates BJ. Vestibular nucleus neurons respond to hindlimb movement in the conscious cat. J Neurophysiol 2016; 116:1785-1794. [PMID: 27440244 DOI: 10.1152/jn.00414.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022] Open
Abstract
The limbs constitute the sole interface with the ground during most waking activities in mammalian species; it is therefore expected that somatosensory inputs from the limbs provide important information to the central nervous system for balance control. In the decerebrate cat model, the activity of a subset of neurons in the vestibular nuclei (VN) has been previously shown to be modulated by hindlimb movement. However, decerebration can profoundly alter the effects of sensory inputs on the activity of brain stem neurons, resulting in epiphenomenal responses. Thus, before this study, it was unclear whether and how somatosensory inputs from the limb affected the activity of VN neurons in conscious animals. We recorded brain stem neuronal activity in the conscious cat and characterized the responses of VN neurons to flexion and extension hindlimb movements and to whole body vertical tilts (vestibular stimulation). Among 96 VN neurons whose activity was modulated by vestibular stimulation, the firing rate of 65 neurons (67.7%) was also affected by passive hindlimb movement. VN neurons in conscious cats most commonly encoded hindlimb movement irrespective of the direction of movement (n = 33, 50.8%), in that they responded to all flexion and extension movements of the limb. Other VN neurons overtly encoded information about the direction of hindlimb movement (n = 27, 41.5%), and the remainder had more complex responses. These data confirm that hindlimb somatosensory and vestibular inputs converge onto VN neurons of the conscious cat, suggesting that VN neurons integrate somatosensory inputs from the limbs in computations that affect motor outflow to maintain balance.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Derek M Miller
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - William M DeMayo
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - George H Bourdages
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Straka H, Zwergal A, Cullen KE. Vestibular animal models: contributions to understanding physiology and disease. J Neurol 2016; 263 Suppl 1:S10-23. [PMID: 27083880 PMCID: PMC4833800 DOI: 10.1007/s00415-015-7909-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 12/20/2022]
Abstract
Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more “exotic” species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.
Collapse
Affiliation(s)
- Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, 82152, Planegg, Germany. .,German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, QC, H3A 0G4, Canada
| |
Collapse
|
29
|
Abstract
The relative simplicity of the neural circuits that mediate vestibular reflexes is well suited for linking systems and cellular levels of analyses. Notably, a distinctive feature of the vestibular system is that neurons at the first central stage of sensory processing in the vestibular nuclei are premotor neurons; the same neurons that receive vestibular-nerve input also send direct projections to motor pathways. For example, the simplicity of the three-neuron pathway that mediates the vestibulo-ocular reflex leads to the generation of compensatory eye movements within ~5ms of a head movement. Similarly, relatively direct pathways between the labyrinth and spinal cord control vestibulospinal reflexes. A second distinctive feature of the vestibular system is that the first stage of central processing is strongly multimodal. This is because the vestibular nuclei receive inputs from a wide range of cortical, cerebellar, and other brainstem structures in addition to direct inputs from the vestibular nerve. Recent studies in alert animals have established how extravestibular signals shape these "simple" reflexes to meet the needs of current behavioral goal. Moreover, multimodal interactions at higher levels, such as the vestibular cerebellum, thalamus, and cortex, play a vital role in ensuring accurate self-motion and spatial orientation perception.
Collapse
Affiliation(s)
- K E Cullen
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Chagnaud BP, Banchi R, Simmers J, Straka H. Spinal corollary discharge modulates motion sensing during vertebrate locomotion. Nat Commun 2015; 6:7982. [PMID: 26337184 PMCID: PMC4569702 DOI: 10.1038/ncomms8982] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/02/2015] [Indexed: 12/29/2022] Open
Abstract
During active movements, neural replicas of the underlying motor commands may assist in adapting motion-detecting sensory systems to an animal's own behaviour. The transmission of such motor efference copies to the mechanosensory periphery offers a potential predictive substrate for diminishing sensory responsiveness to self-motion during vertebrate locomotion. Here, using semi-isolated in vitro preparations of larval Xenopus, we demonstrate that shared efferent neural pathways to hair cells of vestibular endorgans and lateral line neuromasts express cyclic impulse bursts during swimming that are directly driven by spinal locomotor circuitry. Despite common efferent innervation and discharge patterns, afferent signal encoding at the two mechanosensory peripheries is influenced differentially by efference copy signals, reflecting the different organization of body/water motion-detecting processes in the vestibular and lateral line systems. The resultant overall gain reduction in sensory signal encoding in both cases, which likely prevents overstimulation, constitutes an adjustment to increased stimulus magnitudes during locomotion. Corollary discharges inform the central nervous system about impending motor activity. Here, Chagnaud et al. show that, in Xenopus tadpoles, shared efferent neural pathways to the inner ear and lateral line adjust the sensitivity of sensory afferents during locomotor activity.
Collapse
Affiliation(s)
- Boris P Chagnaud
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Roberto Banchi
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, CNRS UMR 5287, 33076 Bordeaux, France
| | - Hans Straka
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
31
|
Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nat Neurosci 2015; 18:718-27. [PMID: 25821914 PMCID: PMC4413433 DOI: 10.1038/nn.3974] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/12/2015] [Indexed: 02/08/2023]
Abstract
The ability of the brain to rapidly process information from multiple pathways is critical for reliable execution of complex sensory-motor behaviors, yet the cellular mechanisms underlying a neuronal representation of multimodal stimuli are poorly understood. Here we explored the possibility that the physiological diversity of mossy fiber (MF) to granule cell (GC) synapses within the mouse vestibulocerebellum may contribute to the processing of coincident multisensory information at the level of individual GCs. We found that the strength and short-term dynamics of individual MF-GC synapses can act as biophysical signatures for primary vestibular, secondary vestibular and visual input pathways. The majority of GCs receive inputs from different modalities, which when co-activated, produced enhanced GC firing rates and distinct first spike latencies. Thus, pathway-specific synaptic response properties permit temporal coding of correlated multisensory input by single GCs, thereby enriching sensory representation and facilitating pattern separation.
Collapse
|
32
|
Pettorossi VE, Schieppati M. Neck proprioception shapes body orientation and perception of motion. Front Hum Neurosci 2014; 8:895. [PMID: 25414660 PMCID: PMC4220123 DOI: 10.3389/fnhum.2014.00895] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/20/2014] [Indexed: 12/30/2022] Open
Abstract
This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.
Collapse
Affiliation(s)
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia, Pavia, Italy
| |
Collapse
|
33
|
Rössert C, Solinas S, D'Angelo E, Dean P, Porrill J. Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Front Cell Neurosci 2014; 8:304. [PMID: 25352777 PMCID: PMC4195316 DOI: 10.3389/fncel.2014.00304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/09/2014] [Indexed: 12/02/2022] Open
Abstract
A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit.
Collapse
Affiliation(s)
| | - Sergio Solinas
- Brain Connectivity Center, Istituto Neurologico Istituto di Ricovero e Cura a Carattere Scientifico C. Mondino Pavia, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, Istituto Neurologico Istituto di Ricovero e Cura a Carattere Scientifico C. Mondino Pavia, Italy ; Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia Pavia, Italy
| | - Paul Dean
- Department of Psychology, University of Sheffield Sheffield, UK
| | - John Porrill
- Department of Psychology, University of Sheffield Sheffield, UK
| |
Collapse
|
34
|
The influence of head and body tilt on human fore-aft translation perception. Exp Brain Res 2014; 232:3897-905. [PMID: 25160866 DOI: 10.1007/s00221-014-4060-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
The tilt-translation ambiguity occurs because acceleration due to translation cannot be differentiated from gravitational acceleration. Head tilt can occur independent of body tilt which further complicates the problem. The tilt-translation ambiguity is examined for fore-aft (surge) translation with head and/or body orientations that are tilted in pitch 10° forward or backward. Eleven human subjects (six female), mean age 40 years participated. Conditions included no tilt (NT), head and body tilt (HBT), head only tilt (HOT), and body only tilt (BOT). The fore-aft stimulus consisted of a 2 s (0.5 Hz) sine wave in acceleration which a maximum peak velocity of 10 cm/s. After each stimulus, the subject reported the direction of motion as forward or backward. Subsequent stimuli were adjusted to determine the point at which subjects were equally likely to report motion in either direction. During the HBT, responses were biased such that upward pitch caused a neutral stimulus to be more likely to be perceived as forward and downward pitch caused the stimulus to be more likely to be perceived as backward. The difference in the point of subjective equality based on the direction of tilt was 3.3 cm/s. During the BOT condition, the bias with respect to the direction of body tilt was in a similar direction with a difference in PSE 1.6 cm/s. During HOT and NT, there was no significant bias on fore-aft perception. These findings demonstrate that body tilt shifts the PSE of fore-aft direction discrimination while head tilt has no influence.
Collapse
|
35
|
Shinder ME, Taube JS. Resolving the active versus passive conundrum for head direction cells. Neuroscience 2014; 270:123-38. [PMID: 24704515 PMCID: PMC4067261 DOI: 10.1016/j.neuroscience.2014.03.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/27/2022]
Abstract
Head direction (HD) cells have been identified in a number of limbic system structures. These cells encode the animal's perceived directional heading in the horizontal plane and are dependent on an intact vestibular system. Previous studies have reported that the responses of vestibular neurons within the vestibular nuclei are markedly attenuated when an animal makes a volitional head turn compared to passive rotation. This finding presents a conundrum in that if vestibular responses are suppressed during an active head turn how is a vestibular signal propagated forward to drive and update the HD signal? This review identifies and discusses four possible mechanisms that could resolve this problem. These mechanisms are: (1) the ascending vestibular signal is generated by more than just vestibular-only neurons, (2) not all vestibular-only neurons contributing to the HD pathway have firing rates that are attenuated by active head turns, (3) the ascending pathway may be spared from the affects of the attenuation in that the HD system receives information from other vestibular brainstem sites that do not include vestibular-only cells, and (4) the ascending signal is affected by the inhibited vestibular signal during an active head turn, but the HD circuit compensates and uses the altered signal to accurately update the current HD. Future studies will be needed to decipher which of these possibilities is correct.
Collapse
Affiliation(s)
- M E Shinder
- Department of Psychological & Brain Sciences, Dartmouth College, United States
| | - J S Taube
- Department of Psychological & Brain Sciences, Dartmouth College, United States.
| |
Collapse
|
36
|
Oman CM, Cullen KE. Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology. Exp Brain Res 2014; 232:2483-92. [PMID: 24838552 DOI: 10.1007/s00221-014-3973-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/20/2014] [Indexed: 11/29/2022]
Abstract
The origin of the internal "sensory conflict" stimulus causing motion sickness has been debated for more than four decades. Recent studies show a subclass of neurons in the vestibular nuclei and deep cerebellar nuclei that respond preferentially to passive head movements. During active movement, the semicircular canal and otolith input ("reafference") to these neurons are canceled by a mechanism comparing the expected consequences of self-generated movement (estimated with an internal model-presumably located in the cerebellum) with the actual sensory feedback. The un-canceled component ("exafference") resulting from passive movement normally helps compensate for unexpected postural disturbances. Notably, the existence of such vestibular "sensory conflict" neurons had been postulated as early as 1982, but their existence and putative role in posture control and motion sickness have been long debated. Here, we review the development of "sensory conflict" theories in relation to recent evidence for brainstem and cerebellar reafference cancelation, and identify some open research questions. We propose that conditions producing persistent activity of these neurons, or their targets, stimulate nearby brainstem emetic centers-via an as yet unidentified mechanism. We discuss how such a mechanism is consistent with the notable difference in motion sickness susceptibility of drivers as opposed to passengers, human immunity to normal self-generated movement and why head restraint or lying horizontal confers relative immunity. Finally, we propose that fuller characterization of these mechanisms and their potential role in motion sickness could lead to more effective, scientifically based prevention and treatment for motion sickness.
Collapse
Affiliation(s)
- Charles M Oman
- Man Vehicle Laboratory, Massachusetts Institute of Technology, Room 37-219, MIT 77 Massachusetts Avenue, Cambridge, MA, 02139, USA,
| | | |
Collapse
|
37
|
Cullen KE. The neural encoding of self-generated and externally applied movement: implications for the perception of self-motion and spatial memory. Front Integr Neurosci 2014; 7:108. [PMID: 24454282 PMCID: PMC3888934 DOI: 10.3389/fnint.2013.00108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/23/2013] [Indexed: 12/03/2022] Open
Abstract
The vestibular system is vital for maintaining an accurate representation of self-motion. As one moves (or is moved) toward a new place in the environment, signals from the vestibular sensors are relayed to higher-order centers. It is generally assumed the vestibular system provides a veridical representation of head motion to these centers for the perception of self-motion and spatial memory. In support of this idea, evidence from lesion studies suggests that vestibular inputs are required for the directional tuning of head direction cells in the limbic system as well as neurons in areas of multimodal association cortex. However, recent investigations in monkeys and mice challenge the notion that early vestibular pathways encode an absolute representation of head motion. Instead, processing at the first central stage is inherently multimodal. This minireview highlights recent progress that has been made towards understanding how the brain processes and interprets self-motion signals encoded by the vestibular otoliths and semicircular canals during everyday life. The following interrelated questions are considered. What information is available to the higher-order centers that contribute to self-motion perception? How do we distinguish between our own self-generated movements and those of the external world? And lastly, what are the implications of differences in the processing of these active vs. passive movements for spatial memory?
Collapse
Affiliation(s)
- Kathleen E Cullen
- Aerospace Medical Research Unit, Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|