1
|
Sato Y, Takanaka S, Izumi SI. Alteration of Interhemispheric Inhibition in Patients With Lateral Epicondylalgia. THE JOURNAL OF PAIN 2024; 25:104440. [PMID: 38065465 DOI: 10.1016/j.jpain.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Patients with lateral epicondylalgia (LE) show alterations in the primary motor cortex (M1) contralateral to the affected side. Cortical alterations have been investigated by measuring intracortical facilitation/inhibition; however, their association with pain remains controversial. Furthermore, no studies have investigated changes in interhemispheric inhibition (IHI). IHI can be assessed using the ipsilateral silent period (iSP) known as the temporary inhibition of electromyographic activity evoked by transcranial magnetic stimulation in the ipsilateral M1 of the contracting muscle. To better understand the relationship between cortical alterations and pain in LE, this observational study investigated the relationship between iSP and pain in LE. Twenty-seven healthy volunteers and 21 patients with LE were recruited. The duration of iSP in the extensor carpi radialis brevis was measured. The IHI asymmetry ratio was calculated to determine the IHI balance. Pain and disability were scored using the Japanese version of the patient-rated elbow evaluation. We observed increased inhibitory input from the ipsilateral M1 on the affected side to the contralateral M1 in LE. Additionally, the IHI balance correlated with pain severity. Hence, regulating imbalanced IHI can potentially decrease lateral elbow pain in LE. PERSPECTIVE: Patients with lateral epicondylalgia (LE) experience persistent pain and cortical alterations. However, there is no established relationship between cortical alterations and pain. This study demonstrated that the interhemispheric inhibition (IHI) balance is correlated with pain. Regulating imbalanced IHI can potentially decrease lateral elbow pain in patients with LE.
Collapse
Affiliation(s)
- Yosuke Sato
- Course of Rehabilitation, Department of Health Sciences, Tohoku Fukushi University, Aoba-ku, City, Miyagi, Japan; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Shun Takanaka
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai City, Miyagi, Japan
| |
Collapse
|
2
|
Mayer AR, Dodd AB, Robertson-Benta CR, Zotev V, Ryman SG, Meier TB, Campbell RA, Phillips JP, van der Horn HJ, Hogeveen J, Tarawneh R, Sapien RE. Multifaceted neural and vascular pathologies after pediatric mild traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:118-130. [PMID: 37724718 PMCID: PMC10905640 DOI: 10.1177/0271678x231197188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Dynamic changes in neurodevelopment and cognitive functioning occur during adolescence, including a switch from reactive to more proactive forms of cognitive control, including response inhibition. Pediatric mild traumatic brain injury (pmTBI) affects these cognitions immediately post-injury, but the role of vascular versus neural injury in cognitive dysfunction remains debated. This study consecutively recruited 214 sub-acute pmTBI (8-18 years) and age/sex-matched healthy controls (HC; N = 186), with high retention rates (>80%) at four months post-injury. Multimodal imaging (functional MRI during response inhibition, cerebral blood flow and cerebrovascular reactivity) assessed for pathologies within the neurovascular unit. Patients exhibited increased errors of commission and hypoactivation of motor circuitry during processing of probes. Evidence of increased/delayed cerebrovascular reactivity within motor circuitry during hypercapnia was present along with normal perfusion. Neither age-at-injury nor post-concussive symptom load were strongly associated with imaging abnormalities. Collectively, mild cognitive impairments and clinical symptoms may continue up to four months post-injury. Prolonged dysfunction within the neurovascular unit was observed during proactive response inhibition, with preliminary evidence that neural and pure vascular trauma are statistically independent. These findings suggest pmTBI is characterized by multifaceted pathologies during the sub-acute injury stage that persist several months post-injury.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | | | - Vadim Zotev
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | | | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard A Campbell
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - John P Phillips
- The Mind Research Network/LBERI, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | | | - Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Rawan Tarawneh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
3
|
Hayes L, Taga M, Charalambous CC, Raju S, Lin J, Schambra HM. The distribution of transcallosal inhibition to upper extremity muscles is altered in chronic stroke. J Neurol Sci 2023; 450:120688. [PMID: 37224604 PMCID: PMC10330477 DOI: 10.1016/j.jns.2023.120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To determine if the distribution of transcallosal inhibition (TI) acting on proximal and distal upper extremity muscles is altered in chronic stroke. METHODS We examined thirteen healthy controls and sixteen mildly to moderately impaired chronic stroke patients. We used transcranial magnetic stimulation (TMS) to probe TI from the contralesional onto ipsilesional hemisphere (assigned in controls). We recorded the ipsilateral silent period in the paretic biceps (BIC) and first dorsal interosseous (FDI). We measured TI strength, distribution gradient (TI difference between muscles), and motor impairment (Fugl-Meyer Assessment). RESULTS Both groups had stronger TI acting on their FDIs than BICs (p < 0.001). However, stroke patients also had stronger TI acting on their BICs than controls (p = 0.034), resulting in a flatter distribution of inhibition (p = 0.028). In patients, stronger FDI inhibition correlated with less hand impairment (p = 0.031); BIC inhibition was not correlated to impairment. CONCLUSION TI is more evenly distributed to the paretic FDI and BIC in chronic stroke. The relative increase in proximal inhibition does not relate to better function, as it does distally. SIGNIFICANCE The results expand our knowledge about segment-specific neurophysiology and its relevance to impairment after stroke.
Collapse
Affiliation(s)
- Leticia Hayes
- Department of Neurology, NYU Grossman School of Medicine, New York, United States.
| | - Myriam Taga
- Department of Neurology, NYU Grossman School of Medicine, New York, United States.
| | - Charalambos C Charalambous
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus; Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus.
| | - Sharmila Raju
- Department of Neurology, NYU Grossman School of Medicine, New York, United States.
| | - Jing Lin
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, United States.
| | - Heidi M Schambra
- Department of Neurology, NYU Grossman School of Medicine, New York, United States; Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, United States.
| |
Collapse
|
4
|
Recovery of Patients With Upper Limb Paralysis Due to Stroke Who Underwent Intervention Using Low-Frequency Repetitive Transcranial Magnetic Stimulation Combined With Occupational Therapy: A Retrospective Cohort Study. Neuromodulation 2023:S1094-7159(23)00104-6. [PMID: 36932028 DOI: 10.1016/j.neurom.2023.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVES The combination of repetitive transcranial magnetic stimulation (rTMS) and motor practice is based on the theory of neuromodulation and use-dependent plasticity. Predictive planning of occupational therapy (OT) is important for patients with rTMS conditioning. Recovery characteristics based on the severity of pretreatment upper extremity paralysis can guide the patient's practice plan for using the paretic hand. Therefore, we evaluated the recovery of patients with upper limb paralysis due to stroke who underwent a novel intervention of rTMS combined with OT (NEURO) according to the severity of upper limb paralysis based on the scores of the Fugl-Meyer assessment for upper extremity (FMA-UE) with recovery in proximal upper extremity, wrist, hand, and coordination. MATERIALS AND METHODS In this multicenter retrospective cohort study, the recovery of 1397 patients with upper limb paralysis was analyzed by severity at six hospitals that were accredited by the Japanese Stimulation Therapy Society for treatment. The delta values of the FMA-UE scores before and after NEURO were compared among the groups with severe, moderate, and mild paralysis using the generalized linear model. RESULTS NEURO significantly improved the FMA-UE total score according to the severity of paralysis (severe = 5.3, moderate = 6.0, and mild = 2.9). However, when the FMA-UE subscores were analyzed separately, the results indicated specific improvements in shoulder/elbow, wrist, fingers, and coordination movements, depending on the severity. CONCLUSIONS This study had enough patients who were divided according to severity and stratified by lesion location and handedness parameters. Our results suggest that independently of these factors, the extent of recovery of upper limb motor parts after NEURO varies according to the severity of paralysis.
Collapse
|
5
|
Impact of interhemispheric inhibition on bimanual movement control in young and old. Exp Brain Res 2022; 240:687-701. [PMID: 35020040 PMCID: PMC8858275 DOI: 10.1007/s00221-021-06258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/23/2021] [Indexed: 12/05/2022]
Abstract
Interhemispheric interactions demonstrate a crucial role for directing bimanual movement control. In humans, a well-established paired-pulse transcranial magnetic stimulation paradigm enables to assess these interactions by means of interhemispheric inhibition (IHI). Previous studies have examined changes in IHI from the active to the resting primary motor cortex during unilateral muscle contractions; however, behavioral relevance of such changes is still inconclusive. In the present study, we evaluated two bimanual tasks, i.e., mirror activity and bimanual anti-phase tapping, to examine behavioral relevance of IHI for bimanual movement control within this behavioral framework. Two age groups (young and older) were evaluated as bimanual movement control demonstrates evident behavioral decline in older adults. Two types of IHI with differential underlying mechanisms were measured; IHI was tested at rest and during a motor task from the active to the resting primary motor cortex. Results demonstrate an association between behavior and short-latency IHI in the young group: larger short-latency IHI correlated with better bimanual movement control (i.e., less mirror activity and better bimanual anti-phase tapping). These results support the view that short-latency IHI represents a neurophysiological marker for the ability to suppress activity of the contralateral side, likely contributing to efficient bimanual movement control. This association was not observed in the older group, suggesting age-related functional changes of IHI. To determine underlying mechanisms of impaired bimanual movement control due to neurological disorders, it is crucial to have an in-depth understanding of age-related mechanisms to disentangle disorder-related mechanisms of impaired bimanual movement control from age-related ones.
Collapse
|
6
|
Zeugin D, Ionta S. Anatomo-Functional Origins of the Cortical Silent Period: Spotlight on the Basal Ganglia. Brain Sci 2021; 11:705. [PMID: 34071742 PMCID: PMC8227635 DOI: 10.3390/brainsci11060705] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The so-called cortical silent period (CSP) refers to the temporary interruption of electromyographic signal from a muscle following a motor-evoked potential (MEP) triggered by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). The neurophysiological origins of the CSP are debated. Previous evidence suggests that both spinal and cortical mechanisms may account for the duration of the CSP. However, contextual factors such as cortical fatigue, experimental procedures, attentional load, as well as neuropathology can also influence the CSP duration. The present paper summarizes the most relevant evidence on the mechanisms underlying the duration of the CSP, with a particular focus on the central role of the basal ganglia in the "direct" (excitatory), "indirect" (inhibitory), and "hyperdirect" cortico-subcortical pathways to manage cortical motor inhibition. We propose new methods of interpretation of the CSP related, at least partially, to the inhibitory hyperdirect and indirect pathways in the basal ganglia. This view may help to explain the respective shortening and lengthening of the CSP in various neurological disorders. Shedding light on the complexity of the CSP's origins, the present review aims at constituting a reference for future work in fundamental research, technological development, and clinical settings.
Collapse
Affiliation(s)
| | - Silvio Ionta
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, 1002 Lausanne, Switzerland
| |
Collapse
|
7
|
Hupfeld KE, Swanson CW, Fling BW, Seidler RD. TMS-induced silent periods: A review of methods and call for consistency. J Neurosci Methods 2020; 346:108950. [PMID: 32971133 PMCID: PMC8276277 DOI: 10.1016/j.jneumeth.2020.108950] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Transcranial magnetic stimulation (TMS)-induced silent periods provide an in vivo measure of human motor cortical inhibitory function. Cortical silent periods (cSP, also sometimes referred to as contralateral silent periods) and ipsilateral silent periods (iSP) may change with advancing age and disease and can provide insight into cortical control of the motor system. The majority of past silent period work has implemented largely varying methodology, sometimes including subjective analyses and incomplete methods descriptions. This limits reproducibility of silent period work and hampers comparisons of silent period measures across studies. Here, we discuss methodological differences in past silent period work, highlighting how these choices affect silent period outcome measures. We also outline challenges and possible solutions for measuring silent periods in the unique case of the lower limbs. Finally, we provide comprehensive recommendations for collection, analysis, and reporting of future silent period studies.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C W Swanson
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - B W Fling
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Tremblay F. On the issue of measuring interhemispheric inhibition in unilateral stroke. Clin Neurophysiol 2020; 132:688-689. [PMID: 33172778 DOI: 10.1016/j.clinph.2020.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
Affiliation(s)
- François Tremblay
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Clinical Neuroscience Laboratory, Bruyère Research Institute, Ottawa, Ontario K1N 5C8, Canada.
| |
Collapse
|
9
|
Mayer AR, Hanlon FM, Shaff NA, Stephenson DD, Ling JM, Dodd AB, Hogeveen J, Quinn DK, Ryman SG, Pirio-Richardson S. Evidence for asymmetric inhibitory activity during motor planning phases of sensorimotor synchronization. Cortex 2020; 129:314-328. [PMID: 32554227 DOI: 10.1016/j.cortex.2020.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 01/11/2023]
Abstract
Sensorimotor synchronization (SMS) is frequently dependent on coordination of excitatory and inhibitory activity across hemispheres, as well as the cognitive control over environmental distractors. However, the timing (motor planning versus execution) and cortical regions involved in these processes remain actively debated. Functional magnetic resonance imaging data were therefore analyzed from 34 strongly right-handed healthy adults performing a cued (to initiate motor planning) SMS task with either their right or left hand (motor execution phase) based on spatially congruent or incongruent visual stimuli. Behavioral effects of incongruent stimuli were limited to the first stimulus. Functionally, greater activation was observed in left sensorimotor cortex (SMC) and right cerebellar Lobule V for congruent versus incongruent stimuli. A negative blood-oxygen level dependent response, a putative marker of neural inhibition, was present in bilateral SMC, right supplemental motor area (SMA) and bilateral cerebellar Lobule V during the motor planning, but not execution phase. The magnitude of the inhibitory response was greater in right cortical regions and cerebellar Lobule V. Homologue connectivity was associated with inhibitory activity in the right SMA, suggesting that individual differences in intrinsic connectivity may mediate transcallosal inhibition. In summary, results suggest increased inhibition (i.e., greater negative BOLD response) within the right relative to left hemisphere, which was released once motor programs were executed. Both task and intrinsic functional connectivity results highlight a critical role of the left SMA in interhemispheric inhibition and motor planning.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM, USA; Departments of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurology, University of New Mexico, Albuquerque, NM, USA; Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM, USA
| | - Jeremy Hogeveen
- Departments of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Davin K Quinn
- Departments of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
10
|
Lizarraga KJ, Saravanamuttu J, Baarbé JK, Lang AE, Chen R. Interhemispheric pathways in agenesis of the corpus callosum and Parkinson’s disease. Brain Stimul 2020; 13:360-362. [DOI: 10.1016/j.brs.2019.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022] Open
|
11
|
Mayer AR, Stephenson DD, Wertz CJ, Dodd AB, Shaff NA, Ling JM, Park G, Oglesbee SJ, Wasserott BC, Meier TB, Witkiewitz K, Campbell RA, Yeo RA, Phillips JP, Quinn DK, Pottenger A. Proactive inhibition deficits with normal perfusion after pediatric mild traumatic brain injury. Hum Brain Mapp 2019; 40:5370-5381. [PMID: 31456319 PMCID: PMC6864901 DOI: 10.1002/hbm.24778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Although much attention has been generated in popular media regarding the deleterious effects of pediatric mild traumatic brain injury (pmTBI), a paucity of empirical evidence exists regarding the natural course of biological recovery. Fifty pmTBI patients (12-18 years old) were consecutively recruited from Emergency Departments and seen approximately 1 week and 4 months post-injury in this prospective cohort study. Data from 53 sex- and age-matched healthy controls (HC) were also collected. Functional magnetic resonance imaging was obtained during proactive response inhibition and at rest, in conjunction with independent measures of resting cerebral blood flow. High temporal resolution imaging enabled separate modeling of neural responses for preparation and execution of proactive response inhibition. A priori predictions of failed inhibitory responses (i.e., hyperactivation) were observed in motor circuitry (pmTBI>HC) and sensory areas sub-acutely and at 4 months post-injury. Paradoxically, pmTBI demonstrated hypoactivation (HC>pmTBI) during target processing, along with decreased activation within prefrontal cognitive control areas. Functional connectivity within motor circuitry at rest suggested that deficits were limited to engagement during the inhibitory task, whereas normal resting cerebral perfusion ruled out deficits in basal perfusion. In conclusion, current results suggest blood oxygen-level dependent deficits during inhibitory control may exceed commonly held beliefs about physiological recovery following pmTBI, potentially lasting up to 4 months post-injury.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/LBERIAlbuquerqueNew Mexico
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew Mexico
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew Mexico
- Department of PsychiatryUniversity of New MexicoAlbuquerqueNew Mexico
| | | | | | | | | | - Josef M. Ling
- The Mind Research Network/LBERIAlbuquerqueNew Mexico
| | - Grace Park
- Emergency MedicineUniversity of New MexicoAlbuquerqueNew Mexico
| | | | | | - Timothy B. Meier
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsin
- Department of Cell BiologyNeurobiology and Anatomy, Medical College of WisconsinMilwaukeeWisconsin
| | - Katie Witkiewitz
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew Mexico
| | | | - Ronald A. Yeo
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - John P. Phillips
- The Mind Research Network/LBERIAlbuquerqueNew Mexico
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Davin K. Quinn
- Department of PsychiatryUniversity of New MexicoAlbuquerqueNew Mexico
| | - Amy Pottenger
- Emergency MedicineUniversity of New MexicoAlbuquerqueNew Mexico
| |
Collapse
|
12
|
Wertz CJ, Hanlon FM, Shaff NA, Dodd AB, Bustillo J, Stromberg SF, Lin DS, Abrams S, Yeo RA, Liu J, Calhoun V, Mayer AR. Disconnected and Hyperactive: A Replication of Sensorimotor Cortex Abnormalities in Patients With Schizophrenia During Proactive Response Inhibition. Schizophr Bull 2019; 45:552-561. [PMID: 29939338 PMCID: PMC6483571 DOI: 10.1093/schbul/sby086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Inhibitory failure represents a core dysfunction in patients with schizophrenia (SP), which has predominantly been tested in the literature using reactive (ie, altering behavior after a stimulus) rather than proactive (ie, purposefully changing behavior before a stimulus) response inhibition tasks. The current study replicates/extends our previous findings of SP exhibiting sensorimotor cortex (SMC) hyperactivity and connectivity abnormalities in independent samples of patients and controls. Specifically, 49 clinically well-characterized SP and 54 matched healthy controls (HC) performed a proactive response inhibition task while undergoing functional magnetic resonance imaging and resting-state data collection. Results indicated that the majority of SP (84%) and HC (88%) successfully inhibited all overt motor responses following a cue, eliminating behavioral confounds frequently present in this population. Observations of left SMC hyperactivity during proactive response inhibition, reduced cortical connectivity with left SMC, and increased connectivity between left SMC and ventrolateral thalamus were replicated for SP relative to HC in the current study. Similarly, negative symptoms (eg, motor retardation) were again associated with SMC functional and connectivity abnormalities. In contrast, findings of a negative blood oxygenation level-dependent response in the SMC of HC did not replicate. Collectively, current and previous findings suggest that SMC connectivity abnormalities may be more robust relative to evoked hemodynamic signals during proactive response inhibition. In addition, there is strong support that these SMC abnormalities are a key component of SP pathology, along with dysfunction within other sensory cortices, and may be associated with certain clinical deficits such as negative symptoms.
Collapse
Affiliation(s)
- Christopher J Wertz
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Juan Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM
| | - Shannon F Stromberg
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM
| | - Denise S Lin
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM
| | - Swala Abrams
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM
| | - Ronald A Yeo
- Department of Psychology, University of New Mexico, Albuquerque, NM
| | - Jingyu Liu
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Vince Calhoun
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
- Department of Engineering, University of New Mexico, Albuquerque, NM
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM
- Department of Psychology, University of New Mexico, Albuquerque, NM
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM
| |
Collapse
|
13
|
Chalah MA, Palm U, Lefaucheur JP, Créange A, Ayache SS. Interhermispheric inhibition predicts anxiety levels in multiple sclerosis: A corticospinal excitability study. Brain Res 2018; 1699:186-194. [PMID: 30172702 DOI: 10.1016/j.brainres.2018.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Depression and anxiety stand among the most frequent and debilitating complaints in multiple sclerosis (MS) patients. Understanding their neurophysiological correlates might improve their management. To date, no single study has addressed this issue. METHOD Patients completed the Hospital Anxiety and Depression Scale (HADS). Transcranial magnetic stimulation (TMS) was performed to obtain the following corticospinal excitability measures: resting motor threshold, short-interval intracortical inhibition and facilitation, cortical silent period and interhemispheric inhibition (IHI). Anxiety and depression scores were the primary outcomes in the univariate analysis. When obtaining significant associations between anxiety/depression and TMS measures, a multivariate analysis was performed using stepwise linear regression with anxiety and depression scores employed separately as dependent variables and TMS measures, clinical and sociodemographic data as independent variables. Due to the small sample size and the large number of studied variables, only variables with p values <0.05 in the univariate analysis were included in the multivariate analysis. RESULTS Fifty patients completed the study (n = 24 women). Their mean age was 51.82 ± 12.72 years. Mean depression score was 6.08 ± 3.66. Mean anxiety score was 5.82 ± 3.42. A significant association was found between anxiety and IHI (p < 0.05), fatigue (p < 0.05), depression (p < 0.05), and female gender (p < 0.05). Stepwise linear regression analysis was performed and IHI values explained 9.10% of variance in anxiety levels (standardized β: 0.31; p < 0.01) when controlling for remaining variables. As for depression, it did not significantly correlate with any TMS measures. CONCLUSION The results highlight the relationship between anxiety and callosal transfer as reflected by IHI values. The current findings are consistent with previous works assessing healthy participants and patients with social anxiety disorders. Compared to MS patients with aberrant callosal transfer (suggested by low IHI values), those exhibiting a relatively more efficient one (reflected by high IHI values) seem to have higher anxiety scores, a finding that merits further assessment.
Collapse
Affiliation(s)
- Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, 94010 Créteil, France; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, 94010 Créteil, France
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilian University, 80336 Munich, Germany
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, 94010 Créteil, France; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, 94010 Créteil, France
| | - Alain Créange
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, 94010 Créteil, France; Service de Neurologie, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, 94010 Créteil, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, 94010 Créteil, France; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, 94010 Créteil, France; Neurology Division, Lebanese American University Medical Center Rizk Hospital, Beirut, Lebanon.
| |
Collapse
|
14
|
McGregor KM, Crosson B, Mammino K, Omar J, García PS, Nocera JR. Influences of 12-Week Physical Activity Interventions on TMS Measures of Cortical Network Inhibition and Upper Extremity Motor Performance in Older Adults-A Feasibility Study. Front Aging Neurosci 2018; 9:422. [PMID: 29354049 PMCID: PMC5758495 DOI: 10.3389/fnagi.2017.00422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Objective: Data from previous cross-sectional studies have shown that an increased level of physical fitness is associated with improved motor dexterity across the lifespan. In addition, physical fitness is positively associated with increased laterality of cortical function during unimanual tasks; indicating that sedentary aging is associated with a loss of interhemispheric inhibition affecting motor performance. The present study employed exercise interventions in previously sedentary older adults to compare motor dexterity and measure of interhemispheric inhibition using transcranial magnetic stimulation (TMS) after the interventions. Methods: Twenty-one community-dwelling, reportedly sedentary older adults were recruited, randomized and enrolled to a 12-week aerobic exercise group or a 12-week non-aerobic exercise balance condition. The aerobic condition was comprised of an interval-based cycling "spin" activity, while the non-aerobic "balance" exercise condition involved balance and stretching activities. Participants completed upper extremity dexterity batteries and estimates of VO2max in addition to undergoing single (ipsilateral silent period-iSP) and paired-pulse interhemispheric inhibition (ppIHI) in separate assessment sessions before and after study interventions. After each intervention during which heart rate was continuously recorded to measure exertion level (load), participants crossed over into the alternate arm of the study for an additional 12-week intervention period in an AB/BA design with no washout period. Results: After the interventions, regardless of intervention order, participants in the aerobic spin condition showed higher estimated VO2max levels after the 12-week intervention as compared to estimated VO2max in the non-aerobic balance intervention. After controlling for carryover effects due to the study design, participants in the spin condition showed longer iSP duration than the balance condition. Heart rate load was more strongly correlated with silent period duration after the Spin condition than estimated VO2. Conclusions: Aging-related changes in cortical inhibition may be influenced by 12-week physical activity interventions when assessed with the iSP. Although inhibitory signaling is mediates both ppIHI and iSP measures each TMS modality likely employs distinct inhibitory networks, potentially differentially affected by aging. Changes in inhibitory function after physical activity interventions may be associated with improved dexterity and motor control at least as evidence from this feasibility study show.
Collapse
Affiliation(s)
- Keith M. McGregor
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bruce Crosson
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kevin Mammino
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
| | - Javier Omar
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
| | - Paul S. García
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joe R. Nocera
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
15
|
McDonnell MN, Stinear CM. TMS measures of motor cortex function after stroke: A meta-analysis. Brain Stimul 2017; 10:721-734. [DOI: 10.1016/j.brs.2017.03.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/27/2017] [Accepted: 03/20/2017] [Indexed: 01/05/2023] Open
|
16
|
Evidence of alterations in transcallosal motor inhibition as a possible long-term consequence of concussions in sports: A transcranial magnetic stimulation study. Clin Neurophysiol 2016; 127:3364-75. [DOI: 10.1016/j.clinph.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/03/2016] [Accepted: 07/23/2016] [Indexed: 01/14/2023]
|
17
|
Alterations in transcallosal communication following concussion. Clin Neurophysiol 2016; 127:3362-3. [DOI: 10.1016/j.clinph.2016.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022]
|
18
|
Öcal R, Kibaroğlu S, Derle E, Kırnap M, Moray G, Haberal M. A Rare Cause of a Cerebrovascular Accident in a Renal Transplant Recipient: Corpus Callosum Infarction. EXP CLIN TRANSPLANT 2016. [PMID: 27363976 DOI: 10.6002/ect.2016.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Renal transplantation is a life-saving procedure in patients with end-stage renal failure. Advanced surgical procedures and enhanced perioperative care favorably affect the progression of the disease. Despite these advances, neurological complications are important sources of mortality and morbidity. The rate of neurological complications after renal transplantation has been reported as 10-21% by various studies. Here we report a case with corpus callosum infarction in a 39-year-old renal transplant recipient.
Collapse
Affiliation(s)
- Ruhsen Öcal
- From the Department of Neurology, Baskent University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
19
|
Cassidy JM, Chu H, Chen M, Kimberley TJ, Carey JR. Interhemispheric Inhibition Measurement Reliability in Stroke: A Pilot Study. Neuromodulation 2016; 19:838-847. [PMID: 27333364 DOI: 10.1111/ner.12459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/02/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Reliable transcranial magnetic stimulation (TMS) measures for probing corticomotor excitability are important when assessing the physiological effects of noninvasive brain stimulation. The primary objective of this study was to examine test-retest reliability of an interhemispheric inhibition (IHI) index measurement in stroke. MATERIALS AND METHODS Ten subjects with chronic stroke (≥6 months) completed two IHI testing sessions per week for three weeks (six testing sessions total). A single investigator measured IHI in the contra-to-ipsilesional primary motor cortex direction and in the opposite direction using bilateral paired-pulse TMS. Weekly sessions were separated by 24 hours with a 1-week washout period separating testing weeks. To determine if motor-evoked potential (MEP) quantification method affected measurement reliability, IHI indices computed from both MEP amplitude and area responses were found. Reliability was assessed with two-way, mixed intraclass correlation coefficients (ICC(3,k) ). Standard error of measurement and minimal detectable difference statistics were also determined. RESULTS With the exception of the initial testing week, IHI indices measured in the contra-to-ipsilesional hemisphere direction demonstrated moderate to excellent reliability (ICC = 0.725-0.913). Ipsi-to-contralesional IHI indices depicted poor or invalid reliability estimates throughout the three-week testing duration (ICC= -1.153-0.105). The overlap of ICC 95% confidence intervals suggested that IHI indices using MEP amplitude vs. area measures did not differ with respect to reliability. CONCLUSIONS IHI indices demonstrated varying magnitudes of reliability irrespective of MEP quantification method. Several strategies for improving IHI index measurement reliability are discussed.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Physical Medicine and Rehabilitation, Programs in Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Haitao Chu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mo Chen
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN
| | - Teresa J Kimberley
- Department of Physical Medicine and Rehabilitation, Programs in Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - James R Carey
- Department of Physical Medicine and Rehabilitation, Programs in Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Cassidy JM, Cramer SC. Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke. Transl Stroke Res 2016; 8:33-46. [PMID: 27109642 DOI: 10.1007/s12975-016-0467-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
Abstract
With increasing rates of survival throughout the past several years, stroke remains one of the leading causes of adult disability. Following the onset of stroke, spontaneous mechanisms of recovery at the cellular, molecular, and systems levels ensue. The degree of spontaneous recovery is generally incomplete and variable among individuals. Typically, the best recovery outcomes entail the restitution of function in injured but surviving neural matter. An assortment of restorative therapies exists or is under development with the goal of potentiating restitution of function in damaged areas or in nearby ipsilesional regions by fostering neuroplastic changes, which often rely on mechanisms similar to those observed during spontaneous recovery. Advancements in stroke rehabilitation depend on the elucidation of both spontaneous and therapeutic-driven mechanisms of recovery. Further, the implementation of neural biomarkers in research and clinical settings will enable a multimodal approach to probing brain state and predicting the extent of post-stroke functional recovery. This review will discuss spontaneous and therapeutic-induced mechanisms driving post-stroke functional recovery while underscoring several potential restorative therapies and biomarkers.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Physical Medicine & Rehabilitation, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 210, Orange, CA, 92868-5397, USA. .,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Rd, Irvine, 92697, CA, USA.
| |
Collapse
|
21
|
Bocci T, Caleo M, Vannini B, Vergari M, Cogiamanian F, Rossi S, Priori A, Sartucci F. An unexpected target of spinal direct current stimulation: Interhemispheric connectivity in humans. J Neurosci Methods 2015. [DOI: 10.1016/j.jneumeth.2015.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Tazoe T, Endoh T, Kitamura T, Ogata T. Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition. PLoS One 2014; 9:e114244. [PMID: 25478912 PMCID: PMC4257682 DOI: 10.1371/journal.pone.0114244] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used as a useful interventional brain stimulation technique to improve unilateral upper-limb motor function in healthy humans, as well as in stroke patients. Although tDCS applications are supposed to modify the interhemispheric balance between the motor cortices, the tDCS after-effects on interhemispheric interactions are still poorly understood. To address this issue, we investigated the tDCS after-effects on interhemispheric inhibition (IHI) between the primary motor cortices (M1) in healthy humans. Three types of tDCS electrode montage were tested on separate days; anodal tDCS over the right M1, cathodal tDCS over the left M1, bilateral tDCS with anode over the right M1 and cathode over the left M1. Single-pulse and paired-pulse transcranial magnetic stimulations were given to the left M1 and right M1 before and after tDCS to assess the bilateral corticospinal excitabilities and mutual direction of IHI. Regardless of the electrode montages, corticospinal excitability was increased on the same side of anodal stimulation and decreased on the same side of cathodal stimulation. However, neither unilateral tDCS changed the corticospinal excitability at the unstimulated side. Unilateral anodal tDCS increased IHI from the facilitated side M1 to the unchanged side M1, but it did not change IHI in the other direction. Unilateral cathodal tDCS suppressed IHI both from the inhibited side M1 to the unchanged side M1 and from the unchanged side M1 to the inhibited side M1. Bilateral tDCS increased IHI from the facilitated side M1 to the inhibited side M1 and attenuated IHI in the opposite direction. Sham-tDCS affected neither corticospinal excitability nor IHI. These findings indicate that tDCS produced polarity-specific after-effects on the interhemispheric interactions between M1 and that those after-effects on interhemispheric interactions were mainly dependent on whether tDCS resulted in the facilitation or inhibition of the M1 sending interhemispheric volleys.
Collapse
Affiliation(s)
- Toshiki Tazoe
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- * E-mail:
| | - Takashi Endoh
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Faculty of Child Development and Education, Uekusa Gakuen University, Chiba, Japan
| | - Taku Kitamura
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Division of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Toru Ogata
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
23
|
Morishita T, Kubota S, Hirano M, Funase K. Different modulation of short- and long-latency interhemispheric inhibition from active to resting primary motor cortex during a fine-motor manipulation task. Physiol Rep 2014; 2:2/10/e12170. [PMID: 25293600 PMCID: PMC4254095 DOI: 10.14814/phy2.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Performing a complex unimanual motor task markedly increases activation not only in the hemisphere contralateral to the task-performing hand but also in the ipsilateral hemisphere. Transcranial magnetic stimulation studies showed increased motor evoked potential amplitude recorded in resting hand muscles contralateral to the task-performing hand during a unimanual motor task, and transcallosal inputs from the active hemisphere have been suggested to have responsibilities for this phenomenon. In the present study, we used a well-established double-pulse transcranial magnetic stimulation paradigm to measure two phases of interhemispheric inhibition from the active to the resting primary motor cortex during the performance of a complex unimanual motor task. Two different unimanual motor tasks were carried out: a fine-motor manipulation task (using chopsticks to pick up, transport, and release glass balls) as a complex task and a pseudo fine-motor manipulation task as a control task (mimicking the fine-motor manipulation task without using chopsticks and picking glass balls). We found increased short-latency interhemispheric inhibition and decreased long-latency interhemispheric inhibition from the active to the resting primary motor cortex during the fine-motor manipulation task. To the best of our knowledge, the present study is the first to demonstrate different modulation of two phases of interhemispheric inhibition from the active to the resting primary motor cortex during the performance of a complex unimanual motor task. The different modulation of short- and long-latency interhemispheric inhibition may suggest that two phases of interhemispheric inhibition are implemented in distinct circuits with different functional meaning.
Collapse
Affiliation(s)
- Takuya Morishita
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinji Kubota
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masato Hirano
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kozo Funase
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
24
|
Levin O, Fujiyama H, Boisgontier MP, Swinnen SP, Summers JJ. Aging and motor inhibition: a converging perspective provided by brain stimulation and imaging approaches. Neurosci Biobehav Rev 2014; 43:100-17. [PMID: 24726575 DOI: 10.1016/j.neubiorev.2014.04.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/18/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
The ability to inhibit actions, one of the hallmarks of human motor control, appears to decline with advancing age. Evidence for a link between changes in inhibitory functions and poor motor performance in healthy older adults has recently become available with transcranial magnetic stimulation (TMS). Overall, these studies indicate that the capacity to modulate intracortical (ICI) and interhemispheric (IHI) inhibition is preserved in high-performing older individuals. In contrast, older individuals exhibiting motor slowing and a declined ability to coordinate movement appear to show a reduced capability to modulate GABA-mediated inhibitory processes. As a decline in the integrity of the GABA-ergic inhibitory processes may emerge due to age-related loss of white and gray matter, a promising direction for future research would be to correlate individual differences in structural and/or functional integrity of principal brain networks with observed changes in inhibitory processes within cortico-cortical, interhemispheric, and/or corticospinal pathways. Finally, we underscore the possible links between reduced inhibitory functions and age-related changes in brain activation patterns.
Collapse
Affiliation(s)
- Oron Levin
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium.
| | - Hakuei Fujiyama
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium; Human Motor Control Laboratory, School of Psychology, University of Tasmania, Australia
| | - Matthieu P Boisgontier
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Stephan P Swinnen
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), 3001 Leuven, Belgium
| | - Jeffery J Summers
- Human Motor Control Laboratory, School of Psychology, University of Tasmania, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5UX United Kingdom
| |
Collapse
|
25
|
Schutter DJLG, Harmon-Jones E. The corpus callosum: a commissural road to anger and aggression. Neurosci Biobehav Rev 2013; 37:2481-8. [PMID: 23911937 DOI: 10.1016/j.neubiorev.2013.07.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/14/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
According to the frontal cortical asymmetry model of motivational direction, anger and aggression are associated with approach motivation and a dominant left frontal hemisphere. Functional interhemispheric connectivity has been proposed as a possible mechanism that could explain the frontal cortical asymmetry of anger and aggression. Reciprocal interactions between the cerebral hemispheres are primarily established by the corpus callosum which is the largest white matter bundle of the human brain. Experimental brain research has now provided evidence for callosal involvement in approach-motivation. In line with the frontal cortical asymmetry model of motivational direction, differences in the direction of interhemispheric signal transfer are proposed to contribute to anger and aggression. It is concluded that the human corpus callosum provides a possible neuroanatomical correlate for frontal cortical asymmetries and that interhemispheric signal transfer plays a role in the emergence of approach-related motivation and behaviour.
Collapse
Affiliation(s)
- Dennis J L G Schutter
- Department of Psychology, Utrecht University, Utrecht, The Netherlands; School of Psychology, The University of New South Wales, Sydney, NSW, Australia.
| | | |
Collapse
|