1
|
Kaestner M, Chen YD, Clement C, Hodges A, Norcia AM. Two Disparity Channels in Human Visual Cortex With Different Contrast and Blur Sensitivity. Transl Vis Sci Technol 2024; 13:21. [PMID: 38411970 PMCID: PMC10910559 DOI: 10.1167/tvst.13.2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/07/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose Our goal is to describe the contrast and blur sensitivity of multiple horizontal disparity subsystems and to relate them to the contrast and spatial sensitivities of their monocular inputs. Methods Steady-state visual evoked potential (SSVEP) amplitudes were recorded in response to dynamic random dot stereograms (DRDSs) alternating at 2 Hz between zero disparity and varying magnitudes of crossed disparity for disparity plane and disparity grating stimuli. Half-image contrasts ranged between 2.5% and 80% and over a range of Gaussian blurs from 1.4 to 12 arcmin. Separate experiments measured contrast and blur sensitivity for the monocular half-images. Results The first and second harmonics disparity responses were maximal for disparity gratings and for the disparity plane condition, respectively. The first harmonic of the disparity grating response was more affected by both contrast and blur than was the second harmonic of the disparity plane response, which had higher contrast sensitivity than the first harmonic. Conclusions The corrugation frequency, contrast, and blur tuning of the first harmonic suggest that it reflects activity of neurons tuned to higher luminance spatial frequencies that are selective for relative disparity, whereas the second harmonic reflects the activity of neurons sensitive to absolute disparity that are driven by low monocular spatial frequencies. Translational Relevance SSVEPs to DRDSs provide two objective neural measures of disparity processing, the first harmonic-whose stimulus preferences are similar to those of behavioral stereoacuity-and the second harmonic that represents an independent disparity-specific but not necessarily stereoscopic mechanism.
Collapse
Affiliation(s)
- Milena Kaestner
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Yulan D. Chen
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Caroline Clement
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Alex Hodges
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Anthony M. Norcia
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Laurent MA, Audurier P, De Castro V, Gao X, Durand JB, Jonas J, Rossion B, Cottereau BR. Towards an optimization of functional localizers in non-human primate neuroimaging with (fMRI) frequency-tagging. Neuroimage 2023; 270:119959. [PMID: 36822249 DOI: 10.1016/j.neuroimage.2023.119959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Non-human primate (NHP) neuroimaging can provide essential insights into the neural basis of human cognitive functions. While functional magnetic resonance imaging (fMRI) localizers can play an essential role in reaching this objective (Russ et al., 2021), they often differ substantially across species in terms of paradigms, measured signals, and data analysis, biasing the comparisons. Here we introduce a functional frequency-tagging face localizer for NHP imaging, successfully developed in humans and outperforming standard face localizers (Gao et al., 2018). FMRI recordings were performed in two awake macaques. Within a rapid 6 Hz stream of natural non-face objects images, human or monkey face stimuli were presented in bursts every 9 s. We also included control conditions with phase-scrambled versions of all images. As in humans, face-selective activity was objectively identified and quantified at the peak of the face-stimulation frequency (0.111 Hz) and its second harmonic (0.222 Hz) in the Fourier domain. Focal activations with a high signal-to-noise ratio were observed in regions previously described as face-selective, mainly in the STS (clusters PL, ML, MF; also, AL, AF), both for human and monkey faces. Robust face-selective activations were also found in the prefrontal cortex of one monkey (PVL and PO clusters). Face-selective neural activity was highly reliable and excluded all contributions from low-level visual cues contained in the amplitude spectrum of the stimuli. These observations indicate that fMRI frequency-tagging provides a highly valuable approach to objectively compare human and monkey visual recognition systems within the same framework.
Collapse
Affiliation(s)
| | - Pauline Audurier
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France
| | - Vanessa De Castro
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France
| | - Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou City, China
| | - Jean-Baptiste Durand
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Universite de Lorraine, CHRU-Nancy, Service de neurologie, F-54000, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Benoit R Cottereau
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France.
| |
Collapse
|
3
|
Chen YD, Kaestner M, Norcia AM. Cognitive penetrability of scene representations based on horizontal image disparities. Sci Rep 2022; 12:17902. [PMID: 36284130 PMCID: PMC9596438 DOI: 10.1038/s41598-022-22670-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/18/2022] [Indexed: 01/20/2023] Open
Abstract
The structure of natural scenes is signaled by many visual cues. Principal amongst them are the binocular disparities created by the laterally separated viewpoints of the two eyes. Disparity cues are believed to be processed hierarchically, first in terms of local measurements of absolute disparity and second in terms of more global measurements of relative disparity that allow extraction of the depth structure of a scene. Psychophysical and oculomotor studies have suggested that relative disparities are particularly relevant to perception, whilst absolute disparities are not. Here, we compare neural responses to stimuli that isolate the absolute disparity cue with stimuli that contain additional relative disparity cues, using the high temporal resolution of EEG to determine the temporal order of absolute and relative disparity processing. By varying the observers' task, we assess the extent to which each cue is cognitively penetrable. We find that absolute disparity is extracted before relative disparity, and that task effects arise only at or after the extraction of relative disparity. Our results indicate a hierarchy of disparity processing stages leading to the formation of a proto-object representation upon which higher cognitive processes can act.
Collapse
Affiliation(s)
- Yulan D Chen
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA, USA
| | - Milena Kaestner
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, USA.
- Wu-Tsai Neuroscience Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA, USA.
| | - Anthony M Norcia
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA, USA
| |
Collapse
|
4
|
Dynamics of absolute and relative disparity processing in human visual cortex. Neuroimage 2022; 255:119186. [PMID: 35398280 PMCID: PMC9205266 DOI: 10.1016/j.neuroimage.2022.119186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Cortical processing of binocular disparity is believed to begin in V1 where cells are sensitive to absolute disparity, followed by the extraction of relative disparity in higher visual areas. While much is known about the cortical distribution and spatial tuning of disparity-selective neurons, the relationship between their spatial and temporal properties is less well understood. Here, we use steady-state Visual Evoked Potentials and dynamic random dot stereograms to characterize the temporal dynamics of spatial mechanisms in human visual cortex that are primarily sensitive to either absolute or relative disparity. Stereograms alternated between disparate and non-disparate states at 2 Hz. By varying the disparity-defined spatial frequency content of the stereograms from a planar surface to corrugated ones, we biased responses towards absolute vs. relative disparities. Reliable Components Analysis was used to derive two dominant sources from the 128 channel EEG records. The first component (RC1) was maximal over the occipital pole. In RC1, first harmonic responses were sustained, tuned for corrugation frequency, and sensitive to the presence of disparity references, consistent with prior psychophysical sensitivity measurements. By contrast, the second harmonic, associated with transient processing, was not spatially tuned and was indifferent to references, consistent with it being generated by an absolute disparity mechanism. Thus, our results reveal a duplex coding strategy in the disparity domain, where relative disparities are computed via sustained mechanisms and absolute disparities are computed via transient mechanisms.
Collapse
|
5
|
Rideaux R, Michael E, Welchman AE. Adaptation to Binocular Anticorrelation Results in Increased Neural Excitability. J Cogn Neurosci 2019; 32:100-110. [PMID: 31560264 DOI: 10.1162/jocn_a_01471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Throughout the brain, information from individual sources converges onto higher order neurons. For example, information from the two eyes first converges in binocular neurons in area V1. Some neurons are tuned to similarities between sources of information, which makes intuitive sense in a system striving to match multiple sensory signals to a single external cause-that is, establish causal inference. However, there are also neurons that are tuned to dissimilar information. In particular, some binocular neurons respond maximally to a dark feature in one eye and a light feature in the other. Despite compelling neurophysiological and behavioral evidence supporting the existence of these neurons [Katyal, S., Vergeer, M., He, S., He, B., & Engel, S. A. Conflict-sensitive neurons gate interocular suppression in human visual cortex. Scientific Reports, 8, 1239, 2018; Kingdom, F. A. A., Jennings, B. J., & Georgeson, M. A. Adaptation to interocular difference. Journal of Vision, 18, 9, 2018; Janssen, P., Vogels, R., Liu, Y., & Orban, G. A. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron, 37, 693-701, 2003; Tsao, D. Y., Conway, B. R., & Livingstone, M. S. Receptive fields of disparity-tuned simple cells in macaque V1. Neuron, 38, 103-114, 2003; Cumming, B. G., & Parker, A. J. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 389, 280-283, 1997], their function has remained opaque. To determine how neural mechanisms tuned to dissimilarities support perception, here we use electroencephalography to measure human observers' steady-state visually evoked potentials in response to change in depth after prolonged viewing of anticorrelated and correlated random-dot stereograms (RDS). We find that adaptation to anticorrelated RDS results in larger steady-state visually evoked potentials, whereas adaptation to correlated RDS has no effect. These results are consistent with recent theoretical work suggesting "what not" neurons play a suppressive role in supporting stereopsis [Goncalves, N. R., & Welchman, A. E. "What not" detectors help the brain see in depth. Current Biology, 27, 1403-1412, 2017]; that is, selective adaptation of neurons tuned to binocular mismatches reduces suppression resulting in increased neural excitability.
Collapse
|
6
|
Asher JM, Hibbard PB. First- and second-order contributions to depth perception in anti-correlated random dot stereograms. Sci Rep 2018; 8:14120. [PMID: 30237535 PMCID: PMC6148546 DOI: 10.1038/s41598-018-32500-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/05/2018] [Indexed: 11/08/2022] Open
Abstract
The binocular energy model of neural responses predicts that depth from binocular disparity might be perceived in the reversed direction when the contrast of dots presented to one eye is reversed. While reversed-depth has been found using anti-correlated random-dot stereograms (ACRDS) the findings are inconsistent across studies. The mixed findings may be accounted for by the presence of a gap between the target and surround, or as a result of overlap of dots around the vertical edges of the stimuli. To test this, we assessed whether (1) the gap size (0, 19.2 or 38.4 arc min) (2) the correlation of dots or (3) the border orientation (circular target, or horizontal or vertical edge) affected the perception of depth. Reversed-depth from ACRDS (circular no-gap condition) was seen by a minority of participants, but this effect reduced as the gap size increased. Depth was mostly perceived in the correct direction for ACRDS edge stimuli, with the effect increasing with the gap size. The inconsistency across conditions can be accounted for by the relative reliability of first- and second-order depth detection mechanisms, and the coarse spatial resolution of the latter.
Collapse
Affiliation(s)
- Jordi M Asher
- University of Essex, Department of Psychology, Wivenhoe Park, CO4 3SQ, United Kingdom.
| | - Paul B Hibbard
- University of Essex, Department of Psychology, Wivenhoe Park, CO4 3SQ, United Kingdom
| |
Collapse
|
7
|
Fujita I, Doi T. Weighted parallel contributions of binocular correlation and match signals to conscious perception of depth. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0257. [PMID: 27269600 DOI: 10.1098/rstb.2015.0257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 11/12/2022] Open
Abstract
Binocular disparity is detected in the primary visual cortex by a process similar to calculation of local cross-correlation between left and right retinal images. As a consequence, correlation-based neural signals convey information about false disparities as well as the true disparity. The false responses in the initial disparity detectors are eliminated at later stages in order to encode only disparities of the features correctly matched between the two eyes. For a simple stimulus configuration, a feed-forward nonlinear process can transform the correlation signal into the match signal. For human observers, depth judgement is determined by a weighted sum of the correlation and match signals rather than depending solely on the latter. The relative weight changes with spatial and temporal parameters of the stimuli, allowing adaptive recruitment of the two computations under different visual circumstances. A full transformation from correlation-based to match-based representation occurs at the neuronal population level in cortical area V4 and manifests in single-neuron responses of inferior temporal and posterior parietal cortices. Neurons in area V5/MT represent disparity in a manner intermediate between the correlation and match signals. We propose that the correlation and match signals in these areas contribute to depth perception in a weighted, parallel manner.This article is part of the themed issue 'Vision in our three-dimensional world'.
Collapse
Affiliation(s)
- Ichiro Fujita
- Osaka University Graduate School of Frontier Biosciences, Center for Information and Neural Networks, Osaka University and National Institutes of Communications Technology, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Doi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104-6074, USA
| |
Collapse
|
8
|
Development of Relative Disparity Sensitivity in Human Visual Cortex. J Neurosci 2017; 37:5608-5619. [PMID: 28473649 DOI: 10.1523/jneurosci.3570-16.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Stereopsis is the primary cue underlying our ability to make fine depth judgments. In adults, depth discriminations are supported largely by relative rather than absolute binocular disparity, and depth is perceived primarily for horizontal rather than vertical disparities. Although human infants begin to exhibit disparity-specific responses between 3 and 5 months of age, it is not known how relative disparity mechanisms develop. Here we show that the specialization for relative disparity is highly immature in 4- to 6-month-old infants but is adult-like in 4- to 7-year-old children. Disparity-tuning functions for horizontal and vertical disparities were measured using the visual evoked potential. Infant relative disparity thresholds, unlike those of adults, were equal for vertical and horizontal disparities. Their horizontal disparity thresholds were a factor of ∼10 higher than adults, but their vertical disparity thresholds differed by a factor of only ∼4. Horizontal relative disparity thresholds for 4- to 7-year-old children were comparable with those of adults at ∼0.5 arcmin. To test whether infant immaturity was due to spatial limitations or insensitivity to interocular correlation, highly suprathreshold horizontal and vertical disparities were presented in alternate regions of the display, and the interocular correlation of the interdigitated regions was varied from 0% to 100%. This manipulation regulated the availability of coarse-scale relative disparity cues. Adult and infant responses both increased with increasing interocular correlation by similar magnitudes, but adult responses increased much more for horizontal disparities, further evidence for qualitatively immature stereopsis based on relative disparity at 4-6 months of age.SIGNIFICANCE STATEMENT Stereopsis, our ability to sense depth from horizontal image disparity, is among the finest spatial discriminations made by the primate visual system. Fine stereoscopic depth discriminations depend critically on comparisons of disparity relationships in the image that are supported by relative disparity cues rather than the estimation of single, absolute disparities. Very young human and macaque infants are sensitive to absolute disparity, but no previous study has specifically studied the development of relative disparity sensitivity, a hallmark feature of adult stereopsis. Here, using high-density EEG recordings, we show that 4- to 6-month-old infants display both quantitative and qualitative response immaturities for relative disparity information. Relative disparity responses are adult-like no later than 4-7 years of age.
Collapse
|
9
|
Stereopsis after anterior temporal lobectomy. Cortex 2016; 82:63-71. [PMID: 27344239 DOI: 10.1016/j.cortex.2016.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/06/2016] [Accepted: 05/27/2016] [Indexed: 11/21/2022]
Abstract
Brain areas critical for stereopsis have been investigated in non-human primates but are largely unknown in the human brain. Microelectrode recordings and functional MRI (fMRI) studies in monkeys have shown that in monkeys the inferior temporal cortex is critically involved in 3D shape categorization. Furthermore, some human fMRI studies similarly suggest an involvement of visual areas in the temporal lobe in depth perception. We aimed to investigate the role of the human anterior temporal neocortex in stereopsis by assessing stereoscopic depth perception before and after anterior temporal lobectomy. Eighteen epilepsy surgery patients were tested, pre- and postoperatively, in 3 different depth discrimination tasks. Sensitivity for local and global disparity was tested in a near-far discrimination task and sensitivity for 3D curvature was assessed in a convex-concave discrimination task, where 3D shapes were presented at different positions in depth. We found no evidence that temporal lobe epilepsy surgery has a significant effect on stereopsis. In contrast with earlier findings, we conclude that local as well as global stereopsis is maintained after unilateral resection of the temporal pole in epilepsy surgery patients. Our findings, together with previous studies, suggest that in humans more posterior visual regions underlie depth perception.
Collapse
|
10
|
Chopin A, Levi D, Knill D, Bavelier D. The absolute disparity anomaly and the mechanism of relative disparities. J Vis 2016; 16:2. [PMID: 27248566 PMCID: PMC4898198 DOI: 10.1167/16.8.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 11/24/2022] Open
Abstract
There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).
Collapse
|
11
|
Hibbard PB, Goutcher R, Hunter DW. Encoding and estimation of first- and second-order binocular disparity in natural images. Vision Res 2016; 120:108-20. [PMID: 26731646 PMCID: PMC4802249 DOI: 10.1016/j.visres.2015.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022]
Abstract
First- and second-order responses to natural binocular images are correlated. Second-order mechanisms can improve the accuracy of disparity estimation. Second-order mechanisms can extend the depth range of binocular stereopsis.
The first stage of processing of binocular information in the visual cortex is performed by mechanisms that are bandpass-tuned for spatial frequency and orientation. Psychophysical and physiological evidence have also demonstrated the existence of second-order mechanisms in binocular processing, which can encode disparities that are not directly accessible to first-order mechanisms. We compared the responses of first- and second-order binocular filters to natural images. We found that the responses of the second-order mechanisms are to some extent correlated with the responses of the first-order mechanisms, and that they can contribute to increasing both the accuracy, and depth range, of binocular stereopsis.
Collapse
Affiliation(s)
- Paul B Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, KY16 9JP Scotland, UK.
| | - Ross Goutcher
- Psychology, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - David W Hunter
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, KY16 9JP Scotland, UK
| |
Collapse
|
12
|
Chakraborty A, Anstice NS, Jacobs RJ, Paudel N, LaGasse LL, Lester BM, Wouldes TA, Harding JE, Thompson B. Global motion perception is independent from contrast sensitivity for coherent motion direction discrimination and visual acuity in 4.5-year-old children. Vision Res 2015; 115:83-91. [PMID: 26318529 PMCID: PMC4587337 DOI: 10.1016/j.visres.2015.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/28/2015] [Accepted: 08/22/2015] [Indexed: 01/25/2023]
Abstract
Global motion processing depends on a network of brain regions that includes extrastriate area V5 in the dorsal visual stream. For this reason, psychophysical measures of global motion perception have been used to provide a behavioral measure of dorsal stream function. This approach assumes that global motion is relatively independent of visual functions that arise earlier in the visual processing hierarchy such as contrast sensitivity and visual acuity. We tested this assumption by assessing the relationships between global motion perception, contrast sensitivity for coherent motion direction discrimination (henceforth referred to as contrast sensitivity) and habitual visual acuity in a large group of 4.5-year-old children (n=117). The children were born at risk of abnormal neurodevelopment because of prenatal drug exposure or risk factors for neonatal hypoglycemia. Motion coherence thresholds, a measure of global motion perception, were assessed using random dot kinematograms. The contrast of the stimuli was fixed at 100% and coherence was varied. Contrast sensitivity was measured using the same stimuli by fixing motion coherence at 100% and varying dot contrast. Stereoacuity was also measured. Motion coherence thresholds were not correlated with contrast sensitivity or visual acuity. However, lower (better) motion coherence thresholds were correlated with finer stereoacuity (ρ=0.38, p=0.004). Contrast sensitivity and visual acuity were also correlated (ρ=-0.26, p=0.004) with each other. These results indicate that global motion perception for high contrast stimuli is independent of contrast sensitivity and visual acuity and can be used to assess motion integration mechanisms in children.
Collapse
Affiliation(s)
- Arijit Chakraborty
- School of Optometry and Vision Science, University of Auckland, New Zealand
| | - Nicola S Anstice
- School of Optometry and Vision Science, University of Auckland, New Zealand
| | - Robert J Jacobs
- School of Optometry and Vision Science, University of Auckland, New Zealand
| | - Nabin Paudel
- School of Optometry and Vision Science, University of Auckland, New Zealand
| | - Linda L LaGasse
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School at Brown University, USA
| | - Barry M Lester
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School at Brown University, USA
| | - Trecia A Wouldes
- Department of Psychological Medicine, University of Auckland, New Zealand
| | | | - Benjamin Thompson
- School of Optometry and Vision Science, University of Auckland, New Zealand; School of Optometry and Vision Science, University of Waterloo, Canada.
| |
Collapse
|
13
|
Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B. The steady-state visual evoked potential in vision research: A review. J Vis 2015; 15:4. [PMID: 26024451 PMCID: PMC4581566 DOI: 10.1167/15.6.4] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023] Open
Abstract
Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science.
Collapse
|
14
|
Cottereau BR, Ales JM, Norcia AM. How to use fMRI functional localizers to improve EEG/MEG source estimation. J Neurosci Methods 2014; 250:64-73. [PMID: 25088693 DOI: 10.1016/j.jneumeth.2014.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022]
Abstract
EEG and MEG have excellent temporal resolution, but the estimation of the neural sources that generate the signals recorded by the sensors is a difficult, ill-posed problem. The high spatial resolution of functional MRI makes it an ideal tool to improve the localization of the EEG/MEG sources using data fusion. However, the combination of the two techniques remains challenging, as the neural generators of the EEG/MEG and BOLD signals might in some cases be very different. Here we describe a data fusion approach that was developed by our team over the last decade in which fMRI is used to provide source constraints that are based on functional areas defined individually for each subject. This mini-review describes the different steps that are necessary to perform source estimation using this approach. It also provides a list of pitfalls that should be avoided when doing fMRI-informed EEG/MEG source imaging. Finally, it describes the advantages of using a ROI-based approach for group-level analysis and for the study of sensory systems.
Collapse
Affiliation(s)
- Benoit R Cottereau
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, UPS, France; CNRS UMR 5549, CerCo, Toulouse, France.
| | - Justin M Ales
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, UK
| | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
The evolution of a disparity decision in human visual cortex. Neuroimage 2014; 92:193-206. [PMID: 24513152 DOI: 10.1016/j.neuroimage.2014.01.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/20/2014] [Accepted: 01/29/2014] [Indexed: 11/23/2022] Open
Abstract
We used fMRI-informed EEG source-imaging in humans to characterize the dynamics of cortical responses during a disparity-discrimination task. After the onset of a disparity-defined target, decision-related activity was found within an extended cortical network that included several occipital regions of interest (ROIs): V4, V3A, hMT+ and the Lateral Occipital Complex (LOC). By using a response-locked analysis, we were able to determine the timing relationships in this network of ROIs relative to the subject's behavioral response. Choice-related activity appeared first in the V4 ROI almost 200 ms before the button press and then subsequently in the V3A ROI. Modeling of the responses in the V4 ROI suggests that this area provides an early contribution to disparity discrimination. Choice-related responses were also found after the button-press in ROIs V4, V3A, LOC and hMT+. Outside the visual cortex, choice-related activity was found in the frontal and temporal poles before the button-press. By combining the spatial resolution of fMRI-informed EEG source imaging with the ability to sort out neural activity occurring before, during and after the behavioral manifestation of the decision, our study is the first to assign distinct functional roles to the extra-striate ROIs involved in perceptual decisions based on disparity, the primary cue for depth.
Collapse
|
16
|
Cottereau BR, McKee SP, Norcia AM. Dynamics and cortical distribution of neural responses to 2D and 3D motion in human. J Neurophysiol 2013; 111:533-43. [PMID: 24198326 DOI: 10.1152/jn.00549.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perception of motion-in-depth is important for avoiding collisions and for the control of vergence eye-movements and other motor actions. Previous psychophysical studies have suggested that sensitivity to motion-in-depth has a lower temporal processing limit than the perception of lateral motion. The present study used functional MRI-informed EEG source-imaging to study the spatiotemporal properties of the responses to lateral motion and motion-in-depth in human visual cortex. Lateral motion and motion-in-depth displays comprised stimuli whose only difference was interocular phase: monocular oscillatory motion was either in-phase in the two eyes (lateral motion) or in antiphase (motion-in-depth). Spectral analysis was used to break the steady-state visually evoked potentials responses down into even and odd harmonic components within five functionally defined regions of interest: V1, V4, lateral occipital complex, V3A, and hMT+. We also characterized the responses within two anatomically defined regions: the inferior and superior parietal cortex. Even harmonic components dominated the evoked responses and were a factor of approximately two larger for lateral motion than motion-in-depth. These responses were slower for motion-in-depth and were largely independent of absolute disparity. In each of our regions of interest, responses at odd-harmonics were relatively small, but were larger for motion-in-depth than lateral motion, especially in parietal cortex, and depended on absolute disparity. Taken together, our results suggest a plausible neural basis for reduced psychophysical sensitivity to rapid motion-in-depth.
Collapse
Affiliation(s)
- Benoit R Cottereau
- Centre de Recherche Cerveau et Cognition, Centre National de la Recherche Scientifique CERCO UMR 5549, Toulouse, France
| | | | | |
Collapse
|
17
|
Abstract
AbstractThe dissociation of a figure from its background is an essential feat of visual perception, as it allows us to detect, recognize, and interact with shapes and objects in our environment. In order to understand how the human brain gives rise to the perception of figures, we here review experiments that explore the links between activity in visual cortex and performance of perceptual tasks related to figure perception. We organize our review according to a proposed model that attempts to contextualize figure processing within the more general framework of object processing in the brain. Overall, the current literature provides us with individual linking hypotheses as to cortical regions that are necessary for particular tasks related to figure perception. Attempts to reach a more complete understanding of how the brain instantiates figure and object perception, however, will have to consider the temporal interaction between the many regions involved, the details of which may vary widely across different tasks.
Collapse
|
18
|
Palomares M, Ales JM, Wade AR, Cottereau BR, Norcia AM. Distinct effects of attention on the neural responses to form and motion processing: a SSVEP source-imaging study. J Vis 2012; 12:15. [PMID: 23019120 DOI: 10.1167/12.10.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We measured neural responses to local and global aspects of form and motion stimuli using frequency-tagged, steady-state visual evoked potentials (SSVEPs) combined with magnetic resonance imaging (MRI) data. Random dot stimuli were used to portray either dynamic Glass patterns (Glass, 1969) or coherent motion displays. SSVEPs were used to estimate neural activity in a set of fMRI-defined visual areas in each subject. To compare activity associated with local versus global processing, we analyzed two frequency components of the SSVEP in each visual area: the high temporal frequency at which the local dots were updated (30 Hz) and the much lower frequency corresponding to updates in the global structure (0.83 Hz). Local and global responses were evaluated in the context of two different behavioral tasks--subjects had to either direct their attention toward or away from the global coherence of the stimuli. The data show that the effect of attention on global and local responses is both stimulus and visual area dependent. When attention was directed away from stimulus coherence, both local and global responses were higher in the coherent motion than Glass pattern condition. Directing attention to coherence in Glass patterns enhanced global activity in areas LOC, hMT+, V4, V3a, and V1, while attention to global motion modulated responses by a smaller amount in a smaller set of areas: V4, hMT+, and LOC. In contrast, directing attention towards stimulus coherence weakly increased local responses to both coherent motion and Glass patterns. These results suggest that visual attention differentially modulates the activity of early visual areas at both local and global levels of structural encoding.
Collapse
|