1
|
Ye H, Dima M, Hall V, Hendee J. Cellular mechanisms underlying carry-over effects after magnetic stimulation. Sci Rep 2024; 14:5167. [PMID: 38431662 PMCID: PMC10908793 DOI: 10.1038/s41598-024-55915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Magnetic fields are widely used for neuromodulation in clinical settings. The intended effect of magnetic stimulation is that neural activity resumes its pre-stimulation state right after stimulation. Many theoretical and experimental works have focused on the cellular and molecular basis of the acute neural response to magnetic field. However, effects of magnetic stimulation can still last after the termination of the magnetic stimulation (named "carry-over effects"), which could generate profound effects to the outcome of the stimulation. However, the cellular and molecular mechanisms of carry-over effects are largely unknown, which renders the neural modulation practice using magnetic stimulation unpredictable. Here, we investigated carry-over effects at the cellular level, using the combination of micro-magnetic stimulation (µMS), electrophysiology, and computation modeling. We found that high frequency magnetic stimulation could lead to immediate neural inhibition in ganglion neurons from Aplysia californica, as well as persistent, carry-over inhibition after withdrawing the magnetic stimulus. Carry-over effects were found in the neurons that fired action potentials under a variety of conditions. The carry-over effects were also observed in the neurons when the magnetic field was applied across the ganglion sheath. The state of the neuron, specifically synaptic input and membrane potential fluctuation, plays a significant role in generating the carry-over effects after magnetic stimulation. To elucidate the cellular mechanisms of such carry-over effects under magnetic stimulation, we simulated a single neuron under magnetic stimulation with multi-compartment modeling. The model successfully replicated the carry-over effects in the neuron, and revealed that the carry-over effect was due to the dysfunction of the ion channel dynamics that were responsible for the initiation and sustaining of membrane excitability. A virtual voltage-clamp experiment revealed a compromised Na conductance and enhanced K conductance post magnetic stimulation, rendering the neurons incapable of generating action potentials and, therefore, leading to the carry over effects. Finally, both simulation and experimental results demonstrated that the carry-over effects could be controlled by disturbing the membrane potential during the post-stimulus inhibition period. Delineating the cellular and ion channel mechanisms underlying carry-over effects could provide insights to the clinical outcomes in brain stimulation using TMS and other modalities. This research incentivizes the development of novel neural engineering or pharmacological approaches to better control the carry-over effects for optimized clinical outcomes.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Maria Dima
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Vincent Hall
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Jenna Hendee
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
2
|
Averin AS, Konakov MV, Pimenov OY, Galimova MH, Berezhnov AV, Nenov MN, Dynnik VV. Regulation of Papillary Muscle Contractility by NAD and Ammonia Interplay: Contribution of Ion Channels and Exchangers. MEMBRANES 2022; 12:1239. [PMID: 36557146 PMCID: PMC9785361 DOI: 10.3390/membranes12121239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used β-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM β-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in β-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after β-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating β-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of β-NAD and ammonia on rat papillary muscle contractile activity.
Collapse
Affiliation(s)
- Alexey S. Averin
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V. Konakov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg Y. Pimenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miliausha H. Galimova
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miroslav N. Nenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
3
|
Ye H, Hendee J, Ruan J, Zhirova A, Ye J, Dima M. Neuron matters: neuromodulation with electromagnetic stimulation must consider neurons as dynamic identities. J Neuroeng Rehabil 2022; 19:116. [PMID: 36329492 PMCID: PMC9632094 DOI: 10.1186/s12984-022-01094-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Neuromodulation with electromagnetic stimulation is widely used for the control of abnormal neural activity, and has been proven to be a valuable alternative to pharmacological tools for the treatment of many neurological diseases. Tremendous efforts have been focused on the design of the stimulation apparatus (i.e., electrodes and magnetic coils) that delivers the electric current to the neural tissue, and the optimization of the stimulation parameters. Less attention has been given to the complicated, dynamic properties of the neurons, and their context-dependent impact on the stimulation effects. This review focuses on the neuronal factors that influence the outcomes of electromagnetic stimulation in neuromodulation. Evidence from multiple levels (tissue, cellular, and single ion channel) are reviewed. Properties of the neural elements and their dynamic changes play a significant role in the outcome of electromagnetic stimulation. This angle of understanding yields a comprehensive perspective of neural activity during electrical neuromodulation, and provides insights in the design and development of novel stimulation technology.
Collapse
Affiliation(s)
- Hui Ye
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Jenna Hendee
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Joyce Ruan
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Alena Zhirova
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Jayden Ye
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| | - Maria Dima
- grid.164971.c0000 0001 1089 6558Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660 USA
| |
Collapse
|
4
|
Ye H. Finding the Location of Axonal Activation by a Miniature Magnetic Coil. Front Comput Neurosci 2022; 16:932615. [PMID: 35847967 PMCID: PMC9276924 DOI: 10.3389/fncom.2022.932615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Magnetic stimulation for neural activation is widely used in clinical and lab research. In comparison to electric stimulation using an implanted electrode, stimulation with a large magnetic coil is associated with poor spatial specificity and incapability to stimulate deep brain structures. Recent developments in micromagnetic stimulation (μMS) technology mitigates some of these shortcomings. The sub-millimeter coils can be covered with soft, biocompatible material, and chronically implanted. They can provide highly specific neural stimulation in the deep neural structure. Although the μMS technology is expected to provide a precise location of neural stimulation, the exact site of neural activation is difficult to determine. Furthermore, factors that could cause the shifting of the activation site during μMS have not been fully investigated. To estimate the location of axon activation in μMS, we first derived an analytical expression of the activating function, which predicts the location of membrane depolarization in an unmyelinated axon. Then, we developed a multi-compartment, Hodgkin-Huxley (H-H) type of NEURON model of an unmyelinated axon to test the impact of several important coil parameters on the location of axonal activation. The location of axonal activation was dependent on both the parameters of the stimulus and the biophysics properties of the targeted axon during μMS. The activating function analysis predicted that the location of membrane depolarization and activation could shift due to the reversal of the coil current and the change in the coil-axon distance. The NEURON modeling confirmed these predictions. Interestingly, the NEURON simulation further revealed that the intensity of stimulation played a significant role in the activation location. Moderate or strong coil currents activated the axon at different locations, mediated by two distinct ion channel mechanisms. This study reports several experimental factors that could cause a potential shift in the location of neural activation during μMS, which is essential for further development of this novel technology.
Collapse
|
5
|
Abstract
Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the soma, and was sufficient in blocking the neuron's functional output. Biophysical modeling confirmed that the miniature coil induced a sufficient electric field in the vicinity of the targeted soma. Using a multi-compartment model of Aplysia ganglion neuron, we found that the high-frequency magnetic stimuli altered the ion channel dynamics that were essential for the sustained firing of action potentials in the soma. Results from this study produces several critical insights to further developing the miniature coil technology for neural control by targeting ganglion cells. The miniature coil provides an interesting neural modulation strategy in clinical applications and laboratory research.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Lauryn Barrett
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
6
|
Rasmussen R, O'Donnell J, Ding F, Nedergaard M. Interstitial ions: A key regulator of state-dependent neural activity? Prog Neurobiol 2020; 193:101802. [PMID: 32413398 PMCID: PMC7331944 DOI: 10.1016/j.pneurobio.2020.101802] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
Throughout the nervous system, ion gradients drive fundamental processes. Yet, the roles of interstitial ions in brain functioning is largely forgotten. Emerging literature is now revitalizing this area of neuroscience by showing that interstitial cations (K+, Ca2+ and Mg2+) are not static quantities but change dynamically across states such as sleep and locomotion. In turn, these state-dependent changes are capable of sculpting neuronal activity; for example, changing the local interstitial ion composition in the cortex is sufficient for modulating the prevalence of slow-frequency neuronal oscillations, or potentiating the gain of visually evoked responses. Disturbances in interstitial ionic homeostasis may also play a central role in the pathogenesis of central nervous system diseases. For example, impairments in K+ buffering occur in a number of neurodegenerative diseases, and abnormalities in neuronal activity in disease models disappear when interstitial K+ is normalized. Here we provide an overview of the roles of interstitial ions in physiology and pathology. We propose the brain uses interstitial ion signaling as a global mechanism to coordinate its complex activity patterns, and ion homeostasis failure contributes to central nervous system diseases affecting cognitive functions and behavior.
Collapse
Affiliation(s)
- Rune Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - John O'Donnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States.
| |
Collapse
|
7
|
Ye H, Kaszuba S. Neuromodulation with electromagnetic stimulation for seizure suppression: From electrode to magnetic coil. IBRO Rep 2019; 7:26-33. [PMID: 31360792 PMCID: PMC6639724 DOI: 10.1016/j.ibror.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Non-invasive brain tissue stimulation with a magnetic coil provides several irreplaceable advantages over that with an implanted electrode, in altering neural activities under pathological situations. We reviewed clinical cases that utilized time-varying magnetic fields for the treatment of epilepsy, and the safety issues related to this practice. Animal models have been developed to foster understanding of the cellular/molecular mechanisms underlying magnetic control of epileptic activity. These mechanisms include (but are not limited to) (1) direct membrane polarization by the magnetic field, (2) depolarization blockade by the deactivation of ion channels, (3) alteration in synaptic transmission, and (4) interruption of ephaptic interaction and cellular synchronization. Clinical translation of this technology could be improved through the advancement of magnetic design, optimization of stimulation protocols, and evaluation of the long-term safety. Cellular and molecular studies focusing on the mechanisms of magnetic stimulation are of great value in facilitating this translation.
Collapse
Key Words
- 4-AP, 4-aminopyridine
- Animal models
- CD50, convulsant dose
- Cellular mechanisms
- DBS, deep brain stimulation
- EEG, electroencephalography
- ELF-MF, extremely low frequency magnetic fields
- EcoG, electrocorticography
- Epilepsy
- GABA, gamma-aminobutyric acid
- HFS, high frequency stimulation
- KA, kainic acid
- LD50, lethal dose
- LTD, long-term depression
- LTP, long-term potential
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Magnetic stimulation
- NMDAR, N-methyl-d-aspartate receptor
- PTZ, pentylenetetrazol
- REM, rapid eye movement
- SMF, static magnetic field
- TES, transcranial electrical stimulation
- TLE, temporal lobe epilepsy
- TMS, transcranial magnetic stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tDCS, transcranial direct-current stimulation
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, 1032 W. Sheridan Rd., IL, 60660, United States
| | - Stephanie Kaszuba
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL, 60064, United States
| |
Collapse
|
8
|
Tucker HR, Mahoney E, Chhetri A, Unger K, Mamone G, Kim G, Audil A, Moolick B, Molho ES, Pilitsis JG, Shin DS. Deep brain stimulation of the ventroanterior and ventrolateral thalamus improves motor function in a rat model of Parkinson's disease. Exp Neurol 2019; 317:155-167. [PMID: 30890329 DOI: 10.1016/j.expneurol.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with affected individuals exhibiting motor symptoms of bradykinesia, muscle rigidity, tremor, postural instability and gait dysfunction. The current gold standard treatment is pharmacotherapy with levodopa, but long-term use is associated with motor response fluctuations and can cause abnormal movements called dyskinesias. An alternative treatment option is deep brain stimulation (DBS) with the two FDA-approved brain targets for PD situated in the basal ganglia; specifically, in the subthalamic nucleus (STN) and globus pallidus pars interna (GPi). Both improve quality of life and motor scores by ~50-70% in well-selected patients but can also elicit adverse effects on cognition and other non-motor symptoms. Therefore, identifying a novel DBS target that is efficacious for patients not optimally responsive to current DBS targets with fewer side-effects has clear clinical merit. Here, we investigate whether the ventroanterior (VA) and ventrolateral (VL) motor nuclei of the thalamus can serve as novel and effective DBS targets for PD. In the limb-use asymmetry test (LAT), hemiparkinsonian rats showcased left forelimb akinesia and touched only 6.5 ± 1.3% with that paw. However, these animals touched equally with both forepaws with DBS at 10 Hz, 100 μsec pulse width and 100 uA cathodic stimulation in the VA (n = 7), VL (n = 8) or at the interface between the two thalamic nuclei which we refer to as the VA|VL (n = 12). With whole-cell patch-clamp recordings, we noted that VA|VL stimulation in vitro increased the number of induced action potentials in proximal neurons in both areas albeit VL neurons transitioned from bursting to non-bursting action potentials (APs) with large excitatory postsynaptic potentials time-locked to stimulation. In contrast, VA neurons were excited with VA|VL electrical stimulation but with little change in spiking phenotype. Overall, our findings show that DBS in the VA, VL or VA|VL improved motor function in a rat model of PD; plausibly via increased excitation of residing neurons.
Collapse
Affiliation(s)
- Heidi R Tucker
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America
| | - Emily Mahoney
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America
| | - Ashok Chhetri
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America
| | - Kristen Unger
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America
| | - Gianna Mamone
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America
| | - Gabrielle Kim
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America
| | - Aliyah Audil
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America
| | - Benjamin Moolick
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America
| | - Eric S Molho
- Department of Neurology, Albany Medical Center, Albany, NY, United States of America
| | - Julie G Pilitsis
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America; Department of Neurosurgery, Albany Medical Center, Albany, NY, United States of America
| | - Damian S Shin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, United States of America; Department of Neurology, Albany Medical Center, Albany, NY, United States of America.
| |
Collapse
|
9
|
Lehnhoff J, Strauss U, Wierschke S, Grosser S, Pollali E, Schneider UC, Holtkamp M, Dehnicke C, Deisz RA. The anticonvulsant lamotrigine enhances Ih in layer 2/3 neocortical pyramidal neurons of patients with pharmacoresistant epilepsy. Neuropharmacology 2019; 144:58-69. [DOI: 10.1016/j.neuropharm.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
|
10
|
Long-Lasting Electrophysiological After-Effects of High-Frequency Stimulation in the Globus Pallidus: Human and Rodent Slice Studies. J Neurosci 2018; 38:10734-10746. [PMID: 30373767 DOI: 10.1523/jneurosci.0785-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
Abstract
Deep-brain stimulation (DBS) of the globus pallidus pars interna (GPi) is a highly effective therapy for movement disorders, yet its mechanism of action remains controversial. Inhibition of local neurons because of release of GABA from afferents to the GPi is a proposed mechanism in patients. Yet, high-frequency stimulation (HFS) produces prolonged membrane depolarization mediated by cholinergic neurotransmission in endopeduncular nucleus (EP, GPi equivalent in rodent) neurons. We applied HFS while recording neuronal firing from an adjacent electrode during microelectrode mapping of GPi in awake patients (both male and female) with Parkinson disease (PD) and dystonia. Aside from after-suppression and no change in neuronal firing, high-frequency microstimulation induced after-facilitation in 38% (26/69) of GPi neurons. In neurons displaying after-facilitation, 10 s HFS led to an immediate decrease of bursting in PD, but not dystonia patients. Moreover, the changes of bursting patterns in neurons with after-suppression or no change after HFS, were similar in both patient groups. To explore the mechanisms responsible, we applied HFS in EP brain slices from rats of either sex. As in humans, HFS in EP induced two subtypes of after-excitation: excitation or excitation with late inhibition. Pharmacological experiments determined that the excitation subtype, induced by lower charge density, was dependent on glutamatergic transmission. HFS with higher charge density induced excitation with late inhibition, which involved cholinergic modulation. Therefore HFS with different charge density may affect the local neurons through multiple synaptic mechanisms. The cholinergic system plays a role in mediating the after-facilitatory effects in GPi neurons, and because of their modulatory nature, may provide a basis for both the immediate and delayed effects of GPi-DBS. We propose a new model to explain the mechanisms of DBS in GPi.SIGNIFICANCE STATEMENT Deep-brain stimulation (DBS) in the globus pallidus pars interna (GPi) improves Parkinson disease (PD) and dystonia, yet its mechanisms in GPi remain controversial. Inhibition has been previously described and thought to indicate activation of GABAergic synaptic terminals, which dominate in GPi. Here we report that 10 s high-frequency microstimulation induced after-facilitation of neural firing in a substantial proportion of GPi neurons in humans. The neurons with after-facilitation, also immediately reduced their bursting activities after high-frequency stimulation in PD, but not dystonia patients. Based on these data and further animal experiments, a mechanistic hypothesis involving glutamatergic, GABAergic, and cholinergic synaptic transmission is proposed to explain both short- and longer-term therapeutic effects of DBS in GPi.
Collapse
|
11
|
Wang Z, Feng Z, Yu Y, Zhu Y, Guo Z. Detection of single unit spikes during orthodromic-high frequency stimulation in rat hippocampus. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:5813-5816. [PMID: 28269576 DOI: 10.1109/embc.2016.7592049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Deep brain stimulation (DBS) has been used as a treatment of brain diseases such as Parkinson's disease and is a promising therapy for epilepsy. But the mechanisms of high frequency stimulation (HFS) used by DBS are still uncertain. In order to investigate the changes of action penitential firings of individual neurons (single unit activity, SUA) during the period of HFS, a new algorithm based on window detection was designed to detect spikes in broadband-frequency recording signals. The results show that orthodromic-HFS (O-HFS) could excite the neurons in CA1 regions, and the firing rate of interneurons and pyramidal neurons increased significantly. In particular, a decrease in spike amplitude for both interneurons and pyramidal neurons was observed during the period of O-HFS. The amplitude decrease of unit spikes was most remarkable with the presence of HFS-induced population spike (PS). These results suggest that the stimulation pulses of O-HFS could activate the downstream neurons continuously, leading to the downstream neurons being unable to repolarize completely. The results are important for tracking individual neuron activity during HFS and for further understanding of DBS mechanisms.
Collapse
|
12
|
Wang L, Dufour S, Valiante TA, Carlen PL. Extracellular Potassium and Seizures: Excitation, Inhibition and the Role of Ih. Int J Neural Syst 2016; 26:1650044. [PMID: 27464853 DOI: 10.1142/s0129065716500441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Seizure activity leads to increases in extracellular potassium concentration ([K[Formula: see text]]o), which can result in changes in neuronal passive and active membrane properties as well as in population activities. In this study, we examined how extracellular potassium modulates seizure activities using an acute 4-AP induced seizure model in the neocortex, both in vivo and in vitro. Moderately elevated [K[Formula: see text]]o up to 9[Formula: see text]mM prolonged seizure durations and shortened interictal intervals as well as depolarized the neuronal resting membrane potential (RMP). However, when [K[Formula: see text]]o reached higher than 9[Formula: see text]mM, seizure like events (SLEs) were blocked and neurons went into a depolarization-blocked state. Spreading depression was never observed as the blockade of ictal events could be reversed within 1-2[Formula: see text]min after the raised [K[Formula: see text]]o was changed back to control levels. This concentration-dependent dual effect of [K[Formula: see text]]o was observed using in vivo and in vitro mouse brain preparations as well as in human neocortical tissue resected during epilepsy surgery. Blocking the Ih current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, modulated the elevated [K[Formula: see text]]o influence on SLEs by promoting the high [K[Formula: see text]]o inhibitory actions. These results demonstrate biphasic actions of raised [K[Formula: see text]]o on neuronal excitability and seizure activity.
Collapse
Affiliation(s)
- Lihua Wang
- 1 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Suzie Dufour
- 1 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Taufik A Valiante
- 2 Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Peter L Carlen
- 3 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Institute of Biomaterials and Biomedical Engineering University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| |
Collapse
|
13
|
Deep Brain Stimulation of the Ventral Pallidum Attenuates Epileptiform Activity and Seizing Behavior in Pilocarpine-Treated Rats. Brain Stimul 2015; 9:285-95. [PMID: 26723019 DOI: 10.1016/j.brs.2015.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain stimulation is effective for people with intractable epilepsy. However, modulating neural targets that provide greater efficacy to more individuals is still needed. OBJECTIVE/HYPOTHESIS We investigate whether bilateral deep brain stimulation of the ventral pallidum (VP-DBS) has potent seizure control in pilocarpine-treated rats. METHODS VP-DBS (50 Hz) was applied prior to generalized forebrain seizures or after generalized brainstem seizures manifested. Behavioral seizures were assessed using a modified Racine scale. In vitro and in vivo electrophysiological techniques were employed to identify how VP-DBS affects proximal and distal neuronal activity. The open field test was used to see if acute and chronic VP-DBS affected gross motor function or arousal state. Parametric and non-parametric statistics with post-hoc analysis were performed. RESULTS VP-DBS prior to pilocarpine prevented behavioral forebrain and brainstem seizures in most animals (n = 15). VP-DBS after brainstem seizures emerged prevented or reduced the appearance of subsequent behavioral brainstem seizures (n = 11). VP-DBS attenuated epileptiform activity in the hippocampus (n = 5), but not in the primary somatosensory cortex (S1) (n = 4) in vivo. Electrical stimulation in the VP increased VP GABAergic neuronal firing activity from 3.1 ± 1.4 Hz to 7.6 ± 1.7 Hz (n = 8) in vitro and reduced substantia nigra reticulata and superior colliculus neuronal spiking activity from 25.4 ± 3.3 Hz to 18.2 ± 1.4 Hz (n = 6) and 18.2 ± 1.4 Hz to 11.0 ± 1.1 Hz (n = 18), respectively, in vivo. CONCLUSION VP-DBS can be a novel and potent therapeutic approach for individuals with intractable epilepsy.
Collapse
|
14
|
Luo F, Kiss ZHT. Cholinergic mechanisms of high-frequency stimulation in entopeduncular nucleus. J Neurophysiol 2015; 115:60-7. [PMID: 26334006 DOI: 10.1152/jn.00269.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022] Open
Abstract
Chronic, high-frequency (>100 Hz) electrical stimulation, known as deep brain stimulation (DBS), of the internal segment of the globus pallidus (GPi) is a highly effective therapy for Parkinson's disease (PD) and dystonia. Despite some understanding of how it works acutely in PD models, there remain questions about its mechanisms of action. Several hypotheses have been proposed, such as depolarization blockade, activation of inhibitory synapses, depletion of neurotransmitters, and/or disruption/alteration of network oscillations. In this study we investigated the cellular mechanisms of high-frequency stimulation (HFS) in entopeduncular nucleus (EP; rat equivalent of GPi) neurons using whole cell patch-clamp recordings. We found that HFS applied inside the EP nucleus induced a prolonged afterdepolarization that was dependent on stimulation frequency, pulse duration, and current amplitude. The high frequencies (>100 Hz) and pulse widths (>0.15 ms) used clinically for dystonia DBS could reliably induce these afterdepolarizations, which persisted under blockade of ionotropic glutamate (kynurenic acid, 2 mM), GABAA (picrotoxin, 50 μM), GABAB (CGP 55845, 1 μM), and acetylcholine nicotinic receptors (DHβE, 2 μM). However, this effect was blocked by atropine (2 μM; nonselective muscarinic antagonist) or tetrodotoxin (0.5 μM). Finally, the muscarinic-dependent afterdepolarizations were sensitive to Ca(2+)-sensitive nonspecific cationic (CAN) channel blockade. Hence, these data suggest that muscarinic receptor activation during HFS can lead to feedforward excitation through the opening of CAN channels. This study for the first time describes a cholinergic mechanism of HFS in EP neurons and provides new insight into the underlying mechanisms of DBS.
Collapse
Affiliation(s)
- Feng Luo
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H T Kiss
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Eusebio A, Cagnan H, Brown P. Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson's disease? Front Integr Neurosci 2012; 6:47. [PMID: 22787444 PMCID: PMC3392592 DOI: 10.3389/fnint.2012.00047] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/25/2012] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence for exaggerated oscillatory neuronal synchronisation in patients with Parkinson's disease (PD). In particular, oscillations at around 20 Hz, in the so-called beta frequency band, relate to the cardinal symptoms of bradykinesia and rigidity. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can significantly improve these motor impairments. Recent evidence has demonstrated reduction of beta oscillations concurrent with alleviation of PD motor symptoms, raising the possibility that suppression of aberrant activity may mediate the effects of DBS. Here we review the evidence supporting suppression of pathological oscillations during stimulation and discuss how this might underlie the efficacy of DBS. We also consider how beta activity may provide a feedback signal suitable for next generation closed-loop and intelligent stimulators.
Collapse
Affiliation(s)
- Alexandre Eusebio
- Department of Neurology and Movement Disorders, Assistance Publique - Hôpitaux de Marseille, Timone University HospitalMarseille, France
- Institut de Neurosciences de la Timone – UMR 7289, Aix Marseille Université – CNRSMarseille, France
| | - Hayriye Cagnan
- Department of Clinical Neurology, John Radcliffe HospitalOxford, UK
| | - Peter Brown
- Department of Clinical Neurology, John Radcliffe HospitalOxford, UK
| |
Collapse
|
16
|
Liu LD, Prescott IA, Dostrovsky JO, Hodaie M, Lozano AM, Hutchison WD. Frequency-dependent effects of electrical stimulation in the globus pallidus of dystonia patients. J Neurophysiol 2012; 108:5-17. [DOI: 10.1152/jn.00527.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) in the globus pallidus internus (GPi) has been shown to improve dystonia, a movement disorder of repetitive twisting movements and postures. DBS at frequencies above 60 Hz improves dystonia, but the mechanisms underlying this frequency dependence are unclear. In patients undergoing dual-microelectrode mapping of the GPi, microstimulation has been shown to reduce neuronal firing, presumably due to synaptic GABA release. This study examined the effects of different microstimulation frequencies (1–100 Hz) and train length (0.5–20 s), with and without prior high-frequency stimulation (HFS) on neuronal firing and evoked field potentials (fEPs) in 13 dystonia patients. Pre-HFS, the average firing decreased as stimulation frequency increased and was silenced above 50 Hz. The average fEP amplitudes increased up to frequencies of 20–30 Hz but then declined and at 50 Hz, were only at 75% of baseline. In some cases, short latency fiber volleys and antidromic-like spikes were observed and followed high frequencies. Post-HFS, overall firing was reduced compared with pre-HFS, and the fEP amplitudes were enhanced at low frequencies, providing evidence of inhibitory synaptic plasticity in the GPi. In a patient with DBS electrodes already implanted in the GPi, recordings from four neurons in the subthalamic nucleus showed almost complete inhibition of firing with clinically effective but not clinically ineffective stimulation parameters. These data provide additional support for the hypothesis of stimulation-evoked GABA release from afferent synaptic terminals and reduction of neuronal firing during DBS and additionally, implicate excitation of GPi axon fibers and neurons and enhancement of inhibitory synaptic transmission by high-frequency GPi DBS as additional putative mechanisms underlying the clinical benefits of DBS in dystonia.
Collapse
Affiliation(s)
- Liu D. Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Ian A. Prescott
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Jonathan O. Dostrovsky
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - William D. Hutchison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Activity modulation of the globus pallidus and the nucleus entopeduncularis affects compulsive checking in rats. Behav Brain Res 2011; 219:149-58. [DOI: 10.1016/j.bbr.2010.12.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/20/2010] [Accepted: 12/27/2010] [Indexed: 11/20/2022]
|
18
|
Durand DM, Park EH, Jensen AL. Potassium diffusive coupling in neural networks. Philos Trans R Soc Lond B Biol Sci 2010; 365:2347-62. [PMID: 20603356 DOI: 10.1098/rstb.2010.0050] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conventional neural networks are characterized by many neurons coupled together through synapses. The activity, synchronization, plasticity and excitability of the network are then controlled by its synaptic connectivity. Neurons are surrounded by an extracellular space whereby fluctuations in specific ionic concentration can modulate neuronal excitability. Extracellular concentrations of potassium ([K(+)](o)) can generate neuronal hyperexcitability. Yet, after many years of research, it is still unknown whether an elevation of potassium is the cause or the result of the generation, propagation and synchronization of epileptiform activity. An elevation of potassium in neural tissue can be characterized by dispersion (global elevation of potassium) and lateral diffusion (local spatial gradients). Both experimental and computational studies have shown that lateral diffusion is involved in the generation and the propagation of neural activity in diffusively coupled networks. Therefore, diffusion-based coupling by potassium can play an important role in neural networks and it is reviewed in four sections. Section 2 shows that potassium diffusion is responsible for the synchronization of activity across a mechanical cut in the tissue. A computer model of diffusive coupling shows that potassium diffusion can mediate communication between cells and generate abnormal and/or periodic activity in small (section sign 3) and in large networks of cells (section sign 4). Finally, in section sign 5, a study of the role of extracellular potassium in the propagation of axonal signals shows that elevated potassium concentration can block the propagation of neural activity in axonal pathways. Taken together, these results indicate that potassium accumulation and diffusion can interfere with normal activity and generate abnormal activity in neural networks.
Collapse
Affiliation(s)
- Dominique M Durand
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
19
|
High frequency stimulation can block axonal conduction. Exp Neurol 2009; 220:57-70. [PMID: 19660453 DOI: 10.1016/j.expneurol.2009.07.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/23/2022]
Abstract
High frequency stimulation (HFS) is used to control abnormal neuronal activity associated with movement, seizure, and psychiatric disorders. Yet, the mechanisms of its therapeutic action are not known. Although experimental results have shown that HFS suppresses somatic activity, other data has suggested that HFS could generate excitation of axons. Moreover it is unclear what effect the stimulation has on tissue surrounding the stimulation electrode. Electrophysiological and computational modeling literature suggests that HFS can drive axons at the stimulus frequency. Therefore, we tested the hypothesis that unlike cell bodies, axons are driven by pulse train HFS. This hypothesis was tested in fibers of the hippocampus both in-vivo and in-vitro. Our results indicate that although electrical stimulation could activate and drive axons at low frequencies (0.5-25 Hz), as the stimulus frequency increased, electrical stimulation failed to continuously excite axonal activity. Fiber tracts were unable to follow extracellular pulse trains above 50 Hz in-vitro and above 125 Hz in-vivo. The number of cycles required for failure was frequency dependent but independent of stimulus amplitude. A novel in-vitro preparation was developed, in which, the alveus was isolated from the remainder of the hippocampus slice. The isolated fiber tract was unable to follow pulse trains above 75 Hz. Reversible conduction block occurred at much higher stimulus amplitudes, with pulse train HFS (>150 Hz) preventing propagation through the site of stimulation. This study shows that pulse train HFS affects axonal activity by: (1) disrupting HFS evoked excitation leading to partial conduction block of activity through the site of HFS; and (2) generating complete conduction block of secondary evoked activity, as HFS amplitude is increased. These results are relevant for the interpretation of the effects of HFS for the control of abnormal neural activity such as epilepsy and Parkinson's disease.
Collapse
|
20
|
Dopamine depletion induced up-regulation of HCN3 enhances rebound excitability of basal ganglia output neurons. Neurobiol Dis 2009; 34:178-88. [PMID: 19320057 DOI: 10.1016/j.nbd.2009.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor symptoms in Parkinson's disease (PD) are associated with complex changes of firing properties in basal ganglia output neurons (BGON). The abnormalities are generally attributed to altered synaptic input and potential post-synaptic mechanisms are currently unknown. Our cell-type selective transcriptome analyses of BGON in the rat 6-hydroxydopamine (6-OHDA) model of PD identified the ion channel HCN3 as a likely contributor to altered neuronal excitability. Quantitative PCR experiments confirmed the HCN3 upregulation in the rat and mouse 6-OHDA models and also demonstrated selectivity of the effect for HCN3. In accordance with the mRNA expression data, in vitro whole cell patch-clamp recordings in BGON showed increased HCN3 current amplitudes and increased rebound excitability in BGON of 6-OHDA treated rats. These data establish HCN3 up-regulation as a novel candidate mechanism that might contribute to the in vivo changes of electrical activity in basal ganglia output neurons of the parkinsonian brain.
Collapse
|
21
|
Johnson MD, McIntyre CC. Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. J Neurophysiol 2008; 100:2549-63. [PMID: 18768645 DOI: 10.1152/jn.90372.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) is an effective therapy option for controlling the motor symptoms of medication-refractory Parkinson's disease and dystonia. Despite the clinical successes of GPi DBS, the precise therapeutic mechanisms are unclear and questions remain on the optimal electrode placement and stimulation parameter selection strategies. In this study, we developed a three-dimensional computational model of GPi-DBS in nonhuman primates to investigate how membrane channel dynamics, synaptic inputs, and axonal collateralization contribute to the neural responses generated during stimulation. We focused our analysis on three general neural elements that surround GPi-DBS electrodes: GPi somatodendritic segments, GPi efferent axons, and globus pallidus pars externa (GPe) fibers of passage. During high-frequency electrical stimulation (136 Hz), somatic activity in the GPi showed interpulse excitatory phases at 1-3 and 4-5.5 ms. When including stimulation-induced GABA(A) and AMPA receptor dynamics into the model, the somatic firing patterns continued to be entrained to the stimulation, but the overall firing rate was reduced (78.7 to 25.0 Hz, P < 0.001). In contrast, axonal output from GPi neurons remained largely time-locked to each pulse of the stimulation train. Similar entrainment was also observed in GPe efferents, a majority of which have been shown to project through GPi en route to the subthalamic nucleus. The models suggest that pallidal DBS may have broader network effects than previously realized and the modes of therapy may depend on the relative proportion of GPi and/or GPe efferents that are directly affected by the stimulation.
Collapse
Affiliation(s)
- Matthew D Johnson
- Department of Biomedical Engineering, Cleveland Clinic Foundation, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
| | | |
Collapse
|