1
|
Giorgi A, Cer AT, Mohan S, Perreault MC. Excitatory and Inhibitory Descending Commissural Interneurons Differentially Integrate Supraspinal and Segmental Sensory Signals. J Neurosci 2023; 43:5014-5029. [PMID: 37286348 PMCID: PMC10324999 DOI: 10.1523/jneurosci.2015-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
The limited information about how descending inputs from the brain and sensory inputs from the periphery use spinal cord interneurons (INs) is a major barrier to understanding how these inputs may contribute to motor functions under normal and pathologic conditions. Commissural interneurons (CINs) are a heterogeneous population of spinal INs that has been implicated in crossed motor responses and bilateral motor coordination (ability to use the right and left side of the body in a coordinated manner) and, therefore, are likely involved in many types of movement (e.g., dynamic posture stabilization, jumping, kicking, walking). In this study, we incorporate mouse genetics, anatomy, electrophysiology, and single-cell calcium imaging to investigate how a subset of CINs, those with descending axons called dCINs, are recruited by descending reticulospinal and segmental sensory signals independently and in combination. We focus on two groups of dCINs set apart by their principal neurotransmitter (glutamate and GABA) and identified as VGluT2+ dCINs and GAD2+ dCINs. We show that VGluT2+ and GAD2+ dCINs are both extensively recruited by reticulospinal and sensory input alone but that VGluT2+ and GAD2+ dCINs integrate these inputs differently. Critically, we find that when recruitment depends on the combined action of reticulospinal and sensory inputs (subthreshold inputs), VGluT2+ dCINs, but not GAD2+ dCINs, are recruited. This difference in the integrative capacity of VGluT2+ and GAD2+ dCINs represents a circuit mechanism that the reticulospinal and segmental sensory systems may avail themselves of to regulate motor behaviors both normally and after injury.SIGNIFICANCE STATEMENT The way supraspinal and peripheral sensory inputs use spinal cord interneurons is fundamental to defining how motor functions are supported both in health and disease. This study, which focuses on dCINs, a heterogeneous population of spinal interneurons critical for crossed motor responses and bilateral motor coordination, shows that both glutamatergic (excitatory) and GABAergic (inhibitory) dCINs can be recruited by supraspinal (reticulospinal) or peripheral sensory inputs. Additionally, the study demonstrates that in conditions where the recruitment of dCINs depends on the combined action of reticulospinal and sensory inputs, only excitatory dCINs are recruited. The study uncovers a circuit mechanism that the reticulospinal and segmental sensory systems may avail themselves of to regulate motor behaviors both normally and after injury.
Collapse
Affiliation(s)
- Andrea Giorgi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Abishag Tluang Cer
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shruthi Mohan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
2
|
Zhang Q, Dai Y, Zhou J, Ge R, Hua Y, Powers RK, Binder MD. The effects of membrane potential oscillations on the excitability of rat hypoglossal motoneurons. Front Physiol 2022; 13:955566. [PMID: 36082223 PMCID: PMC9445839 DOI: 10.3389/fphys.2022.955566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Oscillations in membrane potential induced by synaptic inputs and intrinsic ion channel activity play a role in regulating neuronal excitability, but the precise mechanisms underlying their contributions remain largely unknown. Here we used electrophysiological and modeling approaches to investigate the effects of Gaussian white noise injected currents on the membrane properties and discharge characteristics of hypoglossal (HG) motoneurons in P16-21 day old rats. We found that the noise-induced membrane potential oscillations facilitated spike initiation by hyperpolarizing the cells’ voltage threshold by 3.1 ± 1.0 mV and reducing the recruitment current for the tonic discharges by 0.26 ± 0.1 nA, on average (n = 59). Further analysis revealed that the noise reduced both recruitment and decruitment currents by 0.26 ± 0.13 and 0.33 ± 0.1 nA, respectively, and prolonged the repetitive firing. The noise also increased the slopes of frequency-current (F-I) relationships by 1.1 ± 0.2 Hz/nA. To investigate the potential mechanisms underlying these findings, we constructed a series of HG motoneuron models based on their electrophysiological properties. The models consisted of five compartments endowed with transient sodium (NaT), delayed-rectify potassium [K(DR)], persistent sodium (NaP), calcium-activated potassium [K(AHP)], L-type calcium (CaL) and H-current channels. In general, all our experimental results could be well fitted by the models, however, a modification of standard Hodgkin-Huxley kinetics was required to reproduce the changes in the F-I relationships and the prolonged discharge firing. This modification, corresponding to the noise generated by the stochastic flicker of voltage-gated ion channels (channel flicker, CF), was an adjustable sinusoidal function added to kinetics of the channels that increased their sensitivity to subthreshold membrane potential oscillations. Models with CF added to NaP and CaL channels mimicked the noise-induced alterations of membrane properties, whereas models with CF added to NaT and K(DR) were particularly effective in reproducing the noise-induced changes for repetitive firing observed in the real motoneurons. Further analysis indicated that the modified channel kinetics enhanced NaP- and CaL-mediated inward currents thus increasing the excitability and output of HG motoneurons, whereas they produced relatively small changes in NaT and K(DR), thus balancing these two currents and triggering variability of repetitive firing. This study provided insight into the types of membrane channel mechanisms that might underlie oscillation-induced alterations of neuronal excitability and motor output in rat HG motoneurons.
Collapse
Affiliation(s)
- Qiang Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
- *Correspondence: Yue Dai, ; Marc D. Binder,
| | - Junya Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yiyun Hua
- Neuroscience, McGill University, Montreal, QC, Canada
| | - Randall K. Powers
- Department of Physiology & Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Marc D. Binder
- Department of Physiology & Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
- *Correspondence: Yue Dai, ; Marc D. Binder,
| |
Collapse
|
3
|
Thirumalai V, Jha U. Recruitment of Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:169-190. [PMID: 36066826 DOI: 10.1007/978-3-031-07167-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Beginning about half a century ago, the rules that determine how motor units are recruited during movement have been deduced. These classical experiments led to the formulation of the 'size principle'. It is now clear that motoneuronal size is not the only indicator of recruitment order. In fact, motoneuronal passive, active and synaptic conductances are carefully tuned to achieve sequential recruitment. More recent studies, over the last decade or so, show that the premotor circuitry is also functionally specialized and differentially recruited. Modular sub networks of interneurons and their post-synaptic motoneurons have been shown to drive movements with varying intensities. In addition, these modular networks are under the influence of neuromodulators, which are capable of acting upon multiple motor and premotor targets, thereby altering behavioral outcomes. We discuss the recruitment patterns of motoneurons in light of these new and exciting studies.
Collapse
Affiliation(s)
| | - Urvashi Jha
- National Centre for Biological Sciences, Bangalore, India
| |
Collapse
|
4
|
Cheng Y, Song N, Ge R, Dai Y. Serotonergic Modulation of Persistent Inward Currents in Serotonergic Neurons of Medulla in ePet-EYFP Mice. Front Neural Circuits 2021; 15:657445. [PMID: 33889077 PMCID: PMC8055846 DOI: 10.3389/fncir.2021.657445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Serotonergic (5-HT) neurons in the medulla play multiple functional roles associated with many symptoms and motor activities. The descending serotonergic pathway from medulla is essential for initiating locomotion. However, the ionic properties of 5-HT neurons in the medulla remain unclear. Using whole-cell patch-clamp technique, we studied the biophysical and modulatory properties of persistent inward currents (PICs) in 5-HT neurons of medulla in ePet-EYFP transgenic mice (P3–P6). PICs were recorded by a family of voltage bi-ramps (10-s duration, 40-mV peak step), and the ascending and descending PICs were mirrored to analyze the PIC hysteresis. PICs were found in 77% of 5-HT neurons (198/258) with no significant difference between parapyramidal region (n = 107) and midline raphe nuclei (MRN) (n = 91) in either PIC onset (−47.4 ± 10 mV and −48.7 ± 7 mV; P = 0.44) or PIC amplitude (226.9 ± 138 pA and 259.2 ± 141 pA; P = 0.29). Ninety-six percentage (191/198) of the 5-HT neurons displayed counterclockwise hysteresis and four percentage (7/198) exhibited the clockwise hysteresis. The composite PICs could be differentiated as calcium component (Ca_PIC) by bath application of nimodipine (25 μM), sodium component (Na_PIC) by tetrodotoxin (TTX, 2 μM), and TTX- and dihydropyridine-resistance component (TDR_PIC) by TTX and nimodipine. Ca_PIC, Na_PIC and TDR_PIC all contributed to upregulation of excitability of 5-HT neurons. 5-HT (15 μM) enhanced the PICs, including a 26% increase in amplitude of the compound currents of Ca_PIC and TDR_PIC (P < 0.001, n = 9), 3.6 ± 5 mV hyperpolarization of Na_PIC and TDR_PIC onset (P < 0.05, n = 12), 30% increase in amplitude of TDR_PIC (P < 0.01), and 2.0 ± 3 mV hyperpolarization of TDR_PIC onset (P < 0.05, n = 18). 5-HT also facilitated repetitive firing of 5-HT neurons through modulation of composite PIC, Na_PIC and TDR_PIC, and Ca_PIC and TDR_PIC, respectively. In particular, the high voltage-activated TDR_PIC facilitated the repetitive firing in higher membrane potential, and this facilitation could be amplified by 5-HT. Morphological data analysis indicated that the dendrites of 5-HT neurons possessed dense spherical varicosities intensively crossing 5-HT neurons in medulla. We characterized the PICs in 5-HT neurons and unveiled the mechanism underlying upregulation of excitability of 5-HT neurons through serotonergic modulation of PICs. This study provided insight into channel mechanisms responsible for the serotonergic modulation of serotonergic neurons in brainstem.
Collapse
Affiliation(s)
- Yi Cheng
- School of Physical Education, Yunnan University, Kunming, China
| | - Nan Song
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Renkai Ge
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yue Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China.,Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
5
|
Perrin FE, Noristani HN. Serotonergic mechanisms in spinal cord injury. Exp Neurol 2019; 318:174-191. [PMID: 31085200 DOI: 10.1016/j.expneurol.2019.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.
Collapse
Affiliation(s)
- Florence Evelyne Perrin
- University of Montpellier, Montpellier, F-34095 France; INSERM, U1198, Montpellier, F-34095 France; EPHE, Paris, F-75014 France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Rivera-Oliver M, Moreno E, Álvarez-Bagnarol Y, Ayala-Santiago C, Cruz-Reyes N, Molina-Castro GC, Clemens S, Canela EI, Ferré S, Casadó V, Díaz-Ríos M. Adenosine A 1-Dopamine D 1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron. Mol Neurobiol 2018; 56:797-811. [PMID: 29797183 DOI: 10.1007/s12035-018-1120-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A1-dopamine D1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D1 receptor-mediated signaling. A1-D1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.
Collapse
Affiliation(s)
- Marla Rivera-Oliver
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Estefanía Moreno
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Yocasta Álvarez-Bagnarol
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Christian Ayala-Santiago
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Nicole Cruz-Reyes
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Gian Carlo Molina-Castro
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Enric I Canela
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Vicent Casadó
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| |
Collapse
|
7
|
Jean-Xavier C, Sharples SA, Mayr KA, Lognon AP, Whelan PJ. Retracing your footsteps: developmental insights to spinal network plasticity following injury. J Neurophysiol 2017; 119:521-536. [PMID: 29070632 DOI: 10.1152/jn.00575.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.
Collapse
Affiliation(s)
- C Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - K A Mayr
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - A P Lognon
- Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
8
|
Husch A, Dietz SB, Hong DN, Harris-Warrick RM. Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability. J Neurophysiol 2014; 113:1124-34. [PMID: 25520435 DOI: 10.1152/jn.00741.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG.
Collapse
Affiliation(s)
- Andreas Husch
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Shelby B Dietz
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Diana N Hong
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | | |
Collapse
|
9
|
Sławińska U, Miazga K, Jordan LM. 5-HT₂ and 5-HT₇ receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons. Front Neural Circuits 2014; 8:95. [PMID: 25191231 PMCID: PMC4137449 DOI: 10.3389/fncir.2014.00095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/21/2014] [Indexed: 01/13/2023] Open
Abstract
There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OHDPAT) (acting on 5-HT1A/7 receptors) and quipazine (acting on 5-HT2 receptors), to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor central pattern generator (CPG). Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.
Collapse
Affiliation(s)
- Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Krzysztof Miazga
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
10
|
Beliez L, Barrière G, Bertrand SS, Cazalets JR. Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord. Front Neural Circuits 2014; 8:99. [PMID: 25177275 PMCID: PMC4133733 DOI: 10.3389/fncir.2014.00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/30/2014] [Indexed: 01/09/2023] Open
Abstract
Studies devoted to understanding locomotor control have mainly addressed the functioning of the neural circuits controlling leg movements and relatively little is known of the operation of networks that activate trunk muscles in coordination with limb movements. The aim of the present work was (1) to identify the exogenous neurotransmitter cocktail that most strongly activates postural thoracic circuitry; (2) to investigate how the biogenic amines serotonin (5-HT), dopamine (DA), and noradrenaline (NA) modulate the coordination between limb and axial motor networks. Experiments were carried out on in vitro isolated spinal cord preparations from newborn rats. We recorded from ventral roots to monitor hindlimb locomotor and axial postural network activity. Each combination of the three amines with excitatory amino acids (EAAs) elicited coordinated rhythmic motor activity at all segmental levels with specific characteristics. The variability in cycle period was similar with 5-HT and DA while it was significantly higher with NA. DA elicited motor bursts of smaller amplitude in thoracic segments compared to 5-HT and NA, while both DA and NA elicited motor bursts of higher amplitude than 5-HT in the lumbar and sacral segments. The amines modulated the phase relationships of bursts in various segments with respect to the reference lumbar segment. At the thoracic level there was a phase lag between all recorded segments in the presence of 5-HT, while DA and NA elicited synchronous bursting. At the sacral level, 5-HT and DA induced an intersegmental phase shift while relationships became phase-locked with NA. Various combinations of EAAs with two or even all three amines elicited rhythmic motor output that was more variable than with one amine alone. Our results provide new data on the coordinating processes between spinal cord networks, demonstrating that each amine has a characteristic “signature” regarding its specific effect on intersegmental phase relationships.
Collapse
Affiliation(s)
- Lauriane Beliez
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| | - Gregory Barrière
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| | - Sandrine S Bertrand
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| | - Jean-René Cazalets
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| |
Collapse
|
11
|
Acevedo JM, Díaz-Ríos M. Removing sensory input disrupts spinal locomotor activity in the early postnatal period. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1105-16. [PMID: 24043359 DOI: 10.1007/s00359-013-0853-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/30/2013] [Accepted: 09/01/2013] [Indexed: 01/01/2023]
Abstract
Motor patterns driving rhythmic movements of our lower limbs during walking are generated by groups of neurons within the spinal cord, called central pattern generators (CPGs). After suffering a spinal cord injury (SCI), many descending fibers from our brain are severed or become nonfunctional, leaving the spinal CPG network without its initiating drive. Recent studies have focused on the importance of maintaining sensory stimulation to the limbs of SCI patients as a way to initiate and control the CPG locomotor network. We began assessing the role of sensory feedback to the locomotor CPG network using a neonatal mouse spinal cord preparation where the hindlimbs are still attached. Removing sensory feedback coming from the hindlimbs by way of a lower lumbar transection or by ventral root denervation revealed a positive correlation in the ability of sensory input deprivation to disrupt ongoing locomotor activity on older versus younger animals. The differences in the motor responses as a function of age could be correlated with the loss of excitatory activity from sensory afferents. Continued studies on this field could eventually provide key information that translates into the design of novel therapeutic strategies to treat patients who have suffered a SCI.
Collapse
Affiliation(s)
- Jean Marie Acevedo
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Boulevard del Valle, San Juan, 00901, Puerto Rico
| | | |
Collapse
|
12
|
Das S, Kumar S, Jain S, Avelev VD, Mathur R. Exposure to ELF- magnetic field promotes restoration of sensori-motor functions in adult rats with hemisection of thoracic spinal cord. Electromagn Biol Med 2013; 31:180-94. [PMID: 22897399 DOI: 10.3109/15368378.2012.695706] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clinically effective modalities of treatment for spinal cord injury (SCI) still remain unsatisfactory and are largely invasive in nature. There are reports of accelerated regeneration in injured peripheral nerves by extremely low-frequency pulsed electromagnetic field (ELF-EMF) in the rat. In the present study, the effect of (50 Hz), low-intensity (17.96 μT) magnetic field (MF) exposure of rats after-hemisection of T13 spinal cord (hSCI) was investigated on sensori-motor and locomotor functions. Rats were divided into hSCI (sham-exposed) and hSCI+MF (MF: 2 h/d X 6 weeks) groups. Besides their general conditions, locomotor function by Basso, Beattie, and Brenahan (BBB) score; motor responses to noxious stimuli by threshold of tail flick (TTF), simple vocalization (TSV), tail flick latency (TFL), and neuronal excitability by H-reflex were noted. It is found that, in the hSCI+MF group, a statistically significant improvement over the hSCI control group was noted in BBB score from post-SCI wk2 and TFL and TTF by post-hSCI wk1 and wk3, respectively. Correspondingly, TSV gradually restored by post-hSCI wk5.The threshold of H-reflex was reduced on ipsilateral side vs. contralateral side in hSCI and hSCI+MF group. A complete bladder control was dramatically restored on post-hSCI day4 (vs. day7 of hSCI group) and the survival rate was 100% in the hSCI+MF group (vs. 90% of hSCI group). The results of our study suggest that extremely low-frequency (50 Hz), low-intensity (17.96 μT) MF exposure for 2 h/d x 6wks promotes recovery of sensori-motor behavior including locomotion and bladder control both in terms of temporal pattern and magnitude in hemisection injury of (T13) spinal cord rats.
Collapse
Affiliation(s)
- Suman Das
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
13
|
A method for visually guided whole-cell recordings in brain slices exhibiting spontaneous rhythmic activity. J Neurosci Methods 2013; 212:64-71. [DOI: 10.1016/j.jneumeth.2012.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
|
14
|
Dose F, Taccola G. Coapplication of noisy patterned electrical stimuli and NMDA plus serotonin facilitates fictive locomotion in the rat spinal cord. J Neurophysiol 2012; 108:2977-90. [DOI: 10.1152/jn.00554.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A new stimulating protocol [fictive locomotion-induced stimulation (FL istim)], consisting of intrinsically variable weak waveforms applied to a single dorsal root is very effective (though not optimal as it eventually wanes away) in activating the locomotor program of the isolated rat spinal cord. The present study explored whether combination of FL istim with low doses of pharmacological agents that raise network excitability might further improve the functional outcome, using this in vitro model. FL istim was applied together with N-methyl-d-aspartate (NMDA) + serotonin, while fictive locomotion (FL) was electrophysiologically recorded from lumbar ventral roots. Superimposing FL istim on FL evoked by these neurochemicals persistently accelerated locomotor-like cycles to a set periodicity and modulated cycle amplitude depending on FL istim rate. Trains of stereotyped rectangular pulses failed to replicate this phenomenon. The GABAB agonist baclofen dose dependently inhibited, in a reversible fashion, FL evoked by either FL istim or square pulses. Sustained episodes of FL emerged when FL istim was delivered, at an intensity subthreshold for FL, in conjunction with subthreshold pharmacological stimulation. Such an effect was, however, not found when high potassium solution instead of NMDA + serotonin was used. These results suggest that the combined action of subthreshold FL istim (e.g., via epidural stimulation) and neurochemicals should be tested in vivo to improve locomotor rehabilitation after injury. In fact, reactivation of spinal locomotor circuits by conventional electrical stimulation of afferent fibers is difficult, while pharmacological activation of spinal networks is clinically impracticable due to concurrent unwanted effects. We speculate that associating subthreshold chemical and electrical inputs might decrease side effects when attempting to evoke human locomotor patterns.
Collapse
Affiliation(s)
- Francesco Dose
- Neuroscience Area International School for Advanced Studies, Trieste, Italy; and
- Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione, Udine, Italy
| | - Giuliano Taccola
- Neuroscience Area International School for Advanced Studies, Trieste, Italy; and
- Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione, Udine, Italy
| |
Collapse
|
15
|
Dietz S, Husch A, Harris-Warrick RM. A comparison of serotonin neuromodulation of mouse spinal V2a interneurons using perforated patch and whole cell recording techniques. Front Cell Neurosci 2012; 6:39. [PMID: 23060747 PMCID: PMC3460530 DOI: 10.3389/fncel.2012.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Whole cell recordings (WCRs) are frequently used to study neuronal properties, but may be problematic when studying neuromodulatory responses, due to dialysis of the cell's cytoplasm. Perforated patch recordings (PPR) avoid cellular dialysis and might reveal additional modulatory effects that are lost during WCR. We have previously used WCR to characterize the responses of the V2a class of Chx10-expressing neurons to serotonin (5-HT) in the neonatal mouse spinal cord (Zhong et al., 2010). Here we directly compare multiple aspects of the responses to 5-HT using WCR and PPR in Chx10-eCFP neurons in spinal cord slices from 2 to 4 day old mice. Cellular properties recorded in PPR and WCR were similar, but high-quality PP recordings could be maintained for significantly longer. Both WCR and PPR cells could respond to 5-HT, and although neurons recorded by PPR showed a significantly greater response to 5-HT in some parameters, the absolute differences between PPR and WCR were small. We conclude that WCR is an acceptable recording method for short-term recordings of neuromodulatory effects, but the less invasive PPR is preferable for detailed analyses and is necessary for stable recordings lasting an hour or more.
Collapse
Affiliation(s)
- Shelby Dietz
- Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | | | | |
Collapse
|
16
|
Abbinanti MD, Zhong G, Harris-Warrick RM. Postnatal emergence of serotonin-induced plateau potentials in commissural interneurons of the mouse spinal cord. J Neurophysiol 2012; 108:2191-202. [PMID: 22832564 PMCID: PMC3545016 DOI: 10.1152/jn.00336.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/18/2012] [Indexed: 02/07/2023] Open
Abstract
Most studies of the mouse hindlimb locomotor network have used neonatal (P0-5) mice. In this study, we examine the postnatal development of intrinsic properties and serotonergic modulation of intersegmental commissural interneurons (CINs) from the neonatal period (P0-3) to the time the animals bear weight (P8-10) and begin to show adult walking (P14-16). CINs show an increase in excitability with age, associated with a decrease in action potential halfwidth and appearance of a fast component to the afterhyperpolarization at P14-16. Serotonin (5-HT) depolarizes and increases the excitability of most CINs at all ages. The major developmental difference is that serotonin can induce plateau potential capability in P14-16 CINs, but not at younger ages. These plateau potentials are abolished by nifedipine, suggesting that they are mediated by an L-type calcium current, I(Ca(L)). Voltage-clamp analysis demonstrates that 5-HT increases a nifedipine-sensitive voltage-activated calcium current, I(Ca(V)), in P14-16 CINs but does not increase I(Ca(V)) in P8-10 CINs. These results, together with earlier work on 5-HT effects on neonatal CINs, suggest that 5-HT increases the excitability of CINs at all ages studied, but by opposite effects on calcium currents, decreasing N- and P/Q-type calcium currents and, indirectly, calcium-activated potassium current, at P0-3 but increasing I(Ca(L)) at P14-16.
Collapse
|
17
|
Zhong G, Shevtsova NA, Rybak IA, Harris-Warrick RM. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. J Physiol 2012; 590:4735-59. [PMID: 22869012 DOI: 10.1113/jphysiol.2012.240895] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type IIV2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network.We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the organization of spinal locomotor networks.
Collapse
Affiliation(s)
- Guisheng Zhong
- Department of Neurobiology and Behavior, Cornell University, W 159 Seeley G. Mudd Hall, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
18
|
Koopmans GC, Deumens R, Honig WM, Hamers FP, Mey J, van Kleef M, Joosten EA. Functional Recovery, Serotonergic Sprouting, and Endogenous Progenitor Fates in Response to Delayed Environmental Enrichment after Spinal Cord Injury. J Neurotrauma 2012; 29:514-27. [DOI: 10.1089/neu.2011.1949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Guido C. Koopmans
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
- Algiax Pharmaceuticals GmbH, Erkrath, Germany
| | - Ronald Deumens
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
- Institute for Neuropathology, RWTH Aachen University Medical Faculty, Aachen, Germany
- EURON Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Wiel M.M. Honig
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Jörg Mey
- Institute of Biology II, RWTH Aachen University, Aachen, Germany
- Hospital Nacional de Parapléjicos, Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Maarten van Kleef
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
- EURON Graduate School of Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
19
|
Abbinanti MD, Harris-Warrick RM. Serotonin modulates multiple calcium current subtypes in commissural interneurons of the neonatal mouse. J Neurophysiol 2012; 107:2212-9. [PMID: 22279189 DOI: 10.1152/jn.00768.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium currents are critical to the intrinsic properties of neurons and the networks that contain them. These currents make attractive targets for neuromodulation. Here, we examine the serotonergic modulation of specific calcium current subtypes in neonatal (P0-5) intersegmental commissural interneurons (CINs), members of the hindlimb locomotor central pattern generator in the mouse spinal cord. Previous work in our lab showed that serotonin (5-HT) excited CINs in part by reducing a calcium current and thus indirectly reducing the calcium-activated potassium current (Diaz-Rios et al. 2007). We have determined which calcium currents are targets of serotonin modulation. Utilizing whole cell voltage clamp and toxins to specific calcium current subtypes, we found that N- and P/Q-type currents comprise over 60% of the overall calcium current. Blockade of each of these subtypes alone with either ω-conotoxin GVIA or ω-agatoxin TK was unable to occlude 5-HT's reduction of the calcium current. However, coapplication of both blockers together fully occluded 5-HT's reduction of the calcium current. Thus, 5-HT decreases both N- and P/Q-type calcium current to excite neonatal CINs.
Collapse
Affiliation(s)
- Matthew D Abbinanti
- Dept. of Neurobiology and Behavior, Mudd Hall, Cornell Univ., Ithaca, NY 14853, USA
| | | |
Collapse
|
20
|
Miles GB, Sillar KT. Neuromodulation of Vertebrate Locomotor Control Networks. Physiology (Bethesda) 2011; 26:393-411. [DOI: 10.1152/physiol.00013.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate locomotion must be adaptable in light of changing environmental, organismal, and developmental demands. Much of the underlying flexibility in the output of central pattern generating (CPG) networks of the spinal cord and brain stem is endowed by neuromodulation. This review provides a synthesis of current knowledge on the way that various neuromodulators modify the properties of and connections between CPG neurons to sculpt CPG network output during locomotion.
Collapse
Affiliation(s)
- Gareth B. Miles
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Keith T. Sillar
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| |
Collapse
|
21
|
Hao ZZ, Spardy LE, Nguyen EBL, Rubin JE, Berkowitz A. Strong interactions between spinal cord networks for locomotion and scratching. J Neurophysiol 2011; 106:1766-81. [PMID: 21734103 DOI: 10.1152/jn.00460.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Distinct rhythmic behaviors involving a common set of motoneurons and muscles can be generated by separate central nervous system (CNS) networks, a single network, or partly overlapping networks in invertebrates. Less is known for vertebrates. Simultaneous activation of two networks can reveal overlap or interactions between them. The turtle spinal cord contains networks that generate locomotion and three forms of scratching (rostral, pocket, and caudal), having different knee-hip synergies. Here, we report that in immobilized spinal turtles, simultaneous delivery of types of stimulation, which individually evoked forward swimming and one form of scratching, could 1) increase the rhythm frequency; 2) evoke switches, hybrids, and intermediate motor patterns; 3) recruit a swim motor pattern even when the swim stimulation was reduced to subthreshold intensity; and 4) disrupt rhythm generation entirely. The strength of swim stimulation could influence the result. Thus even pocket scratching and caudal scratching, which do not share a knee-hip synergy with forward swimming, can interact with swim stimulation to alter both rhythm and pattern generation. Model simulations were used to explore the compatibility of our experimental results with hypothetical network architectures for rhythm generation. Models could reproduce experimental observations only if they included interactions between neurons involved in swim and scratch rhythm generation, with maximal consistency between simulations and experiments attained using a model architecture in which certain neurons participated actively in both swim and scratch rhythmogenesis. Collectively, these findings suggest that the spinal cord networks that generate locomotion and scratching have important shared components or strong interactions between them.
Collapse
Affiliation(s)
- Zhao-Zhe Hao
- Department of Zoology, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | |
Collapse
|
22
|
Harris-Warrick RM. Neuromodulation and flexibility in Central Pattern Generator networks. Curr Opin Neurobiol 2011; 21:685-92. [PMID: 21646013 DOI: 10.1016/j.conb.2011.05.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/29/2022]
Abstract
Central Pattern Generator (CPG) networks, which organize rhythmic movements, have long served as models for neural network organization. Modulatory inputs are essential components of CPG function: neuromodulators set the parameters of CPG neurons and synapses to render the networks functional. Each modulator acts on the network by many effects which may oppose one another; this may serve to stabilize the modulated state. Neuromodulators also determine the active neuronal composition in the CPG, which varies with state changes such as locomotor speed. The pattern of gene expression which determines the electrophysiological personality of each CPG neuron is also under modulatory control. It is not possible to model the function of neural networks without including the actions of neuromodulators.
Collapse
Affiliation(s)
- Ronald M Harris-Warrick
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
Properties of a distinct subpopulation of GABAergic commissural interneurons that are part of the locomotor circuitry in the neonatal spinal cord. J Neurosci 2011; 31:4821-33. [PMID: 21451020 DOI: 10.1523/jneurosci.4764-10.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Commissural inhibitory interneurons (INs) are integral components of the locomotor circuitry that coordinate left-right motor activity during movements. We have shown that GABA-mediated synaptic transmission plays a key role in generating alternating locomotor-like activity in the mouse spinal cord (Hinckley et al., 2005a). The primary objective of our study was to determine whether properties of lamina VIII (LVIII) GABAergic INs in the spinal cord of GAD67::GFP transgenic mice fit the classification of rhythm-coordinating neurons in the locomotor circuitry. The relatively large green fluorescent protein-expressing (GFP(+)) INs had comparable morphological and electrophysiological properties, suggesting that they comprised a homogenous neuronal population. They displayed multipolar and complex dendritic arbors in ipsilateral LVII-LVIII, and their axonal projections crossed the ventral commissure and branched into contralateral ventral, medial, and dorsal laminae. Putative synaptic contacts evident as bouton-like varicosities were detected in close apposition to lateral motoneurons, Renshaw cells, other GFP(+) INs, and unidentified neurons. Exposure to a rhythmogenic mixture triggered locomotor-like rhythmic firing in the majority of LVIII GFP(+) INs. Their induced oscillatory activity was out-of-phase with bursts of contralateral motoneurons and in-phase with bouts of ipsilateral motor activity. Membrane voltage oscillations were elicited by rhythmic increases in excitatory synaptic drive and might have been augmented by three types of voltage-activated cationic currents known to increase neuronal excitability. Based on their axonal projections and activity pattern, we propose that this population of GABAergic INs forms a class of local commissural inhibitory interneurons that are integral component of the locomotor circuitry.
Collapse
|
24
|
Pearlstein E, Bras H, Deneris ES, Vinay L. Contribution of 5-HT to locomotion - the paradox of Pet-1(-/-) mice. Eur J Neurosci 2011; 33:1812-22. [PMID: 21501257 DOI: 10.1111/j.1460-9568.2011.07679.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) plays a critical role in locomotor pattern generation by modulating the rhythm and the coordinations. Pet-1, a transcription factor selectively expressed in the raphe nuclei, controls the differentiation of 5-HT neurons. Surprisingly, inactivation of Pet-1 (Pet-1(-/-) mice) that causes a 70% reduction in the number of 5-HT-positive neurons in the raphe does not impair locomotion in adult mice. The goal of the present study was to investigate the operation of the locomotor central pattern generator (CPG) in neonatal Pet-1(-/-) mice. We first confirmed, by means of immunohistochemistry, that there is a marked reduction of 5-HT innervation in the lumbar spinal cord of Pet-1(-/-) mice. Fictive locomotion was induced in the in vitro neonatal mouse spinal cord preparation by bath application of N-methyl-d,l-Aspartate (NMA) alone or together with dopamine and 5-HT. A locomotor pattern characterized by left-right and flexor-extensor alternations was observed in both conditions. Increasing the concentration of 5-HT from 0.5 to 5 μm impaired the pattern in Pet-1(-/-) mice. We tested the role of endogenous 5-HT in the NMA-induced fictive locomotion. Application of 5-HT(2) or 5-HT(7) receptor antagonists affected the NMA-induced fictive locomotion in both heterozygous and homozygous mice although the effects were weaker in the latter strain. This may be, at least partly, explained by the reduced expression of 5-HT(2A) R as observed by means of immunohistochemistry. These results suggest that compensatory mechanisms take place in Pet-1(-/-) mice that make locomotion less dependent upon 5-HT.
Collapse
Affiliation(s)
- E Pearlstein
- Laboratoire Plasticité et Physio-Pathologie de la Motricité (P3M), CNRS & Université de la Méditerranée, UMR 6196, CNRS, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
25
|
Jordan LM, Sławińska U. Chapter 12--modulation of rhythmic movement: control of coordination. PROGRESS IN BRAIN RESEARCH 2011; 188:181-95. [PMID: 21333810 DOI: 10.1016/b978-0-444-53825-3.00017-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Three rhythmic movements, breathing, walking, and chewing, are considered from the perspective of the emerging factors that control their coordination. This takes us beyond the concept of a core excitatory kernel and into the common principles that govern the interaction between components of the neural networks that must be orchestrated properly to produce meaningful movement beyond the production of the basic rhythm. We focus on the role of neuromodulators, especially 5-hydroxytryptamine (5-HT), in the production of coordinated breathing, walking, and chewing, and we review the evidence that at least in the case of breathing and walking, 5-HT input to the CPGs acts through the selection of inhibitory interneurons that are essential for coordination. We review data from recently developed mouse models that offer insight into the contributions of inhibitory coordinating neurons, including the development of a new model that has allowed the revelation that there are glycinergic pacemaker neurons that likely contribute to the production of the respiratory rhythm. Perhaps walking and chewing will not be far behind.
Collapse
Affiliation(s)
- Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg MB, Canada
| | | |
Collapse
|
26
|
Brocard F, Tazerart S, Vinay L. Do pacemakers drive the central pattern generator for locomotion in mammals? Neuroscientist 2010; 16:139-55. [PMID: 20400712 DOI: 10.1177/1073858409346339] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Locomotor disorders profoundly impact quality of life of patients with spinal cord injury. Understanding the neuronal networks responsible for locomotion remains a major challenge for neuroscientists and a fundamental prerequisite to overcome motor deficits. Although neuronal circuitry governing swimming activities in lower vertebrates has been studied in great details, determinants of walking activities in mammals remain elusive. The manuscript reviews some of the principles relevant to the functional organization of the mammalian locomotor network and mainly focuses on mechanisms involved in rhythmogenesis. Based on recent publications supplemented with new experimental data, the authors will specifically discuss a new working hypothesis in which pacemakers, cells characterized by inherent oscillatory properties, might be functionally integrated in the locomotor network in mammals.
Collapse
Affiliation(s)
- Frédéric Brocard
- Lab Plasticité et Physio-Pathologie de la Motricité, Centre National De La Recherche Scientifique, Université Aix-Marseille, Marseille, France.
| | | | | |
Collapse
|
27
|
Sherwood WE, Harris-Warrick R, Guckenheimer J. Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci 2010; 30:323-60. [PMID: 20644988 DOI: 10.1007/s10827-010-0259-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/17/2010] [Accepted: 06/25/2010] [Indexed: 12/20/2022]
Abstract
Establishing, maintaining, and modifying the phase relationships between extensor and flexor muscle groups is essential for central pattern generators in the spinal cord to coordinate the hindlimbs well enough to produce the basic walking rhythm. This paper investigates a simplified computational model for the spinal hindlimb central pattern generator (CPG) that is abstracted from experimental data from the rodent spinal cord. This model produces locomotor-like activity with appropriate phase relationships in which right and left muscle groups alternate while extensor and flexor muscle groups alternate. Convergence to this locomotor pattern is slow, however, and the range of parameter values for which the model produces appropriate output is relatively narrow. We examine these aspects of the model's coordination of left-right activity through investigation of successively more complicated subnetworks, focusing on the role of the synaptic architecture in shaping motoneuron phasing. We find unexpected sensitivity in the phase response properties of individual neurons in response to stimulation and a need for high levels of both inhibition and excitation to achieve the walking rhythm. In the absence of cross-cord excitation, equal levels of ipsilateral and contralateral inhibition result in a strong preference for hopping over walking. Inhibition alone can produce the walking rhythm, but contralateral inhibition must be much stronger than ipsilateral inhibition. Cross-cord excitatory connections significantly enhance convergence to the walking rhythm, which is achieved most rapidly with strong crossed excitation and greater contralateral than ipsilateral inhibition. We discuss the implications of these results for CPG architectures based on unit burst generators.
Collapse
Affiliation(s)
- William Erik Sherwood
- Center for BioDynamics, Boston University, 111 Cummington Street, Boston, MA 02215, USA.
| | | | | |
Collapse
|
28
|
Dai Y, Jordan LM. Multiple Effects of Serotonin and Acetylcholine on Hyperpolarization-Activated Inward Current in Locomotor Activity-Related Neurons in Cfos-EGFP Mice. J Neurophysiol 2010; 104:366-81. [DOI: 10.1152/jn.01110.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated inward current ( Ih) has been shown to be involved in production of bursting during various forms of rhythmic activity. However, details of Ih in spinal interneurons related to locomotion remain unknown. Using Cfos-EGFP transgenic mice (P6–P12) we are able to target the spinal interneurons activated by locomotion. Following a locomotor task, whole cell patch-clamp recordings were obtained from ventral EGFP+ neurons in spinal cord slices (T13–L4, 200–250 μm). Ih was found in 51% of EGFP+ neurons ( n = 149) with almost even distribution in lamina VII (51%), VIII (47%), and X (55%). Ih could be blocked by ZD7288 (10–20 μM) or cesium (1–1.5 mM) but was insensitive to barium (2–2.5 mM). Ih activated at −80.1 ± 9.2 mV with half-maximal activation −95.5 ± 13.3 mV, activation rate 10.0 ± 3.2 mV, time constant 745 ± 501 ms, maximal conductance 1.0 ± 0.7 nS, and reversal potential −34.3 ± 3.6 mV. 5-HT (15–20 μM) and ACh (20–30 μM) produced variable effects on Ih. 5-HT increased Ih in 43% of EGFP+ neurons ( n = 37), decreased Ih in 24%, and had no effect on Ih in 33% of the neurons. ACh decreased Ih in 67% of EGFP+ neurons ( n = 18) with unchanged Ih in 33% of the neurons. This study characterizes the Ih in locomotor-related interneurons and is the first to demonstrate the variable effects of 5-HT and ACh on Ih in rodent spinal interneurons. The finding of 5-HT and ACh-induced reduction of Ih in EGFP+ neurons suggests a novel mechanism that the motor system could use to limit the participation of certain neurons in locomotion.
Collapse
Affiliation(s)
- Yue Dai
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Larry M. Jordan
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord. J Neurosci 2010; 30:170-82. [PMID: 20053899 DOI: 10.1523/jneurosci.4849-09.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The V2a class of Chx10-expressing interneurons has been implicated in frequency-dependent control of left-right phase during locomotion in the mouse. We have used the Chx10::CFP mouse line to further investigate the properties and locomotion-related activity of V2a interneurons in the isolated neonatal spinal cord. V2a interneurons can be divided into three classes, based on their tonic, phasic, or delayed-onset responses to step depolarization. Electrical coupling is found only between neurons of same class and helps to synchronize neuronal activity within the class. Serotonin (5-HT) excites isolated tonic V2a interneurons by depolarizing the neurons and increasing their membrane input resistance, with no significant effects on action potential properties, a mechanism distinct from 5-HT excitation of commissural interneurons. During NMDA-/5-HT-induced locomotor-like activity, patch-clamp recordings and two-photon calcium imaging experiments show that approximately half of V2a interneurons fire rhythmically with ventral root-recorded motor activity; the rhythmic V2a interneurons fired during one half of the cycle, in phase with either the ipsilateral or the contralateral L2 ventral root bursts. The percentage of rhythmically firing V2a interneurons increases during higher-frequency fictive locomotion, and they become significantly more rhythmic in their firing during the locomotor cycle; this may help to explain the frequency-dependent shift in left-right coupling in Chx10::DTA mice, which lack these neurons. Our results together with data from the accompanying paper (Dougherty and Kiehn, 2009) reinforce earlier proposals that the V2a interneurons are components of the hindlimb central pattern generator, helping to organize left-right locomotor coordination in the neonatal mouse spinal cord.
Collapse
|
30
|
Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 2010; 13:246-52. [DOI: 10.1038/nn.2482] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/10/2009] [Indexed: 11/08/2022]
|
31
|
Dai Y, Carlin KP, Li Z, McMahon DG, Brownstone RM, Jordan LM. Electrophysiological and pharmacological properties of locomotor activity-related neurons in cfos-EGFP mice. J Neurophysiol 2009; 102:3365-83. [PMID: 19793882 PMCID: PMC2804412 DOI: 10.1152/jn.00265.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/25/2009] [Indexed: 02/05/2023] Open
Abstract
Although locomotion is known to be generated by networks of spinal neurons, knowledge of the properties of these neurons is limited. Using neonatal transgenic mice that express enhanced green fluorescent protein (EGFP) driven by the c-fos promoter, we visualized EGFP-positive neurons in spinal cord slices from animals that were subjected to a locomotor task or drug cocktail [N-methyl-D-aspartate, serotonin (5-HT), dopamine, and acetylcholine (ACh)]. The activity-dependent expression of EGFP was also induced in dorsal root ganglion neurons with electrical stimulation of the neurons. Following 60-90 min of swimming, whole cell patch-clamp recordings were made from EGFP+ neurons in laminae VII, VIII, and X from slices of segments T(12) to L(4). The EGFP+ neurons (n = 55) could be classified into three types based on their responses to depolarizing step currents: single spike, phasic firing, and tonic firing. Membrane properties observed in these neurons include hyperpolarization-activated inward currents (29/55), postinhibitory rebound (11/55), and persistent-inward currents (31/55). Bath application of 10-40 microM 5-HT and/or ACh increased neuronal excitability or output with hyperpolarization of voltage threshold and changes in membrane potential. 5-HT also increased input resistance, reduced the afterhyperpolarization (AHP), and induced membrane oscillations, whereas ACh reduced the input resistance and increased the AHP. In this study, we demonstrate a new way of identifying neurons active in locomotion. Our results suggest that the EGFP+ neurons are a heterogeneous population of interneurons. The actions of 5-HT and ACh on these neurons provide insights into the neuronal properties modulated by these transmitters for generation of locomotion.
Collapse
Affiliation(s)
- Yue Dai
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Dunbar MJ, Tran MA, Whelan PJ. Endogenous extracellular serotonin modulates the spinal locomotor network of the neonatal mouse. J Physiol 2009; 588:139-56. [PMID: 19884315 DOI: 10.1113/jphysiol.2009.177378] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Serotonin (5-HT) can potently activate and modulate spinal locomotor circuits in a variety of species. Many of these findings have been obtained by applying serotonin exogenously to the isolated spinal cord of in vitro preparations, which has the drawback of indiscriminately activating extrasynaptic receptors and neurons. To investigate the role of endogenously released serotonin in modulating locomotor networks, the selective serotonin reuptake inhibitor citalopram was used. Fictive locomotion was elicited by either electrical stimulation of the brainstem or the sacral 4 (S4) dorsal root. The addition of 20 microm of citalopram caudal to thoracic segment 5 (T5) had an overall inhibitory effect on the lumbar central pattern generator (CPG). Left-right and flexor-extensor coupling were significantly decreased, and there was also a phase shift in the flexor-extensor relationship. In addition, there was a significant decrease in burst amplitude. These effects were observed during both afferent and brainstem evoked fictive locomotion. When citalopram was added in the presence of 5-HT(1A) and 5-HT(1B) antagonists, the inhibitory effects were largely reversed. The remaining excitatory effects were mediated by 5-HT(7) and 5-HT(2) receptors. These results suggest that endogenous 5-HT release can modulate locomotor-like activity early in neonatal development.
Collapse
Affiliation(s)
- Mary J Dunbar
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
33
|
Serotonergic modulation of locomotion in zebrafish: endogenous release and synaptic mechanisms. J Neurosci 2009; 29:10387-95. [PMID: 19692613 DOI: 10.1523/jneurosci.1978-09.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin (5-HT) plays an important role in shaping the activity of the spinal networks underlying locomotion in many vertebrate preparations. At larval stages in zebrafish, 5-HT does not change the frequency of spontaneous swimming; and it only decreases the quiescent period between consecutive swimming episodes. However, it is not known whether 5-HT exerts similar actions on the locomotor network at later developmental stages. For this, the effect of 5-HT on the fictive locomotor pattern of juvenile and adult zebrafish was analyzed. Bath-application of 5-HT (1-20 mum) reduced the frequency of the NMDA-induced locomotor rhythm. Blocking removal from the synaptic cleft with the reuptake inhibitor citalopram had similar effects, suggesting that endogenous serotonin is modulating the locomotor pattern. One target for this modulation was the mid-cycle inhibition during locomotion because the IPSPs recorded in spinal neurons during the hyperpolarized phase were increased both in amplitude and occurrence by 5-HT. Similar results were obtained for IPSCs recorded in spinal neurons clamped at the reversal potential of excitatory currents (0 mV). 5-HT also slows down the rising phase of the excitatory drive recorded in spinal cord neurons when glycinergic inhibition is blocked. These results suggest that the decrease in the locomotor burst frequency induced by 5-HT is mediated by a potentiation of mid-cycle inhibition combined with a delayed onset of the subsequent depolarization.
Collapse
|
34
|
Presynaptic G-protein-coupled receptors dynamically modify vesicle fusion, synaptic cleft glutamate concentrations, and motor behavior. J Neurosci 2009; 29:10221-33. [PMID: 19692597 DOI: 10.1523/jneurosci.1404-09.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding how neuromodulators regulate behavior requires investigating their effects on functional neural systems, but also their underlying cellular mechanisms. Utilizing extensively characterized lamprey motor circuits, and the unique access to reticulospinal presynaptic terminals in the intact spinal cord that initiate these behaviors, we investigated effects of presynaptic G-protein-coupled receptors on locomotion from the systems level, to the molecular control of vesicle fusion. 5-HT inhibits neurotransmitter release via a Gbetagamma interaction with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that promotes kiss-and-run vesicle fusion. In the lamprey spinal cord, we demonstrate that, although presynaptic 5-HT receptors inhibit evoked neurotransmitter release from reticulospinal command neurons, their activation does not abolish locomotion but rather modulates locomotor rhythms. Liberation of presynaptic Gbetagamma causes substantial inhibition of AMPA receptor-mediated synaptic responses but leaves NMDA receptor-mediated components of neurotransmission mostly intact. Because Gbetagamma binding to the SNARE complex is displaced by Ca(2+)-synaptotagmin binding, 5-HT-mediated inhibition displays Ca(2+) sensitivity. We show that, as Ca(2+) accumulates presynaptically during physiological bouts of activity, 5-HT/Gbetagamma-mediated presynaptic inhibition is relieved, leading to a frequency-dependent increase in synaptic concentrations of glutamate. This frequency-dependent phenomenon mirrors a shift in the vesicle fusion mode and a recovery of AMPA receptor-mediated EPSCs from inhibition without a modification of NMDA receptor EPSCs. We conclude that activation of presynaptic 5-HT G-protein-coupled receptors state-dependently alters vesicle fusion properties to shift the weight of NMDA versus AMPA receptor-mediated responses at excitatory synapses. We have therefore identified a novel mechanism in which modification of vesicle fusion modes may profoundly alter locomotor behavior.
Collapse
|
35
|
Dyck J, Gosgnach S. Whole cell recordings from visualized neurons in the inner laminae of the functionally intact spinal cord. J Neurophysiol 2009; 102:590-7. [PMID: 19386756 DOI: 10.1152/jn.00212.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The in vitro whole spinal cord preparation has been an invaluable tool for the study of the neural network that underlies walking because it provides a means of recording fictive locomotor activity following surgical and/or pharmacological manipulation. The recent use of molecular genetic techniques to identify discrete neuronal populations in the spinal cord and subsequent studies showing some of these populations to be involved in locomotor activity have been exciting developments that may lead to a better understanding of the structure and mechanism of function of this neural network. It would be of great benefit if the in vitro whole spinal cord preparation could be updated to allow for the direct targeting of genetically defined neuronal populations, allowing each to be characterized physiologically and anatomically. This report describes a new technique that enables the visualization of, and targeted whole cell patch-clamp recordings from, genetically defined populations of neurons while leaving connectivity largely intact. The key feature of this technique is a small notch cut in the lumbar spinal cord that reveals cells located in the intermediate laminae while leaving the ventral portion of the spinal cord-the region containing the locomotor neural network-untouched. Whole cell patch-clamp recordings demonstrate that these neurons are healthy and display large rhythmic depolarizations that are related to electroneurogram bursts recorded from ventral roots during fictive locomotion. Intracellular labeling demonstrates that this technique can also be used to map axonal projection patterns of neurons. We expect that this procedure will greatly facilitate electrophysiological and anatomical study of important neuronal populations that constitute neural networks throughout the CNS.
Collapse
Affiliation(s)
- Jason Dyck
- Center for Neuroscience, Department of Physiology, University of Alberta, Medical Science Building, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
36
|
Cowley KC, Zaporozhets E, Joundi RA, Schmidt BJ. Contribution of Commissural Projections to Bulbospinal Activation of Locomotion in the In Vitro Neonatal Rat Spinal Cord. J Neurophysiol 2009; 101:1171-8. [DOI: 10.1152/jn.91212.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Commissural projections are required for left-right coordination during locomotion. However, their role, if any, in rhythm production is unknown. This study uses the neonatal rat in vitro brain stem–spinal cord model to examine the rostrocaudal distribution of locomotor-related commissural projections and study whether commissural connections are needed for the generation of hindlimb rhythmic activity in response to electrical stimulation of the brain stem. Midsagittal lesions were made at a wide range of rostrocaudal levels. Locomotor-like activity persisted in some preparations despite midsagittal lesions extending from C1 to the mid-L1 level or from the conus medullaris to the T12/13 junction. In some preparations, midsagittal lesions throughout the entire spinal cord had no effect on locomotor-like activity if two or three contiguous segments remained intact. Those bridging segments had to include the T13 and/or L1 levels. These observations suggested that commissural projections in the thoracolumbar junction region were critical. However, locomotor-like activity was also elicited in preparations with limited midsagittal lesions focused on the thoracolumbar junction (T12 through L1 or L2 inclusive). In other experiments, locomotor-like activity was evoked by bath-applied 5-hydroxytryptamine (5-HT) and N-methyl-d-aspartate (NMDA). Appropriate side-to-side coordination was observed, even when only one segment remained bilaterally intact. Commissural projections traversing the thoracolumbar junction region were most effective. In combination, these results suggest that locomotor-related commissural projections are redundantly distributed along a bi-directional gradient that centers on the thoracolumbar junction. This commissural system not only provides a robust left-right coordinating mechanism but also supports locomotor rhythm generation in response to brain stem stimulation.
Collapse
|
37
|
Tazerart S, Vinay L, Brocard F. The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci 2008; 28:8577-89. [PMID: 18716217 PMCID: PMC6671046 DOI: 10.1523/jneurosci.1437-08.2008] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/04/2008] [Accepted: 07/02/2008] [Indexed: 11/21/2022] Open
Abstract
Rhythm generation in neuronal networks relies on synaptic interactions and pacemaker properties. Little is known about the contribution of the latter mechanisms to the integrated network activity underlying locomotion in mammals. We tested the hypothesis that the persistent sodium current (I(NaP)) is critical in generating locomotion in neonatal rodents using both slice and isolated spinal cord preparations. After removing extracellular calcium, 75% of interneurons in the area of the central pattern generator (CPG) for locomotion exhibited bursting properties and I(NaP) was concomitantly upregulated. Putative CPG interneurons such as commissural and Hb9 interneurons also expressed I(NaP)-dependent (riluzole-sensitive) bursting properties. Most bursting cells exhibited a pacemaker-like behavior (i.e., burst frequency increased with depolarizing currents). Veratridine upregulated I(NaP), induced riluzole-sensitive bursting properties, and slowed down the locomotor rhythm. This study provides evidence that I(NaP) generates pacemaker activities in CPG interneurons and contributes to the regulation of the locomotor activity.
Collapse
Affiliation(s)
- Sabrina Tazerart
- Laboratoire Plasticité et Physio-Pathologie de la Motricité, Unité Mixte de Recherche 6196, Centre National de la Recherche Scientifique, Université Aix-Marseille, F-13402 Marseille Cedex 20, France
| | - Laurent Vinay
- Laboratoire Plasticité et Physio-Pathologie de la Motricité, Unité Mixte de Recherche 6196, Centre National de la Recherche Scientifique, Université Aix-Marseille, F-13402 Marseille Cedex 20, France
| | - Frédéric Brocard
- Laboratoire Plasticité et Physio-Pathologie de la Motricité, Unité Mixte de Recherche 6196, Centre National de la Recherche Scientifique, Université Aix-Marseille, F-13402 Marseille Cedex 20, France
| |
Collapse
|
38
|
Elsen FP, Shields EJ, Roe MT, Vandam RJ, Kelty JD. Carbenoxolone induced depression of rhythmogenesis in the pre-Bötzinger Complex. BMC Neurosci 2008; 9:46. [PMID: 18500991 PMCID: PMC2413244 DOI: 10.1186/1471-2202-9-46] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 05/23/2008] [Indexed: 12/03/2022] Open
Abstract
Background Carbenoxolone (CBX), a gap junction uncoupler, alters the functioning of the pre-Bötzinger Complex (preBötC), a central pattern generating neuronal network important for the production of respiratory rhythm in mammals. Even when isolated in a 1/2 mm-thick slice of medulla oblongata from neonatal mouse the preBötC continues producing periodic bursts of action potentials, termed population bursts that are thought to be important in generating various patterns of inspiration, in vivo. Whether gap junction communication contributes to preBötC rhythmogenesis remains unresolved, largely because existing gap junction uncouplers exert numerous non-specific effects (e.g., inhibition of active transport, alteration of membrane conductances). Here, we determined whether CBX alters preBötC rhythmogenesis by altering membrane properties including input resistance (Rin), voltage-gated Na+ current (INa), and/or voltage-gated K+ current (IK), rather than by blocking gap junction communication. To do so we used a medullary slice preparation, network-level recordings, whole-cell voltage clamp, and glycyrrhizic acid (GZA; a substance used as a control for CBX, since it is similar in structure and does not block gap junctions). Results Whereas neither of the control treatments [artificial cerebrospinal fluid (aCSF) or GZA (50 μM)] noticeably affected preBötC rhythmogenesis, CBX (50 μM) decreased the frequency, area and amplitude of population bursts, eventually terminating population burst production after 45–60 min. Both CBX and GZA decreased neuronal Rin and induced an outward holding current. Although neither agent altered the steady state component of IK evoked by depolarizing voltage steps, CBX, but not GZA, increased peak INa. Conclusion The data presented herein are consistent with the notion that gap junction communication is important for preBötC rhythmogenesis. By comparing the effects of CBX and GZA on membrane properties our data a) demonstrate that depression of preBötC rhythmogenesis by CBX results from actions on another variable or other variables; and b) show that this comparative approach can be used to evaluate the potential contribution of other non-specific actions (e.g., Ca++ conductances or active transport) of CBX, or other uncouplers, in their alteration of preBötC rhythmogenesis, or the functioning of other networks.
Collapse
Affiliation(s)
- Frank P Elsen
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
39
|
Burrell BD, Crisp KM. Serotonergic Modulation of Afterhyperpolarization in a Neuron That Contributes to Learning in the Leech. J Neurophysiol 2008; 99:605-16. [DOI: 10.1152/jn.00989.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modulation of afterhyperpolarization (AHP) represents an important mechanism by which excitability of a neuron can be regulated. In the leech brain, sensitization enhances excitability of the S-cell, an interneuron thought to play an important role in this form of nonassociative learning. This increase in excitability is serotonin (5-HT) dependent, but it is not known whether changes in AHP contribute to 5-HT–mediated enhancement of excitability. Therefore electrophysiological recordings and computational modeling were used to determine whether 5-HT enhances excitability via modulation of AHP. 5-HT reduced S-cell AHP and this decrease in the AHP corresponded with an increase in excitability. Little or no AHP is observed in the presence of Ca2+-free saline, suggesting the involvement of Ca2+-dependent K+channels. Furthermore, AHP amplitude decreased following treatment with drugs (tubocurare and charybdotoxin) that block Ca2+-dependent K+channel activity. The S-cell also exhibits an afterdepolarization (ADP), which is usually masked by the AHP, and was inhibited by the Na+channel blocker saxitoxin. A model of the S-cell AHP was constructed using two Ca2+-dependent K+currents and a Na+-driven ADP current. Reduction of the model conductances underlying the AHP to mimic the effects of 5-HT was sufficient to enhance excitability. These findings were confirmed in occlusion experiments in which pretreatment with tubocurare was able to block 5-HT–mediated decreases in mAHP levels and increases in excitability. These data show that modulation of S-cell AHP can contribute to 5-HT–mediated increases in excitability and that the S-cell afterpotential is due to the combined effects of AHP- and ADP-producing currents.
Collapse
|
40
|
Descending command systems for the initiation of locomotion in mammals. ACTA ACUST UNITED AC 2008; 57:183-91. [DOI: 10.1016/j.brainresrev.2007.07.019] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 07/11/2007] [Indexed: 01/09/2023]
|
41
|
Díaz-Ríos M, Dombeck DA, Webb WW, Harris-Warrick RM. Serotonin Modulates Dendritic Calcium Influx in Commissural Interneurons in the Mouse Spinal Locomotor Network. J Neurophysiol 2007; 98:2157-67. [PMID: 17581844 DOI: 10.1152/jn.00430.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Commissural interneurons (CINs) help to coordinate left–right alternating bursting activity during fictive locomotion in the neonatal mouse spinal cord. Serotonin (5-HT) plays an active role in the induction of fictive locomotion in the isolated spinal cord, but the cellular targets and mechanisms of its actions are relatively unknown. We investigated the possible role of serotonin in modifying dendritic calcium currents, using a combination of two-photon microscopy and patch-clamp recordings, in identified CINs in the upper lumbar region. Dendritic calcium responses to applied somatic voltage-clamp steps were measured using fluorescent calcium indicator imaging. Serotonin evoked significant reductions in voltage-dependent dendritic calcium influx in about 40% of the dendritic sites studied, with no detectable effect in the remaining sites. We also detected differential effects of serotonin in different dendritic sites of the same neuron; serotonin could decrease voltage-sensitive calcium influx at one site, with no effect at a nearby site. Voltage-clamp studies confirmed that serotonin reduces the voltage-dependent calcium current in CINs. Current-clamp experiments showed that the serotonin-evoked decreases in dendritic calcium influx were coupled with increases in neuronal excitability; we discuss possible mechanisms by which these two seemingly opposing results can be reconciled. This research demonstrates that dendritic calcium currents are targets of serotonin modulation in a group of spinal interneurons that are components of the mouse locomotor network.
Collapse
Affiliation(s)
- Manuel Díaz-Ríos
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
42
|
Hamilton L, Franklin RJM, Jeffery ND. Development of a universal measure of quadrupedal forelimb-hindlimb coordination using digital motion capture and computerised analysis. BMC Neurosci 2007; 8:77. [PMID: 17877823 PMCID: PMC2063503 DOI: 10.1186/1471-2202-8-77] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/18/2007] [Indexed: 11/20/2022] Open
Abstract
Background Clinical spinal cord injury in domestic dogs provides a model population in which to test the efficacy of putative therapeutic interventions for human spinal cord injury. To achieve this potential a robust method of functional analysis is required so that statistical comparison of numerical data derived from treated and control animals can be achieved. Results In this study we describe the use of digital motion capture equipment combined with mathematical analysis to derive a simple quantitative parameter – 'the mean diagonal coupling interval' – to describe coordination between forelimb and hindlimb movement. In normal dogs this parameter is independent of size, conformation, speed of walking or gait pattern. We show here that mean diagonal coupling interval is highly sensitive to alterations in forelimb-hindlimb coordination in dogs that have suffered spinal cord injury, and can be accurately quantified, but is unaffected by orthopaedic perturbations of gait. Conclusion Mean diagonal coupling interval is an easily derived, highly robust measurement that provides an ideal method to compare the functional effect of therapeutic interventions after spinal cord injury in quadrupeds.
Collapse
Affiliation(s)
- Lindsay Hamilton
- Brain Repair Centre and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Robin JM Franklin
- Brain Repair Centre and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Nick D Jeffery
- Brain Repair Centre and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| |
Collapse
|
43
|
Quinlan KA, Kiehn O. Segmental, synaptic actions of commissural interneurons in the mouse spinal cord. J Neurosci 2007; 27:6521-30. [PMID: 17567813 PMCID: PMC6672441 DOI: 10.1523/jneurosci.1618-07.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 01/08/2023] Open
Abstract
Left-right alternation depends on activity in commissural interneurons (CINs) that have axons crossing in the midline. In this study, we investigate the CIN connectivity to local motor neurons using a newly developed preparation of the in vitro neonatal mouse spinal cord that allows us to identify all classes of CINs. Nineteen of 29 short-range CINs with axonal projections <1.5 segments (sCINs) directly excited, directly inhibited, or indirectly inhibited contralateral motor neurons in the quiescent spinal cord. Excitation was glutamatergic and inhibition was mixed glycinergic and/or GABAergic. Long-range CINs were also found to have input to local, contralateral motor neurons. Thirteen of 29 descending CINs had similar synaptic connectivity to contralateral motor neurons as the sCINs, including direct excitation and direct and indirect inhibition. Some (9 of 23) rostrally projecting ascending CINs, and a few (2 of 10) CINs with bifurcating axons that both ascend and descend, indirectly inhibited local, contralateral motor neurons. Rhythmic firing during locomotor-like activity was observed in a number of CINs with segmental synaptic effects on contralateral motor neurons. This study outlines the basic connectivity pattern of CINs in the mouse spinal cord on a segmental level. Our study suggests that, based on observed synaptic connectivity, both short- and long-range CINs are likely involved in segmental left-right coordination and that the CIN system is organized into a dual-inhibitory and single-excitatory system. These systems are organized in a way that they could provide appropriate coordination during locomotion.
Collapse
Affiliation(s)
- Katharina A. Quinlan
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
44
|
Tazerart S, Viemari JC, Darbon P, Vinay L, Brocard F. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. J Neurophysiol 2007; 98:613-28. [PMID: 17567773 DOI: 10.1152/jn.00316.2007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The persistent sodium current (I(NaP)) is known to play a role in rhythm generation in different systems. Here, we investigated its contribution to locomotor pattern generation in the neonatal rat spinal cord. The locomotor network is mainly located in the ventromedial gray matter of upper lumbar segments. By means of whole cell recordings in slices, we characterized membrane and I(NaP) biophysical properties of interneurons located in this area. Compared with motoneurons, interneurons were more excitable, because of higher input resistance and membrane time constant, and displayed lower firing frequency arising from broader spikes and longer AHPs. Ramp voltage-clamp protocols revealed a riluzole- or TTX-sensitive inward current, presumably I(NaP), three times smaller in interneurons than in motoneurons. However, in contrast to motoneurons, I(NaP) mediated a prolonged plateau potential in interneurons after reducing K(+) and Ca(2+) currents. We further used in vitro isolated spinal cord preparations to investigate the contribution of I(NaP) to locomotor pattern. Application of riluzole (10 muM) to the whole spinal cord or to the upper lumbar segments disturbed fictive locomotion, whereas application of riluzole over the caudal lumbar segments had no effect. The effects of riluzole appeared to arise from a specific blockade of I(NaP) because action potential waveform, dorsal root-evoked potentials, and miniature excitatory postsynaptic currents were not affected. This study provides new functional features of ventromedial interneurons, with the first description of I(NaP)-mediated plateau potentials, and new insights into the operation of the locomotor network with a critical implication of I(NaP) in stabilizing the locomotor pattern.
Collapse
Affiliation(s)
- Sabrina Tazerart
- Laboratoire de Plasticité et Physio-Pathologie de la Motricité, Unité Mixte de Recherche 6196, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | | | | | | | | |
Collapse
|
45
|
Ayali A, Fuchs E, Ben-Jacob E, Cohen A. The function of intersegmental connections in determining temporal characteristics of the spinal cord rhythmic output. Neuroscience 2007; 147:236-46. [PMID: 17507171 PMCID: PMC2041883 DOI: 10.1016/j.neuroscience.2007.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Recent renewed interest in the study of rhythmic behaviors and pattern-generating circuits has been inspired by the currently well-established role of oscillating neuronal networks in all aspects of the function of our nervous system: from sensory integration to central processing, and of course motor control. An integrative rather than reductionist approach in the study of pattern-generating circuits is in accordance with current developments. The lamprey spinal cord, a relatively simple and much-studied preparation, is a useful model for such a study. It is an example of a chain of coupled oscillatory units that is characterized by its ability to demonstrate robust coordinated rhythmic output when isolated in vitro. The preparation allows maximum control over the chemical (neuromodulators and hormones) as well as neuronal environment (sensory and descending inputs) of the single oscillatory unit: the pattern-generating circuit. The current study made use of recently developed tools for nonlinear analysis of time-series, specifically neurophysiological signals. These tools allow us to reveal and characterize biological-functional complexity and information capacity of the neuronal output recorded from the lamprey model network. We focused on the importance of different types of inputs to an oscillatory network and their effect on the network's functional output. We show that the basic circuit, when isolated from short- and long-range neuronal inputs, demonstrates its full potential of information capacity: maximal variation quantities and elevated functional complexity. Morphological and functional constraints result in the network exhibiting only a limited range of the above. This constitutes an important substrate for plasticity in neuronal network function.
Collapse
Affiliation(s)
- A Ayali
- Department of Zoology, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | | | |
Collapse
|
46
|
Zhong G, Masino MA, Harris-Warrick RM. Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. J Neurosci 2007; 27:4507-18. [PMID: 17460064 PMCID: PMC6673000 DOI: 10.1523/jneurosci.0124-07.2007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The persistent sodium current (I(Na(P))) has been implicated in the regulation of synaptic integration, intrinsic membrane properties, and rhythm generation in many types of neurons. We characterized I(Na(P)) in commissural interneurons (CINs) in the neonatal (postnatal days 0-3) mouse spinal cord; it is activated at subthreshold potentials, inactivates slowly, and can be blocked by low concentrations of riluzole. The role of I(Na(P)) in locomotor pattern generation was examined by applying riluzole during fictive locomotion induced by NMDA, serotonin, and dopamine or by stimulation of the cauda equina. Blockade of I(Na(P)) has marginal effects on the locomotion frequency but progressively weakens the rhythmic firing and locomotor-related membrane oscillation of CINs and motoneurons (MNs) and the locomotor-like bursts in ventral roots, until the motor pattern ceases. Riluzole directly affects the intrinsic firing properties of CINs and MNs, reducing their ability to fire repetitively during tonic depolarizations and raising their spike threshold. At the same time, riluzole has little effects on the strength of spike-evoked synaptic transmission onto CINs and MNs. Our results suggest that I(Na(P)) is essential for the generation of the locomotor pattern and acts in part by regulating the frequency of interneuron firing in the central pattern generator for locomotion.
Collapse
Affiliation(s)
- Guisheng Zhong
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
47
|
Petruska JC, Ichiyama RM, Jindrich DL, Crown ED, Tansey KE, Roy RR, Edgerton VR, Mendell LM. Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats. J Neurosci 2007; 27:4460-71. [PMID: 17442831 PMCID: PMC6672318 DOI: 10.1523/jneurosci.2302-06.2007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although recovery from spinal cord injury is generally meager, evidence suggests that step training can improve stepping performance, particularly after neonatal spinal injury. The location and nature of the changes in neural substrates underlying the behavioral improvements are not well understood. We examined the kinematics of stepping performance and cellular and synaptic electrophysiological parameters in ankle extensor motoneurons in nontrained and treadmill-trained rats, all receiving a complete spinal transection as neonates. For comparison, electrophysiological experiments included animals injured as young adults, which are far less responsive to training. Recovery of treadmill stepping was associated with significant changes in the cellular properties of motoneurons and their synaptic input from spinal white matter [ipsilateral ventrolateral funiculus (VLF)] and muscle spindle afferents. A strong correlation was found between the effectiveness of step training and the amplitude of both the action potential afterhyperpolarization and synaptic inputs to motoneurons (from peripheral nerve and VLF). These changes were absent if step training was unsuccessful, but other spinal projections, apparently inhibitory to step training, became evident. Greater plasticity of axonal projections after neonatal than after adult injury was suggested by anatomical demonstration of denser VLF projections to hindlimb motoneurons after neonatal injury. This finding confirmed electrophysiological measurements and provides a possible mechanism underlying the greater training susceptibility of animals injured as neonates. Thus, we have demonstrated an "age-at-injury"-related difference that may influence training effectiveness, that successful treadmill step training can alter electrophysiological parameters in the transected spinal cord, and that activation of different pathways may prevent functional improvement.
Collapse
Affiliation(s)
- Jeffrey C. Petruska
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794-5230, and
| | - Ronaldo M. Ichiyama
- Department of Physiological Sciences, University of California, Los Angeles, Los Angeles, California 90095-1527
| | - Devin L. Jindrich
- Department of Physiological Sciences, University of California, Los Angeles, Los Angeles, California 90095-1527
| | - Eric D. Crown
- Department of Physiological Sciences, University of California, Los Angeles, Los Angeles, California 90095-1527
| | - Keith E. Tansey
- Department of Physiological Sciences, University of California, Los Angeles, Los Angeles, California 90095-1527
| | - Roland R. Roy
- Department of Physiological Sciences, University of California, Los Angeles, Los Angeles, California 90095-1527
| | - V. Reggie Edgerton
- Department of Physiological Sciences, University of California, Los Angeles, Los Angeles, California 90095-1527
| | - Lorne M. Mendell
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794-5230, and
| |
Collapse
|
48
|
Gordon IT, Whelan PJ. Monoaminergic control of cauda-equina-evoked locomotion in the neonatal mouse spinal cord. J Neurophysiol 2006; 96:3122-9. [PMID: 16956991 DOI: 10.1152/jn.00606.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoaminergic projections are among the first supraspinal inputs to innervate spinal networks. Little is known regarding the role of monoamines in modulating ongoing locomotor patterns evoked by endogenous release of neurotransmitter. Here we activate a locomotor-like rhythm by electrical stimulation of afferents and then test the modulatory effects of monoamines on the frequency, pattern, and quality of the rhythm. Stimulation of the cauda equina induced a rhythm consisting of left-right and ipsilateral alternation indicative of locomotor-like activity. First, we examined the effects of noradrenaline (NA), serotonin (5-HT), or dopamine (DA) at dose levels that did not elicit locomotor activity. Bath application of NA and DA resulted in a depression of the cauda-equina-evoked rhythm. Conversely, bath-applied 5-HT increased both the amplitude and cycle period of the evoked rhythm, an effect that was mimicked by the addition of 5-HT(2) agonists to the bath. Application of 5-HT(7) agonists disrupted the evoked rhythmic behavior. Next, we examined the effects of NA alpha(1) and alpha(2) agonists and found that the suppressive effects of NA on the rhythm could be reproduced by adding the alpha(2) agonist, clonidine, to the bath. In contrast, bath applying the alpha(1) agonist, phenylephrine, increased the amplitude and duration of the cycle period. Finally, the suppressive effects of DA were not replicated by the administration of D(1), D(2), or D(3) agonists although application of NA alpha(2) antagonists reversed the effects of DA. Application of D(1) agonists, increased the amplitude of the bursts but did not affect the cycle period. Our results indicate that monoamines can control the expression, pattern, and timing of cauda-equina-evoked locomotor patterns in developing mice.
Collapse
Affiliation(s)
- Ian T Gordon
- HSC 2119, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | | |
Collapse
|
49
|
Abstract
Intrinsic spinal networks, known as central pattern generators (CPGs), control the timing and pattern of the muscle activity underlying locomotion in mammals. This review discusses new advances in understanding the mammalian CPGs with a focus on experiments that address the overall network structure as well as the identification of CPG neurons. I address the identification of excitatory CPG neurons and their role in rhythm generation, the organization of flexor-extensor networks, and the diverse role of commissural interneurons in coordinating left-right movements. Molecular and genetic approaches that have the potential to elucidate the function of populations of CPG interneurons are also discussed.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm S17177, Sweden.
| |
Collapse
|
50
|
Zhong G, Díaz-Ríos M, Harris-Warrick RM. Intrinsic and functional differences among commissural interneurons during fictive locomotion and serotonergic modulation in the neonatal mouse. J Neurosci 2006; 26:6509-17. [PMID: 16775138 PMCID: PMC6674024 DOI: 10.1523/jneurosci.1410-06.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 11/21/2022] Open
Abstract
Commissural interneurons (CINs) send their axons across the midline to innervate contralateral targets and have been implicated in the coordination of left-right limb movements during locomotion. In the neonatal mouse spinal cord, we studied the firing properties and responses to serotonin (5-HT) of two classes of CINs: those whose axons turn caudally after crossing the midline (dCINs) and those whose axons bifurcate after crossing the midline (adCINs). During NMDA and 5-HT-induced locomotor-like activity, a majority of lumbar (L2) dCINs fired rhythmically with ventral root-recorded motor activity, although their firing phase was widely distributed throughout the locomotor cycle. In contrast, none of the adCINs fired rhythmically during fictive locomotion. We studied the baseline firing and membrane properties, and responses to current injection, in dCINs and adCINs that had been partially isolated by blockade of rapid synaptic transmission (with antagonists to glutamate, GABA, and glycine). No significant baseline differences were found between the cell types. In contrast, 5-HT significantly increased the excitability of the isolated dCINs by depolarizing the membrane potential, reducing the postspike afterhyperpolarization amplitude and decreasing the action potential threshold. None of these parameters were affected by 5-HT in adCINs. These results, together with our recent study of a third class of CINs, the aCINs whose axons ascend after crossing the midline (Zhong et al., 2006), suggest that dCINs and aCINs, but not adCINs, are excited by 5-HT and are rhythmically active during fictive locomotion. Thus, they may play important roles in the coordination of left-right movements during fictive locomotion.
Collapse
|