1
|
Chan SW, Chun A, Nguyen L, Bubolz B, Anderson AE, Lai YC. Associations between epilepsy, respiratory impairment, and minor ECG abnormalities in children. Seizure 2024; 122:39-44. [PMID: 39326248 DOI: 10.1016/j.seizure.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVE We sought to examine the effects of acute seizures and respiratory derangement on the cardiac electrical properties reflected on the electrocardiogram (ECG); and to analyze their potential interactions with a diagnosis of epilepsy in children. METHODS Emergency center (EC) visits with seizure or epilepsy diagnostic codes from 1/2011-12/2013 were included if they had ECG within 24 h of EC visit. Patients were excluded if they had pre-existing cardiac conditions, ion channelopathy, or were taking specific cardiac medications. Control subjects were 1:1 age and gender matched. Abnormal ECG was defined as changes in rhythm, PR, QRS, or corrected QT intervals; QRS axis or morphology; ST segment; or T wave morphology from normal standards. We identified independent associations between clinical factors and abnormal ECG findings using multivariable logistic regression modeling. RESULTS Ninety-five children with epilepsy presented to the EC with seizures, respiratory distress, and other concerns. Three hundred children without epilepsy presented with seizures. There was an increased prevalence of minor ECG abnormalities in children with epilepsy (49 %) compared to the control subjects (29 %) and those without epilepsy (36 %). Epilepsy (OR: 1.61, 95 %CI: 1.01-2.6), need for supplemental oxygen (OR 3.06, 95 % CI: 1.45-6.44) or mechanical ventilation (OR: 2.5, 95 % CI: 1.03-6.05) were independently associated with minor ECG abnormalities. Secondary analyses further demonstrated an independent association between level of respiratory support and ECG abnormalities only in the epilepsy group. SIGNIFICANCE Independent association of increased respiratory support with minor ECG abnormalities suggests a potential respiratory influence on the hearts of children with epilepsy.
Collapse
Affiliation(s)
- See Wai Chan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Angela Chun
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Pediatric Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Linh Nguyen
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Emergency Medicine, Orlando Health, Orlando, FL, USA
| | - Beth Bubolz
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Pediatric Emergency Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Anne E Anderson
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Chen Lai
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Ricordeau F, Chouchou F, Pichot V, Roche F, Petitjean T, Gormand F, Bastuji H, Charbonnier E, Le Cam P, Stauffer E, Rheims S, Peter-Derex L. Impaired post-sleep apnea autonomic arousals in patients with drug-resistant epilepsy. Clin Neurophysiol 2024; 160:1-11. [PMID: 38367308 DOI: 10.1016/j.clinph.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/20/2023] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE Sudden and unexpected deaths in epilepsy (SUDEP) pathophysiology may involve an interaction between respiratory dysfunction and sleep/wake state regulation. We investigated whether patients with epilepsy exhibit impaired sleep apnea-related arousals. METHODS Patients with drug-resistant (N = 20) or drug-sensitive (N = 20) epilepsy and obstructive sleep apnea, as well as patients with sleep apnea but without epilepsy (controls, N = 20) were included. We explored (1) the respiratory arousal threshold based on nadir oxygen saturation, apnea-hypopnea index, and fraction of hypopnea among respiratory events; (2) the cardiac autonomic response to apnea/hypopnea quantified as percentages of changes from the baseline in RR intervals (RRI), high (HF) and low (LF) frequency powers, and LF/HF. RESULTS The respiratory arousal threshold did not differ between groups. At arousal onset, RRI decreased (-9.42%) and LF power (179%) and LF/HF ratio (190%) increased. This was followed by an increase in HF power (118%), p < 0.05. The RRI decrease was lower in drug-resistant (-7.40%) than in drug-sensitive patients (-9.94%) and controls (-10.91%), p < 0.05. LF and HF power increases were higher in drug-resistant (188%/126%) than in drug-sensitive patients (172%/126%) and controls (177%/115%), p < 0.05. CONCLUSIONS Cardiac reactivity following sleep apnea is impaired in drug-resistant epilepsy. SIGNIFICANCE This autonomic dysfunction might contribute to SUDEP pathophysiology.
Collapse
Affiliation(s)
- François Ricordeau
- Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
| | - Florian Chouchou
- IRISSE Laboratory (EA4075), UFR SHE, University of La Réunion, Le Tampon, France
| | - Vincent Pichot
- SAINBIOSE, INSERM U1059, Saint-Etienne Jean-Monnet University, Mines Saint-Etienne, France; Clinical Physiology and Exercise, Visas Center, Saint Etienne University Hospital, France
| | - Frédéric Roche
- SAINBIOSE, INSERM U1059, Saint-Etienne Jean-Monnet University, Mines Saint-Etienne, France; Clinical Physiology and Exercise, Visas Center, Saint Etienne University Hospital, France
| | - Thierry Petitjean
- Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Gormand
- Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon, France
| | - Hélène Bastuji
- Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS UMR 5292 / INSERM U1028 and Lyon 1 University, Lyon, France
| | - Eléna Charbonnier
- Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon, France
| | - Pierre Le Cam
- Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon, France
| | - Emeric Stauffer
- Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon, France; Inter-university Laboratoryof Human MovementBiology (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Lyon 1 University, Lyon, France; Respiratory Functional Investigation & Physical Activity Department, Hospices Civils de Lyon, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS UMR 5292 / INSERM U1028 and Lyon 1 University, Lyon, France; Lyon 1 University, Lyon, France
| | - Laure Peter-Derex
- Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS UMR 5292 / INSERM U1028 and Lyon 1 University, Lyon, France; Lyon 1 University, Lyon, France.
| |
Collapse
|
3
|
Hamed SA, El Hadad AF, Aladawy MA. The effect of epilepsy and antiseizure medications on cardiac autonomic functions in children with epilepsy. Expert Rev Clin Pharmacol 2024; 17:393-401. [PMID: 38349326 DOI: 10.1080/17512433.2024.2318469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Autonomic manifestations have been frequently studied in adults with epilepsy. Here, we evaluated cardiac autonomic (ANS) functions in children with epilepsy in the interictal period and determined the risks for their dysfunctions. RESEARCH DESIGN AND METHODS This study included 60 patients (boys = 25; girls = 35 age: 14.53 ± 2.54 yrs) and 25 controls. Patients were well-controlled on antiseizure medications (ASMs). The battery of testing included measuring resting heart rate (HR) and blood pressure (BP), 30:15 ratio, HR variability (HRV) response to deep breathing, Valsalva ratio and BP changes in response to standing, isometric exercise and cold. RESULTS Dizziness was reported in 25%. Autonomic dysfunctions were found in 45% (n = 27). Manifestations included high frequencies of abnormal 30:15 ratio (22%), HRV responses to deep breathing (45%), Valsalava ratio (45%), and BP responses to standing (35%), isometric exercise (27%) and cold (27%), indicating parasympathetic and sympathetic hypofunctions. There were positive correlations between parasympathetic and sympathetic dysfunctions. Logistic analysis showed that the durations of epilepsy and ASMs therapy were associated with ANS dysfunctions [95% CI: 0.895-4.719, p = 0.004]. CONCLUSIONS Parasympathetic and sympathetic autonomic hypofunctions are common in children with epilepsy. This could be due to the depressant effect of sodium channel blocker ASMs on central and/or cardiac autonomic systems.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital, Assiut, Egypt
| | - Ali Farrag El Hadad
- Department of Neurology and Psychiatry, Al Azhar University Hospital, Assiut, Egypt
| | | |
Collapse
|
4
|
Jin YB, Kim JH, Song CH, Park C, Kang CK. Diagnostic Ultrasound-Based Investigation of Central vs. Peripheral Arterial Changes Consequent to Low-Dose Caffeine Ingestion. Nutrients 2024; 16:228. [PMID: 38257121 PMCID: PMC10820579 DOI: 10.3390/nu16020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Caffeine is present in various foods and medicines and is highly accessible through various routes, regardless of age. However, most studies on caffeine have focused on the effects of high-dose caffeine ingestion based on the recommended daily amount for adults. In this study, we examined the physiological changes in the central and peripheral vessels that may occur when ingesting low-dose caffeine due to its high accessibility, with the aim of creating an environment of safe caffeine ingestion. This study included 26 healthy participants in their 20s. Peak systolic velocity (PSV), heart rate (HR), and pulse wave velocity (PWV) for vascular stiffness assessment were measured at 0, 30, and 60 min after caffeine ingestion using diagnostic ultrasound to determine the physiological changes in the blood vessels, common carotid artery (CCA) and radial artery (RA). In addition, percutaneous oxygen saturation (SpO2), blood pressure (BP), and accelerated photoplethysmography (APG) were measured. In comparison with before ingestion, the HR tended to decrease and showed a significant difference at 30 and 60 min (p = 0.014 and p = 0.031, respectively). PSV significantly decreased in both vessels at 30 and 60 min (p < 0.001 and p < 0.001, respectively). APG showed a decreasing trend until 60 min after ingestion, with a significant difference at 30 and 60 min (p = 0.003 and p = 0.012, respectively). No significant difference was observed in SpO2, BP, or PWV; however, they showed a tendency to increase after ingestion. Decreased HR may occur because of the baroreflex caused by an increase in BP. The RA has many branches and a smaller diameter; therefore, the PSV was lower in the RA than that in the CCA. This effect can occur because of the difficulty in the smooth expansion of blood vessels, which leads to a decrease in blood flow. In addition, an increase in intracellular calcium concentration can prevent vasodilation and increase the propagation velocity of pulse waves. The reflected waves can increase systolic blood pressure but reduce PWV and vascular elasticity. These results suggest that even low-dose caffeine can improve blood vessel health by providing temporary stimulation to the blood vessels; however, it can also cause changes in blood flow and blood vessel elasticity, which can lead to serious diseases such as stroke and high blood pressure. Therefore, caution should be exercised when caffeine consumption is indiscriminate.
Collapse
Affiliation(s)
- Yu-Bin Jin
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Republic of Korea; (Y.-B.J.); (J.-H.K.); (C.-H.S.)
| | - Jeong-Hyeon Kim
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Republic of Korea; (Y.-B.J.); (J.-H.K.); (C.-H.S.)
| | - Chae-Hyeon Song
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Republic of Korea; (Y.-B.J.); (J.-H.K.); (C.-H.S.)
| | - Chansol Park
- Department of Health Science, Gachon University Graduate School, Incheon 21936, Republic of Korea
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Republic of Korea; (Y.-B.J.); (J.-H.K.); (C.-H.S.)
- Department of Health Science, Gachon University Graduate School, Incheon 21936, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
5
|
Kim W, Lee H, Lee KW, Yang E, Kim S. The Association of Nocturnal Seizures and Interictal Cardiac/Central Autonomic Function in Frontal Lobe Epilepsy: Heart Rate Variability and Central Autonomic Network Analysis. Neuropsychiatr Dis Treat 2023; 19:2081-2091. [PMID: 37810949 PMCID: PMC10559795 DOI: 10.2147/ndt.s426263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Patients with epilepsy frequently experience autonomic dysfunction, closely related to sudden unexplained death in epilepsy (SUDEP). SUDEP occurs most often at night or during sleep, and frequent nocturnal seizures are an established risk factor. This study investigated the influence of nocturnal seizures on autonomic dysfunction in epilepsy. Patients and Methods This retrospective study enrolled frontal lobe epilepsy (FLE) patients who performed 24-hour EEG monitoring. All participants were divided into nocturnal FLE (NFLE, > 90% of seizures occurring during sleep) or diurnal FLE (DFLE) groups. EEG and ECG signals were simultaneously obtained during waking and sleep stages. EEG current density source and connectivity analysis of the autonomic network were performed. ECG was analyzed across time and frequency domains heart rate variability (HRV) analysis method was used. The obtained parameters were compared between the NFLE and DFLE groups. Results Fifteen NFLE and 16 DFLE patients were enrolled with no significant difference in age, sex, disease duration, seizure frequency, or the number of anti-seizure medications between the two groups. During sleep, a decrease in HRV parameters and an increase of the beta-1 (13-22 Hz) current source density power in the bilateral paracentral lobule (BA4,5,6), precuneus (BA7), and cingulate (BA31) were observed in the NFLE group compared to DFLE group. The NFLE group also showed hyperconnectivity in the central autonomic (12 edges distributed over 10 nodes), sympathetic (2 edges distributed over 3 nodes), and parasympathetic (4 edges distributed over 6 nodes) beta-1 frequency band networks during sleep. During wakefulness, central and cardiac autonomic variables were not significantly different between the NFLE and DFLE groups. Conclusion Interictal cardiac and central autonomic dysfunction occurred simultaneously and can be attributed to the brain-heart autonomic axis. Our findings suggest that nocturnal seizures may contribute to interictal autonomic dysfunction during sleep in people with epilepsy.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjo Lee
- Department of Neurology, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Kyung Won Lee
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunjin Yang
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seonghoon Kim
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Assessing epilepsy-related autonomic manifestations: Beyond cardiac and respiratory investigations. Neurophysiol Clin 2023; 53:102850. [PMID: 36913775 DOI: 10.1016/j.neucli.2023.102850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/13/2023] Open
Abstract
The Autonomic Nervous System (ANS) regulates many critical physiological functions. Its control relies on cortical input, especially limbic areas, which are often involved in epilepsy. Peri-ictal autonomic dysfunction is now well documented, but inter-ictal dysregulation is less studied. In this review, we discuss the available data on epilepsy-related autonomic dysfunction and the objective tests available. Epilepsy is associated with sympathetic-parasympathetic imbalance and a shift towards sympathetic dominance. Objective tests report alterations in heart rate, baroreflex function, cerebral autoregulation, sweat glands activity, thermoregulation, gastrointestinal and urinary function. However, some tests have found contradictory results and many tests suffer from a lack of sensitivity and reproducibility. Further study on interictal ANS function is required to further understand autonomic dysregulation and the potential association with clinically-relevant complications, including risk of Sudden Unexpected Death In Epilepsy (SUDEP).
Collapse
|
7
|
Lőrincz K, Bóné B, Karádi K, Kis-Jakab G, Tóth N, Halász L, Erőss L, Balás I, Faludi B, Jordán Z, Chadaide Z, Gyimesi C, Fabó D, Janszky J. Effects of anterior thalamic nucleus DBS on interictal heart rate variability in patients with refractory epilepsy. Clin Neurophysiol 2023; 147:17-30. [PMID: 36630886 DOI: 10.1016/j.clinph.2022.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Heart rate variability (HRV) changes were investigated by several studies after resective epilepsy surgery/vagus nerve stimulation. We examined anterior thalamic nucleus (ANT)-deep brain stimulation (DBS) effects on HRV parameters. METHODS We retrospectively analyzed 30 drug-resistant epilepsy patients' medical record data and collected electrocardiographic epochs recorded during video- electroencephalography monitoring sessions while awake and during N1- or N2-stage sleep pre-DBS implantation surgery, post-surgery but pre-stimulation, and after stimulation began. RESULTS The mean square root of the mean squared differences between successive RR intervals and RR interval standard deviation values differed significantly (p < 0.05) among time-points, showing increased HRV post-surgery. High (0.15-0.4 Hz) and very low frequency (<0.04 Hz) increased, while low frequency (0.04-0.15 Hz) and the LF/HF ratio while awake decreased, suggesting improved autonomic regulation post-surgery. Change of effect size was larger in patients where both activated contacts were located in the ANT than in those where only one or none of the contacts hit the ANT. CONCLUSIONS In patients with drug-resistant epilepsy, ANT-DBS might positively influence autonomic regulation, as reflected by increased HRV. SIGNIFICANCE To gain a more comprehensive outcome estimation after DBS implantation, we suggest including HRV measures with seizure count in the post-surgery follow-up protocol.
Collapse
Affiliation(s)
- Katalin Lőrincz
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; Department of Neurosurgery, University Hospital Tübingen, Eberhard Karls University, Hoppe-Seyler str. 3, 72076 Tübingen, Germany.
| | - Beáta Bóné
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - Kázmér Karádi
- Department of Behavioral Sciences, Medical School, University of Pecs, Szigeti u.12, H-7624 Pecs, Hungary
| | - Greta Kis-Jakab
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2., H-7623 Pecs, Hungary
| | - Natália Tóth
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - László Halász
- Department of Functional Neurosurgery, National Institute of Neurosciences, Amerikai ut 57, H-1345 Budapest, Hungary
| | - Loránd Erőss
- Department of Functional Neurosurgery, National Institute of Neurosciences, Amerikai ut 57, H-1345 Budapest, Hungary
| | - István Balás
- Department of Neurosurgery, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - Béla Faludi
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - Zsófia Jordán
- Department of Neurology, National Institute of Neurosciences, Amerikai ut 57., H-1345 Budapest, Hungary
| | - Zoltan Chadaide
- University of Szeged Albert Szentgyörgyi Medical School, Tisza Lajos krt.109, 6725 Szeged, Hungary
| | - Csilla Gyimesi
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - Dániel Fabó
- Department of Neurology, National Institute of Neurosciences, Amerikai ut 57., H-1345 Budapest, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2., H-7623 Pecs, Hungary
| |
Collapse
|
8
|
Marmerstein JT, McCallum GA, Durand DM. Decoding Vagus-Nerve Activity with Carbon Nanotube Sensors in Freely Moving Rodents. BIOSENSORS 2022; 12:bios12020114. [PMID: 35200374 PMCID: PMC8870245 DOI: 10.3390/bios12020114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 05/07/2023]
Abstract
The vagus nerve is the largest autonomic nerve and a major target of stimulation therapies for a wide variety of chronic diseases. However, chronic recording from the vagus nerve has been limited, leading to significant gaps in our understanding of vagus nerve function and therapeutic mechanisms. In this study, we use a carbon nanotube yarn (CNTY) biosensor to chronically record from the vagus nerves of freely moving rats for over 40 continuous hours. Vagal activity was analyzed using a variety of techniques, such as spike sorting, spike-firing rates, and interspike intervals. Many spike-cluster-firing rates were found to correlate with food intake, and the neural-firing rates were used to classify eating and other behaviors. To our knowledge, this is the first chronic recording and decoding of activity in the vagus nerve of freely moving animals enabled by the axon-like properties of the CNTY biosensor in both size and flexibility and provides an important step forward in our ability to understand spontaneous vagus-nerve function.
Collapse
|
9
|
Sahly AN, Shevell M, Sadleir LG, Myers KA. SUDEP risk and autonomic dysfunction in genetic epilepsies. Auton Neurosci 2021; 237:102907. [PMID: 34773737 DOI: 10.1016/j.autneu.2021.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/11/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023]
Abstract
The underlying pathophysiology of sudden unexpected death in epilepsy (SUDEP) remains unclear. This phenomenon is likely multifactorial, and there is considerable evidence that genetic factors play a role. There are certain genetic causes of epilepsy in which the risk of SUDEP appears to be increased relative to epilepsy overall. For individuals with pathogenic variants in genes including SCN1A, SCN1B, SCN8A, SCN2A, GNB5, KCNA1 and DEPDC5, there are varying degrees of evidence to suggest an increased risk for sudden death. Why the risk for sudden death is higher is not completely clear; however, in many cases pathogenic variants in these genes are also associated with autonomic dysfunction, which is hypothesized as a contributing factor to SUDEP. We review the evidence for increased SUDEP risk for patients with epilepsy due to pathogenic variants in these genes, and also discuss what is known about autonomic dysfunction in these contexts.
Collapse
Affiliation(s)
- Ahmed N Sahly
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Michael Shevell
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute of the McGill University Medical Centre, Montreal, Quebec, Canada
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Kenneth A Myers
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute of the McGill University Medical Centre, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Wu ML, Hu DM, Wang JJ, Liu XL, Liu L, Li Y, Jing W. Pre- and postoperative heart rate variability and vagus nerve stimulation in patients with drug-resistant epilepsy - A meta-analysis. Epilepsy Behav 2021; 123:108247. [PMID: 34418640 DOI: 10.1016/j.yebeh.2021.108247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The effect of vagus nerve stimulation (VNS), an important auxiliary therapy for treating drug-resistant epilepsy (DRE), on autonomic nerve function is still controversial. Heart rate variability is a widely used indicator of autonomic nerve function. To clarify the relationship between VNS and heart rate variability (HRV), we performed a meta-analysis to systematically evaluate the effect of VNS on HRV in patients with epilepsy. METHODS We performed a systematic review by searching the following online databases: PubMed, Web of Science, EMBASE and the Cochrane Library. The key search terms were "vagal nerve stimulation," "epilepsy" and "heart rate variability". Other features of VNS in patients with epilepsy include postoperative changes in low-frequency (LF), high-frequency (HF) and low-frequency/high-frequency (LF/HF) heart rate variability, which were used as evaluation indices, and the Newcastle-Ottawa Quality Assessment Scale and Stata 14.0 statistical software were used for literature quality evaluation and meta-analysis. RESULTS Twelve studies published in English were obtained, and 229 patients with epilepsy who underwent VNS were ultimately included after elimination of duplicate articles and those that did not meet the inclusion criteria. Regarding LF heart rate variability, in the response subgroup, patients with DRE with VNS presented a lower value (-0.58) before surgery than after surgery, with a 95% confidence interval (CI) ranging from -1.00 to -0.15. For HF heart rate variability, patients with DRE with VNS had a lower value (-0.45) before surgery than after surgery in the response subgroup, with a 95% CI ranging from -0.74 to -0.17. No differences were found for LF/HF values or the LF and HF values of other subgroups. CONCLUSION VNS has little effect on the balance of sympathetic and parasympathetic nerve activity and would not be expected to cause cardiovascular autonomic dysfunction in patients with DRE. For patients with DRE, VNS can control seizures and has little effect on autonomic nervous function.
Collapse
Affiliation(s)
- Mao-Lin Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Dan-Mei Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | | | - Xiao-Lei Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Lei Liu
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
| | - Wei Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China.
| |
Collapse
|
11
|
Yeh WC, Lin HC, Chuang YC, Hsu CY. Exploring factors associated with interictal heart rate variability in patients with medically controlled focal epilepsy. Seizure 2021; 92:24-28. [PMID: 34416420 DOI: 10.1016/j.seizure.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Heart rate variability (HRV) reflects the balance between the functional outputs of the sympathetic and parasympathetic nervous systems. It is lower in patients with epilepsy than in the healthy controls. However, HRV has been inadequately studied in different patient subgroups with medically controlled epilepsy. Hence, this study aimed to investigate factors associated with interictal HRV in patients with medically controlled epilepsy. METHODS This retrospective cohort study included 54 patients (24 males and 30 females) with medically controlled focal epilepsy who only received monotherapy to eliminate the confounding effect of different antiseizure medications (ASMs). Patients with major systemic or psychiatric disorder comorbidities were excluded. For HRV analysis, electroencephalography and 5-minute well-qualified electrocardiogram segment recording were conducted during stage N1 or N2 sleep. In addition, the association between age, gender, seizure onset type, ASMs, and the time domain and frequency-domain HRV measures was analyzed. RESULTS HRV negatively correlated with advanced age. Patients with focal to bilateral tonic-clonic seizure (FBTCS) had a significantly lower HRV than focal impaired awareness seizures (FIAS). HRV was not associated with any gender and ASMs. CONCLUSIONS HRV negatively correlated with age, and patients with FBTCS had a decreased HRV. Thus, these patients may have a declining autonomic function. Therefore, different seizure types may carry different risks of autonomic dysfunction in patients with medically controlled focal epilepsy.
Collapse
Affiliation(s)
- Wei-Chih Yeh
- Department of Neurology, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st. Road, Kaohsiung City 80754, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan
| | - Hsun-Chang Lin
- Department of Neurology, Health and Welfare Ministry Pingtung Hospital, No.270, Ziyou Rd., Pingtung City, Pingtung County 900, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung, University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Yao Hsu
- Department of Neurology, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Rd., Kaohsiung City 80754, Taiwan; Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical, University, Kaohsiung City 80708, Taiwan..
| |
Collapse
|
12
|
Chan SW, Dervan LA, Watson RS, Anderson AE, Lai YC. Epilepsy duration is an independent factor for electrocardiographic changes in pediatric epilepsy. Epilepsia Open 2021; 6:588-596. [PMID: 34235879 PMCID: PMC8408606 DOI: 10.1002/epi4.12519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Cardiac alterations represent a potential epilepsy‐associated comorbidity. Whether cardiac changes occur as a function of epilepsy duration is not well understood. We sought to evaluate whether cardiac alterations represented a time‐dependent phenomenon in pediatric epilepsy. Methods We retrospectively followed pediatric epilepsy patients without preexisting cardiac conditions or ion channelopathies who had history of pediatric intensive care unit admission for convulsive seizures or status epilepticus between 4/2014 and 7/2017. All available 12‐lead electrocardiograms (ECGs) from these patients between 1/2006 and 5/2019 were included. We examined ECG studies for changes in rhythm; PR, QRS, or corrected QT intervals; QRS axis or morphology; ST segment; or T wave. Data were analyzed using multivariable models containing covariates associated with ECG changes or epilepsy duration from the univariate analyses. Results 127 children with 323 ECGs were included in the analyses. The median epilepsy duration was 3.9 years (IQR 1.3‐8.4 years) at the time of an ECG study and a median of 2 ECGs (IQR 1‐3) per subject. The clinical encounters associated with ECGs ranged from well‐child visits to status epilepticus. We observed changes in 171 ECGs (53%), with 83 children (65%) had at least 1 ECG with alterations. In a multivariable logistic regression model adjusting for potentially confounding variables and accounting for clustering by patient, epilepsy duration was independently associated with altered ECGs for each year of epilepsy (OR: 1.1, 95% CI: 1.0‐1.2, P = .002). Extrapolating from this model, children with epilepsy durations of 10 and 15 years had 2.9 and 4.9 times the odds of having ECG changes, respectively. Significance Cardiac alterations may become more common with increasing epilepsy duration in select pediatric epilepsy patients. Future studies are needed to determine the potential clinical implications and the generalizability of these observations.
Collapse
Affiliation(s)
- See Wai Chan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Leslie A Dervan
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Robert Scott Watson
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Anne E Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Akyüz E, Üner AK, Köklü B, Arulsamy A, Shaikh MF. Cardiorespiratory findings in epilepsy: A recent review on outcomes and pathophysiology. J Neurosci Res 2021; 99:2059-2073. [PMID: 34109651 DOI: 10.1002/jnr.24861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Epilepsy is a debilitating disorder of uncontrollable recurrent seizures that occurs as a result of imbalances in the brain excitatory and inhibitory neuronal signals, that could stem from a range of functional and structural neuronal impairments. Globally, nearly 70 million people are negatively impacted by epilepsy and its comorbidities. One such comorbidity is the effect epilepsy has on the autonomic nervous system (ANS), which plays a role in the control of blood circulation, respiration and gastrointestinal function. These epilepsy-induced impairments in the circulatory and respiratory systems may contribute toward sudden unexpected death in epilepsy (SUDEP). Although, various hypotheses have been proposed regarding the role of epilepsy on ANS, the linking pathological mechanism still remains unclear. Channelopathies and seizure-induced damages in ANS-control brain structures were some of the causal/pathological candidates of cardiorespiratory comorbidities in epilepsy patients, especially in those who were drug resistant. However, emerging preclinical research suggest that neurotransmitter/receptor dysfunction and synaptic changes in the ANS may also contribute to the epilepsy-related autonomic disorders. Thus, pathological mechanisms of cardiorespiratory dysfunction should be elucidated by considering the modifications in anatomy and physiology of the autonomic system caused by seizures. In this regard, we present a comprehensive review of the current literature, both clinical and preclinical animal studies, on the cardiorespiratory findings in epilepsy and elucidate the possible pathological mechanisms of these findings, in hopes to prevent SUDEP especially in patients who are drug resistant.
Collapse
Affiliation(s)
- Enes Akyüz
- Department of Biophysics, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Arda Kaan Üner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Betül Köklü
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
14
|
Singh J, Lanzarini E, Santosh P. Autonomic Characteristics of Sudden Unexpected Death in Epilepsy in Children-A Systematic Review of Studies and Their Relevance to the Management of Epilepsy in Rett Syndrome. Front Neurol 2021; 11:632510. [PMID: 33613425 PMCID: PMC7892970 DOI: 10.3389/fneur.2020.632510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Aim: To systematically identify and critically appraise studies that investigate the autonomic characteristics of Sudden Unexpected Death in Epilepsy (SUDEP) in the pediatric population. We also wanted to explore how this information would be relevant to the management of epilepsy in patients with Rett Syndrome. Method: Using PRISMA guidelines, a systematic review of PubMed, Scopus, Cochrane, PsycINFO, Embase, and Web of Science databases was performed to identify eligible studies. After extracting data from the included studies, a thematic analysis was undertaken to identify emerging themes. A quality appraisal was also done to assess the quality of the included studies. Results: The systematic search revealed 41 records, and 15 full-text articles on the autonomic characteristics of SUDEP in children were included in the final analysis. Following thematic analysis, three themes were identified (I) modulation in sympathovagal tone, (II) pre- and post-ictal autonomic changes, and (III) other markers of autonomic dysregulation in children with epilepsy. Modulation in sympathovagal tone emerged as the theme with the highest frequency followed by pre- and post-ictal autonomic changes. While the themes provide additional insight into the management of epilepsy in the Rett Syndrome population, the quality of evidence concerning the autonomic characteristics of SUDEP in the pediatric population was low and underscores the importance of much needed research in this area. Conclusion: The mechanism of SUDEP in the pediatric population is complex and involves an interplay between several components of the autonomic nervous system. While direct clinical inferences regarding pediatric SUDEP could not be made, the thematic analysis does suggest that in vulnerable populations such as Rett Syndrome, where there is already a pervasive autonomic dysregulation, pro-active surveillance of the autonomic profile in this patient group would be useful to better manage epilepsy and reduce the SUDEP risk.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, United Kingdom.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Evamaria Lanzarini
- Child and Adolescent Neuropsychiatry Unit, Infermi Hospital, Rimini, Italy
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, United Kingdom.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Direct measurement of vagal tone in rats does not show correlation to HRV. Sci Rep 2021; 11:1210. [PMID: 33441733 PMCID: PMC7807082 DOI: 10.1038/s41598-020-79808-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
The vagus nerve is the largest autonomic nerve, innervating nearly every organ in the body. “Vagal tone” is a clinical measure believed to indicate overall levels of vagal activity, but is measured indirectly through the heart rate variability (HRV). Abnormal HRV has been associated with many severe conditions such as diabetes, heart failure, and hypertension. However, vagal tone has never been directly measured, leading to disagreements in its interpretation and influencing the effectiveness of vagal therapies. Using custom carbon nanotube yarn electrodes, we were able to chronically record neural activity from the left cervical vagus in both anesthetized and non-anesthetized rats. Here we show that tonic vagal activity does not correlate with common HRV metrics with or without anesthesia. Although we found that average vagal activity is increased during inspiration compared to expiration, this respiratory-linked signal was not correlated with HRV either. These results represent a clear advance in neural recording technology but also point to the need for a re-interpretation of the link between HRV and “vagal tone”.
Collapse
|
16
|
DeMaria N, Selmi A, Kashtan S, Xia X, Wang M, Zareba W, Couderc JP, Auerbach DS. Autonomic and Cardiac Repolarization Lability in Long QT Syndrome Patients. Auton Neurosci 2020; 229:102723. [PMID: 32942226 DOI: 10.1016/j.autneu.2020.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Long QT-Syndrome (LQTS) patients are at risk of arrhythmias and seizures. We investigated whether autonomic and cardiac repolarization measures differed based on LQTS genotypes, and in LQTS patients with vs. without arrhythmias and seizures. METHODS We used 24-h ECGs from LQTS1 (n = 87), LQTS2 (n = 50), and LQTS genotype negative patients (LQTS(-), n = 16). Patients were stratified by LQTS genotype, and arrhythmias/seizures. Heart rate variability (HRV) and QT variability index (QTVI) measures were compared between groups during specific physiological states (minimum, middle, & maximum sympathovagal balance, LF/HF). Results were further tested using logistic regression for each ECG measure, and all HRV measures in a single multivariate model. RESULTS Across multiple physiological states, total autonomic (SDNN) and vagal (RMSSD, pNN50) function were lower and repolarization dynamics (QTVI) were elevated in LQTS(+), LQTS1, and LQTS2, compared to LQTS(-). Many measures remained significant in the regression models. Multivariate modeling demonstrated that SDNN, RMSSD, and pNN50 were independent markers of LQTS(+) vs. LQTS(-), and SDNN and pNN50 were markers for LQTS1 vs. LQTS(-). During sympathovagal balance (middle LF/HF), RMSSD and pNN50 distinguished LQTS1 vs. LQTS2. LQTS1 patients with arrhythmias had lower total (SDNN) and vagal (RMSSD and pNN50) autonomic function, and SDNN remained significant in the models. In contrast, ECG measures did not differ in LQTS2 patients with vs. without arrhythmias, and LQTS1 and LQTS2 with vs. without seizures. CONCLUSION Autonomic (HRV) and cardiac repolarization (QTVI) ECG measures differ based on LQTS genotype and history of arrhythmias in LQTS1. SDNN, RMSSD, and pNN50 were each independent markers for LQTS genotype.
Collapse
Affiliation(s)
- Natalia DeMaria
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, United States
| | - Ahmed Selmi
- Biomedical Engineering, ,University of Rochester, P.O. Box 270076, Rochester, NY, United States
| | - Samuel Kashtan
- Biomedical Engineering, ,University of Rochester, P.O. Box 270076, Rochester, NY, United States
| | - Xiaojuan Xia
- Medicine-Clinical Cardiology Research Center, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States
| | - Matthew Wang
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, United States
| | - Wojciech Zareba
- Medicine-Clinical Cardiology Research Center, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States
| | - Jean-Philippe Couderc
- Medicine-Clinical Cardiology Research Center, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, United States; Medicine-Aab Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States; Pharmacology/Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States.
| |
Collapse
|
17
|
Autonomic maturation from birth to 2 years: normative values. Heliyon 2019; 5:e01300. [PMID: 30899829 PMCID: PMC6407160 DOI: 10.1016/j.heliyon.2019.e01300] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/03/2019] [Accepted: 02/27/2019] [Indexed: 01/11/2023] Open
Abstract
Background While heart rate variability (HRV) constitutes a relevant non-invasive tool to assess the autonomic nervous system (ANS) function with recognized diagnostic or therapeutic implications, there is still a lack of established data on maturation of autonomic control of heart rate during the first months of life. The Autonomic Baby Evaluation (AuBE) cohort was built to establish, the normal autonomic maturation profile from birth up to 2 years, in a healthy population of full-term newborns. Methods Heart rate variability analysis was carried out in 271 full-term newborns (mean gestational age 39 wGA + 5 days) from reliable polysomnographic recordings at 0 (n = 270) and 6 (n = 221) months and from a 24-hour ambulatory electrocardiogram (ECG) at 12 (n = 210), 18 (n = 197), and 24 (n = 190) months. Indices of HRV analysis were calculated through the ANSLabTools software. Results Indices are dissociated according a temporal, geometrical, frequency, Poincaré, empirical mode decomposition, fractal, Chaos and DC/AC and entropy analysis. Each index is presented for five different periods of time, 0, 6, 12, 18 and 24 months and with smoothed values in the 3rd, 10th, 50th, 90th and 97th percentiles. Data are also presented for the full cohort and individualized by sex to account for gender variability. Discussion & conclusion The physiological autonomic maturation profile from birth to 2 years in a healthy population of term neonates results in a fine-tuning autonomic maturation underlying progressively a new equilibrium and privileging the parasympathetic activity over the sympathetic activity.
Collapse
|
18
|
Estévez-Báez M, Machado C, García-Sánchez B, Rodríguez V, Alvarez-Santana R, Leisman G, Carrera JME, Schiavi A, Montes-Brown J, Arrufat-Pié E. Autonomic impairment of patients in coma with different Glasgow coma score assessed with heart rate variability. Brain Inj 2019; 33:496-516. [PMID: 30755043 DOI: 10.1080/02699052.2018.1553312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PRIMARY OBJECTIVE The objective of this study is to assess the functional state of the autonomic nervous system in healthy individuals and in individuals in coma using measures of heart rate variability (HRV) and to evaluate its efficiency in predicting mortality. DESIGN AND METHODS Retrospective group comparison study of patients in coma classified into two subgroups, according to their Glasgow coma score, with a healthy control group. HRV indices were calculated from 7 min of artefact-free electrocardiograms using the Hilbert-Huang method in the spectral range 0.02-0.6 Hz. A special procedure was applied to avoid confounding factors. Stepwise multiple regression logistic analysis (SMLRA) and ROC analysis evaluated predictions. RESULTS Progressive reduction of HRV was confirmed and was associated with deepening of coma and a mortality score model that included three spectral HRV indices of absolute power values of very low, low and very high frequency bands (0.4-0.6 Hz). The SMLRA model showed sensitivity of 95.65%, specificity of 95.83%, positive predictive value of 95.65%, and overall efficiency of 95.74%. CONCLUSIONS HRV is a reliable method to assess the integrity of the neural control of the caudal brainstem centres on the hearts of patients in coma and to predict patient mortality.
Collapse
Affiliation(s)
- Mario Estévez-Báez
- a Department of Clinical Neurophysiology , Institute of Neurology and Neurosurgery , Havana , Cuba
| | - Calixto Machado
- a Department of Clinical Neurophysiology , Institute of Neurology and Neurosurgery , Havana , Cuba
| | | | | | | | - Gerry Leisman
- d Faculty of Health Sciences , University of Haifa , Haifa , Israel
| | | | - Adam Schiavi
- e Anesthesiology and Critical Care Medicine, Neurosciences Critical Care Division , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Julio Montes-Brown
- f Department of Medicine & Health Science , University of Sonora , Sonora , Mexico
| | - Eduardo Arrufat-Pié
- g Institute of Basic and Preclinical Sciences, "Victoria de Girón" , Havana , Cuba
| |
Collapse
|
19
|
Myers KA, Sivathamboo S, Perucca P. Heart rate variability measurement in epilepsy: How can we move from research to clinical practice? Epilepsia 2018; 59:2169-2178. [PMID: 30345509 DOI: 10.1111/epi.14587] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
Abstract
Our objective was to critically evaluate the literature surrounding heart rate variability (HRV) in people with epilepsy and to make recommendations as to how future research could be directed to facilitate and accelerate integration into clinical practice. We reviewed relevant HRV publications including those involving human subjects with seizures. HRV has been studied in patients with epilepsy for more than 30 years and, overall, patients with epilepsy display altered interictal HRV, suggesting a shift in autonomic balance toward sympathetic dominance. This derangement appears more severe in those with temporal lobe epilepsy and drug-resistant epilepsy. Normal diurnal variation in HRV is also disturbed in at least some people with epilepsy, but this aspect has received less study. Some therapeutic interventions, including vagus nerve stimulation and antiepileptic medications, may partially normalize altered HRV, but studies in this area are sometimes contradictory. During seizures, the changes in HRV may be complex, but the general trend is toward a further increase in sympathetic overactivity. Research in HRV in people with epilepsy has been limited by inconsistent experimental protocols and studies that are often underpowered. HRV measurement has the potential to aid clinical epilepsy management in several possible ways. HRV may be useful in predicting which patients are likely to benefit from surgical interventions such as vagus nerve stimulation and focal cerebral resection. As well, HRV could eventually have utility as a biomarker of risk for sudden unexpected death in epilepsy (SUDEP). However, at present, the inconsistent measurement protocols used in research are hindering translation into clinical practice. A minimum protocol for HRV evaluation, to be used in all studies involving epilepsy patients, is necessary to eventually allow HRV to become a useful tool for clinicians. We propose a straightforward protocol, involving 5-minute measurements of root mean square of successive differences in wakefulness and light sleep.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Child Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Shobi Sivathamboo
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Deceleration and acceleration capacities of heart rate in patients with drug-resistant epilepsy. Clin Auton Res 2018; 29:195-204. [PMID: 30328033 DOI: 10.1007/s10286-018-0569-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/08/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Epilepsy and seizures can have dramatic effects on cardiac function. The aim of the present study was to investigate deceleration capacity, acceleration capacity and their 24-h fluctuations of heart rate variability in patients with drug-resistant epilepsy. METHODS Deceleration capacity, acceleration capacity of heart rate and their 24-h dynamics derived from the phase rectified signal averaging method as well as traditional measures were analyzed in 39 patients with drug-resistant epilepsy and 33 healthy control subjects using 24-h electrocardiogram recordings. The discriminatory power of heart rate variability measures were validated by assessment of the area under the receiver operating characteristic curve. Net reclassification improvement and integrated discrimination improvement models were also estimated. RESULTS Both deceleration capacity and absolute values of acceleration capacity were significantly lower in patients with drug-resistant epilepsy. The abnormal suppression of absolute deceleration capacity and acceleration capacity values were observed throughout the 24-h recording time (peaked at about 3 to 5 A.M.). Deceleration capacity had the greatest discriminatory power to differentiate the patients from the healthy controls. Moreover, in both net reclassification improvement and integrated discrimination improvement models, the combination of acceleration capacity or deceleration capacity with traditional heart rate variability measures has greater discriminatory power than any of the single heart rate variability features. INTERPRETATION Drug-resistant epilepsy was associated with a significant inhibition of vagal modulation of heart rate, which was more pronounced during the night than during the day. These findings indicate that phase rectified signal averaging method may serve as a complementary approach for characterizing and understanding the neuro-pathophysiology in epilepsy, and may provide a new clue to sudden unexpected death in epilepsy.
Collapse
|
21
|
Myers KA, Bello-Espinosa LE, Symonds JD, Zuberi SM, Clegg R, Sadleir LG, Buchhalter J, Scheffer IE. Heart rate variability in epilepsy: A potential biomarker of sudden unexpected death in epilepsy risk. Epilepsia 2018; 59:1372-1380. [PMID: 29873813 DOI: 10.1111/epi.14438] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is a tragic and devastating event for which the underlying pathophysiology remains poorly understood; this study investigated whether abnormalities in heart rate variability (HRV) are linked to SUDEP in patients with epilepsy due to mutations in sodium channel (SCN) genes. METHODS We retrospectively evaluated HRV in epilepsy patients using electroencephalographic studies to study the potential contribution of autonomic dysregulation to SUDEP risk. We extracted HRV data, in wakefulness and sleep, from 80 patients with drug-resistant epilepsy, including 40 patients with mutations in SCN genes and 40 control patients with non-SCN drug-resistant epilepsy. From the SCN group, 10 patients had died of SUDEP. We compared HRV between SUDEP and non-SUDEP groups, specifically studying awake HRV and sleep:awake HRV ratios. RESULTS The SUDEP patients had the most severe autonomic dysregulation, showing lower awake HRV and either extremely high or extremely low ratios of sleep-to-awake HRV in a subgroup analysis. A secondary analysis comparing the SCN and non-SCN groups indicated that autonomic dysfunction was slightly worse in the SCN epilepsy group. SIGNIFICANCE These findings suggest that autonomic dysfunction is associated with SUDEP risk in patients with epilepsy due to sodium channel mutations. The relationship of HRV to SUDEP merits further study; HRV may eventually have potential as a biomarker of SUDEP risk, which would allow for more informed counseling of patients and families, and also serve as a useful outcome measure for research aimed at developing therapies and interventions to reduce SUDEP risk.
Collapse
Affiliation(s)
- Kenneth A Myers
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Pediatrics, Section of Neurology, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Division of Child Neurology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Luis E Bello-Espinosa
- Department of Pediatrics, Section of Neurology, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joseph D Symonds
- College of Medicine, Veterinary, and Life Sciences, School of Medicine, University of Glasgow, Glasgow, UK.,Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow, UK
| | - Sameer M Zuberi
- College of Medicine, Veterinary, and Life Sciences, School of Medicine, University of Glasgow, Glasgow, UK.,Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow, UK
| | - Robin Clegg
- Department of Pediatrics, Section of Cardiology, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Jeffrey Buchhalter
- Department of Pediatrics, Section of Neurology, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Flemington, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| |
Collapse
|
22
|
Goit RK, Jha SK, Pant BN. Alteration of cardiac autonomic function in patients with newly diagnosed epilepsy. Physiol Rep 2016; 4:4/11/e12826. [PMID: 27273881 PMCID: PMC4908501 DOI: 10.14814/phy2.12826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of the study was to determine if heart rate variability (HRV) showed any changes in patients with newly diagnosed epilepsy in comparison with controls. Sixty‐five patients with epilepsy (38 males and 27 females), aged 30–50 years, who had never previously received treatment with antiepileptic drugs were eligible for inclusion in this study. Resting electrocardiogram (ECG) at spontaneous respiration was recorded for 5 min in supine position. Time‐domain analysis, frequency‐domain analysis, and Poincare plot of HRV were recorded from ECG. In time‐domain measures, the square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD) and percentage of consecutive RR intervals that differ by more than 50 msec (pNN50) were significantly less in patients with epilepsy. In frequency‐domain measures, high frequency [(HF) msec2], HF (nu), and low frequency [LF (msec2)] were significantly less in patients with epilepsy while LF (nu) and LF/HF were significantly high in patients with epilepsy. In Poincare plot, standard deviation perpendicular to line of Poincare plot (SD1) and standard deviation along the line of entity in Poincare plot (SD2) were significantly less in patients with epilepsy. Our results suggest that epileptic patients have an impact on the cardiac autonomic function as measured by HRV.
Collapse
Affiliation(s)
- Rajesh K Goit
- Department of Physiology, Nepalgunj Medical College, Banke, Nepal
| | - Santosh K Jha
- Department of Physiology, Nepalgunj Medical College, Banke, Nepal
| | - Bhawana N Pant
- Department of Physiology, Nepalgunj Medical College, Banke, Nepal
| |
Collapse
|