1
|
de la Cruz L, Bui D, Moreno CM, Vivas O. Sympathetic Motor Neuron Dysfunction is a Missing Link in Age-Associated Sympathetic Overactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559800. [PMID: 37808870 PMCID: PMC10557755 DOI: 10.1101/2023.09.27.559800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Derek Bui
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Claudia M. Moreno
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
- Howard Hughes Medical Institute
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
- Department of Pharmacology, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Kapur MM, Soliman M, Blanke EN, Herold PB, Janicki PK, Vrana KE, Coates MD, Ruiz-Velasco V. Heterologous expression of the human wild-type and variant Na V 1.8 (A1073V) in rat sensory neurons. Neurogastroenterol Motil 2024; 36:e14748. [PMID: 38263802 PMCID: PMC10922522 DOI: 10.1111/nmo.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Silent inflammatory bowel disease (IBD) is a condition in which individuals with the active disease experience minor to no pain. Voltage-gated Na+ (NaV ) channels expressed in sensory neurons play a major role in pain perception. Previously, we reported that a NaV 1.8 genetic polymorphism (A1073V, rs6795970) was more common in a cohort of silent IBD patients. The expression of this variant (1073V) in rat sympathetic neurons activated at more depolarized potentials when compared to the more common variant (1073A). In this study, we investigated whether expression of either NaV 1.8 variant in rat sensory neurons would exhibit different biophysical characteristics than previously observed in sympathetic neurons. METHODS Endogenous NaV 1.8 channels were first silenced in DRG neurons and then either 1073A or 1073V human NaV 1.8 cDNA constructs were transfected. NaV 1.8 currents were recorded with the whole-cell patch-clamp technique. KEY RESULTS The results indicate that 1073A and 1073V NaV 1.8 channels exhibited similar activation values. However, the slope factor (k) for activation determined for this same group of neurons decreased by 5 mV, suggesting an increase in voltage sensitivity. Comparison of inactivation parameters indicated that 1073V channels were shifted to more depolarized potentials than 1073A-expressing neurons, imparting a proexcitatory characteristic. CONCLUSIONS AND INFERENCES These findings differ from previous observations in other expression models and underscore the challenges with heterologous expression systems. Therefore, the use of human sensory neurons derived from induced pluripotent stem cells may help address these inconsistencies and better determine the effect of the polymorphism present in IBD patients.
Collapse
Affiliation(s)
- Maryam M. Kapur
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Marwa Soliman
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Emily N. Blanke
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Paul B. Herold
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Piotr K. Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew D. Coates
- Department of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, USA
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Elleman AV, Du Bois J. Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception. Chembiochem 2022; 23:e202100625. [PMID: 35315190 PMCID: PMC9359671 DOI: 10.1002/cbic.202100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
The malfunction and misregulation of voltage-gated sodium channels (NaV s) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaV s are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV 1.1, 1.3, and 1.6-1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.
Collapse
Affiliation(s)
- Anna V Elleman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Coates MD, Kim JS, Carkaci-Salli N, Vrana KE, Koltun WA, Puhl HL, Adhikary SD, Janicki PK, Ruiz-Velasco V. Impact of the Na V1.8 variant, A1073V, on post-sigmoidectomy pain and electrophysiological function in rat sympathetic neurons. J Neurophysiol 2019; 122:2591-2600. [PMID: 31642403 DOI: 10.1152/jn.00542.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NaV1.8 channels play a crucial role in regulating the action potential in nociceptive neurons. A single nucleotide polymorphism in the human NaV1.8 gene SCN10A, A1073V (rs6795970, G>A), has been linked to the diminution of mechanical pain sensation as well as cardiac conduction abnormalities. Furthermore, studies have suggested that this polymorphism may result in a "loss-of-function" phenotype. In the present study, we performed genomic analysis of A1073V polymorphism presence in a cohort of patients undergoing sigmoid colectomy who provided information regarding perioperative pain and analgesic use. Homozygous carriers reported significantly reduced severity in postoperative abdominal pain compared with heterozygous and wild-type carriers. Homozygotes also trended toward using less analgesic/opiates during the postoperative period. We also heterologously expressed the wild-type and A1073V variant in rat superior cervical ganglion neurons. Electrophysiological testing demonstrated that the mutant NaV1.8 channels activated at more depolarized potentials compared with wild-type channels. Our study revealed that postoperative abdominal pain is diminished in homozygous carriers of A1073V and that this is likely due to reduced transmission of action potentials in nociceptive neurons. Our findings reinforce the importance of NaV1.8 and the A1073V polymorphism to pain perception. This information could be used to develop new predictive tools to optimize patient pain experience and analgesic use in the perioperative setting.NEW & NOTEWORTHY We present evidence that in a cohort of patients undergoing sigmoid colectomy, those homozygous for the NaV1.8 polymorphism (rs6795970) reported significantly lower abdominal pain scores than individuals with the homozygous wild-type or heterozygous genotype. In vitro electrophysiological recordings also suggest that the mutant NaV1.8 channel activates at more depolarizing potentials than the wild-type Na+ channel, characteristic of hypoactivity. This is the first report linking the rs6795970 mutation with postoperative abdominal pain in humans.
Collapse
Affiliation(s)
- Matthew D Coates
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Joyce S Kim
- Heart and Vascular Institute, Department of Internal Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Kent E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Walter A Koltun
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Henry L Puhl
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Sanjib D Adhikary
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Piotr K Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
5
|
Maihöfner C, Schneider S, Bialas P, Gockel H, Beer KG, Bartels M, Kern KU. Successful treatment of complex regional pain syndrome with topical ambroxol: a case series. Pain Manag 2018; 8:427-436. [PMID: 30394190 DOI: 10.2217/pmt-2018-0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM The secretolytic drug ambroxol may be useful for the treatment of neuropathic pain due to its multiple modes of action. We hypothesized that ambroxol may be a treatment option for complex regional pain syndrome (CRPS). METHODS Additional to standard therapy, eight CRPS-patients with symptoms of less than 12 months were treated with topical 20% ambroxol cream. Clinical courses were assessed using detailed anamnesis and clinical examination. RESULTS Following treatment we found a reduction of spontaneous pain (6 patients), pain on movement (6 patients), edema (seven patients), allodynia (six patients), hyperalgesia (seven patients), reduction of skin reddening (four patients), improvement of motor dysfunction (six patients) and improvement of skin temperature (four patients). CONCLUSION Topical treatment with ambroxol cream may ameliorate symptoms of CRPS.
Collapse
Affiliation(s)
- Christian Maihöfner
- Department of Neurology, General Hospital Fürth, Jakob-Henle-Straße 1, 90766 Fürth, Germany
| | | | - Patric Bialas
- Saarland University Medical Center & Medical Faculty of Saarland University; Homburg (Saar), Germany
| | - Helmut Gockel
- Center for Pain Medicine/Pain Practice Vilsbiburg, Germany
| | | | - Max Bartels
- Department of Neurology, General Hospital Fürth, Jakob-Henle-Straße 1, 90766 Fürth, Germany
| | - Kai-Uwe Kern
- Institute for Pain Medicine/Pain Practice Wiesbaden, Germany
| |
Collapse
|
6
|
Abstract
Fibromyalgia appears to present in subgroups with regard to biological pain induction, with primarily inflammatory, neuropathic/neurodegenerative, sympathetic, oxidative, nitrosative, or muscular factors and/or central sensitization. Recent research has also discussed glial activation or interrupted dopaminergic neurotransmission, as well as increased skin mast cells and mitochondrial dysfunction. Therapy is difficult, and the treatment options used so far mostly just have the potential to address only one of these aspects. As ambroxol addresses all of them in a single substance and furthermore also reduces visceral hypersensitivity, in fibromyalgia existing as irritable bowel syndrome or chronic bladder pain, it should be systematically investigated for this purpose. Encouraged by first clinical observations of two working groups using topical or oral ambroxol for fibromyalgia treatments, the present paper outlines the scientific argument for this approach by looking at each of the aforementioned aspects of this complex disease and summarizes putative modes of action of ambroxol. Nevertheless, at this point the evidence basis for ambroxol is not strong enough for clinical recommendation.
Collapse
Affiliation(s)
- Kai-Uwe Kern
- Institute of Pain Medicine/Pain Practice, Wiesbaden, Germany
| | | |
Collapse
|
7
|
A 3.7 kb fragment of the mouse Scn10a gene promoter directs neural crest but not placodal lineage EGFP expression in a transgenic animal. J Neurosci 2015; 35:8021-34. [PMID: 25995484 DOI: 10.1523/jneurosci.0214-15.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.8 expression is not entirely clear, but we have previously described a 3.7 kb fragment of the Scn10a promoter capable of recapitulating the tissue-specific expression of Nav1.8 in transfected neurons and cell lines (Puhl and Ikeda, 2008). To validate these studies in vivo, a transgenic mouse encoding EGFP under the control of this putative sensory neuron specific promoter was generated and characterized in this study. Approximately 45% of dorsal root ganglion neurons of transgenic mice were EGFP-positive (mean diameter = 26.5 μm). The majority of EGFP-positive neurons bound isolectin B4, although a small percentage (∼10%) colabeled with markers of A-fiber neurons. EGFP expression correlated well with the presence of Nav1.8 transcript (95%), Nav1.8-immunoreactivity (70%), and TTX-R INa (100%), although not all Nav1.8-expressing neurons expressed EGFP. Several cranial sensory ganglia originating from neurogenic placodes, such as the nodose ganglion, failed to express EGFP, suggesting that additional regulatory elements dictate Scn10a expression in placodal-derived sensory neurons. EGFP was also detected in discrete brain regions of transgenic mice. Quantitative PCR and Nav1.8-immunoreactivity confirmed Nav1.8 expression in the amygdala, brainstem, globus pallidus, lateral and paraventricular hypothalamus, and olfactory tubercle. TTX-R INa recorded from EGFP-positive hypothalamic neurons demonstrate the usefulness of this transgenic line to study novel roles of Nav1.8 beyond sensory neurons. Overall, Scn10a-EGFP transgenic mice recapitulate the majority of the Nav1.8 expression pattern in neural crest-derived sensory neurons.
Collapse
|
8
|
Abstract
The paralytic agent (+)-saxitoxin (STX), most commonly associated with oceanic red tides and shellfish poisoning, is a potent inhibitor of electrical conduction in cells. Its nefarious effects result from inhibition of voltage-gated sodium channels (Na(V)s), the obligatory proteins responsible for the initiation and propagation of action potentials. In the annals of ion channel research, the identification and characterization of Na(V)s trace to the availability of STX and an allied guanidinium derivative, tetrodotoxin. The mystique of STX is expressed in both its function and form, as this uniquely compact dication boasts more heteroatoms than carbon centers. This Review highlights both the chemistry and chemical biology of this fascinating natural product, and offers a perspective as to how molecular design and synthesis may be used to explore Na(V) structure and function.
Collapse
Affiliation(s)
- Arun P Thottumkara
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| | | | | |
Collapse
|
9
|
|
10
|
β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J Neurosci 2014; 33:19314-25. [PMID: 24305827 DOI: 10.1523/jneurosci.3102-13.2013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Free fatty acids receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43), for which the short-chain fatty acids (SCFAs) acetate and propionate are agonist, have emerged as important G-protein-coupled receptors influenced by diet and gut flora composition. A recent study (Kimura et al., 2011) demonstrated functional expression of FFA3 in the rodent sympathetic nervous system (SNS) providing a potential link between nutritional status and autonomic function. However, little is known of the source of endogenous ligands, signaling pathways, or effectors in sympathetic neurons. In this study, we found that FFA3 and FFA2 are unevenly expressed in the rat SNS with higher transcript levels in prevertebral (e.g., celiac-superior mesenteric and major pelvic) versus paravertebral (e.g., superior cervical and stellate) ganglia. FFA3, whether heterologously or natively expressed, coupled via PTX-sensitive G-proteins to produce voltage-dependent inhibition of N-type Ca(2+) channels (Cav2.2) in sympathetic neurons. In addition to acetate and propionate, we show that β-hydroxybutyrate (BHB), a metabolite produced during ketogenic conditions, is also an FFA3 agonist. This contrasts with previous interpretations of BHB as an antagonist at FFA3. Together, these results indicate that endogenous BHB levels, especially when elevated under certain conditions, such as starvation, diabetic ketoacidosis, and ketogenic diets, play a potentially important role in regulating the activity of the SNS through FFA3.
Collapse
|
11
|
Ondrus AE, Lee HLD, Iwanaga S, Parsons WH, Andresen BM, Moerner W, Bois JD. Fluorescent saxitoxins for live cell imaging of single voltage-gated sodium ion channels beyond the optical diffraction limit. CHEMISTRY & BIOLOGY 2012; 19:902-12. [PMID: 22840778 PMCID: PMC3731772 DOI: 10.1016/j.chembiol.2012.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/19/2022]
Abstract
A desire to better understand the role of voltage-gated sodium channels (Na(V)s) in signal conduction and their dysregulation in specific disease states motivates the development of high precision tools for their study. Nature has evolved a collection of small molecule agents, including the shellfish poison (+)-saxitoxin, that bind to the extracellular pore of select Na(V) isoforms. As described in this report, de novo chemical synthesis has enabled the preparation of fluorescently labeled derivatives of (+)-saxitoxin, STX-Cy5, and STX-DCDHF, which display reversible binding to Na(V)s in live cells. Electrophysiology and confocal fluorescence microscopy studies confirm that these STX-based dyes function as potent and selective Na(V) labels. The utility of these probes is underscored in single-molecule and super-resolution imaging experiments, which reveal Na(V) distributions well beyond the optical diffraction limit in subcellular features such as neuritic spines and filopodia.
Collapse
Affiliation(s)
- Alison E. Ondrus
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - Hsiao-lu D. Lee
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - Shigeki Iwanaga
- SYSMEX Corporation, Central Research Laboratories, 4-4-4, Takatsukadai, Nishi-ku, Kobe 651-2271, Japan
| | - William H. Parsons
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - Brian M. Andresen
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - W.E. Moerner
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - J. Du Bois
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| |
Collapse
|
12
|
|