1
|
Solé L, Tamkun MM. Trafficking mechanisms underlying Na v channel subcellular localization in neurons. Channels (Austin) 2020; 14:1-17. [PMID: 31841065 PMCID: PMC7039628 DOI: 10.1080/19336950.2019.1700082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage gated sodium channels (Nav) play a crucial role in action potential initiation and propagation. Although the discovery of Nav channels dates back more than 65 years, and great advances in understanding their localization, biophysical properties, and links to disease have been made, there are still many questions to be answered regarding the cellular and molecular mechanisms involved in Nav channel trafficking, localization and regulation. This review summarizes the different trafficking mechanisms underlying the polarized Nav channel localization in neurons, with an emphasis on the axon initial segment (AIS), as well as discussing the latest advances regarding how neurons regulate their excitability by modifying AIS length and location. The importance of Nav channel localization is emphasized by the relationship between mutations, impaired trafficking and disease. While this review focuses on Nav1.6, other Nav isoforms are also discussed.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael M. Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Pan Y, Cummins TR. Distinct functional alterations in SCN8A epilepsy mutant channels. J Physiol 2020; 598:381-401. [PMID: 31715021 PMCID: PMC7216308 DOI: 10.1113/jp278952] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Mutations in the SCN8A gene cause early infantile epileptic encephalopathy. We characterize a new epilepsy-related SCN8A mutation, R850Q, in the human SCN8A channel and present gain-of-function properties of the mutant channel. Systematic comparison of R850Q with three other SCN8A epilepsy mutations, T761I, R1617Q and R1872Q, identifies one common dysfunction in resurgent current, although these mutations alter distinct properties of the channel. Computational simulations in two different neuron models predict an increased excitability of neurons carrying these mutations, which explains the over-excitation that underlies seizure activities in patients. These data provide further insight into the mechanism of SCN8A-related epilepsy and reveal subtle but potentially important distinction of functional characterization performed in the human vs. rodent channels. ABSTRACT SCN8A is a novel causal gene for early infantile epileptic encephalopathy. It is well accepted that gain-of-function mutations in SCN8A underlie the disorder, although the remarkable heterogeneity of its clinical presentation and poor treatment response demand a better understanding of the disease mechanisms. Here, we characterize a new epilepsy-related SCN8A mutation, R850Q, in human Nav1.6. We show that it is a gain-of-function mutation, with a hyperpolarizing shift in voltage dependence of activation, a two-fold increase of persistent current and a slowed decay of resurgent current. We systematically compare its biophysics with three other SCN8A epilepsy mutations, T767I, R1617Q and R1872Q, in the human Nav1.6 channel. Although all of these mutations are gain-of-function, the mutations affect different aspects of channel properties. One commonality that we discovered is an alteration of resurgent current kinetics, although the mechanisms by which resurgent currents are augmented remain unclear for all of the mutations. Computational simulations predict an increased excitability of neurons carrying these mutations with differential enhancement by open channel blockade.
Collapse
Affiliation(s)
- Yanling Pan
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, IN, USA
| | - Theodore R Cummins
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, IN, USA
- Department of Biology, School of Science, IUPUI, IN, USA
| |
Collapse
|
3
|
Ni G, Hao X, Cai X, Qin J, Zhou L, Kwan P, Chen Z. SiRNA-mediated ankyrin-G silence modulates the expression of voltage-gated Na channels in murine hippocampal HT22 cells. ACTA EPILEPTOLOGICA 2019. [DOI: 10.1186/s42494-019-0004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
4
|
Batley KC, Sandoval‐Castillo J, Kemper CM, Attard CRM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Genome-wide association study of an unusual dolphin mortality event reveals candidate genes for susceptibility and resistance to cetacean morbillivirus. Evol Appl 2019; 12:718-732. [PMID: 30976305 PMCID: PMC6439501 DOI: 10.1111/eva.12747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases are significant demographic and evolutionary drivers of populations, but studies about the genetic basis of disease resistance and susceptibility are scarce in wildlife populations. Cetacean morbillivirus (CeMV) is a highly contagious disease that is increasing in both geographic distribution and incidence, causing unusual mortality events (UME) and killing tens of thousands of individuals across multiple cetacean species worldwide since the late 1980s. The largest CeMV outbreak in the Southern Hemisphere reported to date occurred in Australia in 2013, where it was a major factor in a UME, killing mainly young Indo-Pacific bottlenose dolphins (Tursiops aduncus). Using cases (nonsurvivors) and controls (putative survivors) from the most affected population, we carried out a genome-wide association study to identify candidate genes for resistance and susceptibility to CeMV. The genomic data set consisted of 278,147,988 sequence reads and 35,493 high-quality SNPs genotyped across 38 individuals. Association analyses found highly significant differences in allele and genotype frequencies among cases and controls at 65 SNPs, and Random Forests conservatively identified eight as candidates. Annotation of these SNPs identified five candidate genes (MAPK8, FBXW11, INADL, ANK3 and ACOX3) with functions associated with stress, pain and immune responses. Our findings provide the first insights into the genetic basis of host defence to this highly contagious disease, enabling the development of an applied evolutionary framework to monitor CeMV resistance across cetacean species. Biomarkers could now be established to assess potential risk factors associated with these genes in other CeMV-affected cetacean populations and species. These results could also possibly aid in the advancement of vaccines against morbilliviruses.
Collapse
Affiliation(s)
- Kimberley C. Batley
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Jonathan Sandoval‐Castillo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | | | - Catherine R. M. Attard
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ikuko Tomo
- South Australian MuseumAdelaideSouth AustraliaAustralia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Luciana M. Möller
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
5
|
The MAP1B Binding Domain of Na v1.6 Is Required for Stable Expression at the Axon Initial Segment. J Neurosci 2019; 39:4238-4251. [PMID: 30914445 DOI: 10.1523/jneurosci.2771-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/22/2022] Open
Abstract
Nav1.6 (SCN8A) is a major voltage-gated sodium channel in the mammalian CNS, and is highly concentrated at the axon initial segment (AIS). As previously demonstrated, the microtubule associated protein MAP1B binds the cytoplasmic N terminus of Nav1.6, and this interaction is disrupted by the mutation p.VAVP(77-80)AAAA. We now demonstrate that this mutation results in WT expression levels on the somatic surface but reduced surface expression at the AIS of cultured rat embryonic hippocampal neurons from both sexes. The mutation of the MAP1B binding domain did not impair vesicular trafficking and preferential delivery of Nav1.6 to the AIS; nor was the diffusion of AIS inserted channels altered relative to WT. However, the reduced AIS surface expression of the MAP1B mutant was restored to WT levels by inhibiting endocytosis with Dynasore, indicating that compartment-specific endocytosis was responsible for the lack of AIS accumulation. Interestingly, the lack of AIS targeting resulted in an elevated percentage of persistent current, suggesting that this late current originates predominantly in the soma. No differences in the voltage dependence of activation or inactivation were detected in the MAP1B binding mutant relative to WT channel. We hypothesize that MAP1B binding to the WT Nav1.6 masks an endocytic motif, thus allowing long-term stability on the AIS surface. This work identifies a critical and important new role for MAP1B in the regulation of neuronal excitability and adds to our understanding of AIS maintenance and plasticity, in addition to identifying new target residues for pathogenic mutations of SCN8A SIGNIFICANCE STATEMENT Nav1.6 is a major voltage-gated sodium channel in human brain, where it regulates neuronal activity due to its localization at the axon initial segment (AIS). Nav1.6 mutations cause epilepsy, intellectual disability, and movement disorders. In the present work, we show that loss of interaction with MAP1B within the Nav1.6 N terminus reduces the steady-state abundance of Nav1.6 at the AIS. The effect is due to increased Nav1.6 endocytosis at this neuronal compartment rather than a failure of forward trafficking to the AIS. This work confirms a new biological role of MAP1B in the regulation of sodium channel localization and will contribute to future analysis of patient mutations in the cytoplasmic N terminus of Nav1.6.
Collapse
|
6
|
Role of sodium channel subtype in action potential generation by neocortical pyramidal neurons. Proc Natl Acad Sci U S A 2018; 115:E7184-E7192. [PMID: 29991598 DOI: 10.1073/pnas.1720493115] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neocortical pyramidal neurons express several distinct subtypes of voltage-gated Na+ channels. In mature cells, Nav1.6 is the dominant channel subtype in the axon initial segment (AIS) as well as in the nodes of Ranvier. Action potentials (APs) are initiated in the AIS, and it has been proposed that the high excitability of this region is related to the unique characteristics of the Nav1.6 channel. Knockout or loss-of-function mutation of the Scn8a gene is generally lethal early in life because of the importance of this subtype in noncortical regions of the nervous system. Using the Cre/loxP system, we selectively deleted Nav1.6 in excitatory neurons of the forebrain and characterized the excitability of Nav1.6-deficient layer 5 pyramidal neurons by patch-clamp and Na+ and Ca2+ imaging recordings. We now report that, in the absence of Nav1.6 expression, the AIS is occupied by Nav1.2 channels. However, APs are generated in the AIS, and differences in AP propagation to soma and dendrites are minimal. Moreover, the channels that are expressed in the AIS still show a clear hyperpolarizing shift in voltage dependence of activation, compared with somatic channels. The only major difference between Nav1.6-null and wild-type neurons was a strong reduction in persistent sodium current. We propose that the molecular environment of the AIS confers properties on whatever Na channel subtype is present and that some other benefit must be conferred by the selective axonal presence of the Nav1.6 channel.
Collapse
|
7
|
Evidence for Non-neutral Evolution in a Sodium Channel Gene in African Weakly Electric Fish (Campylomormyrus, Mormyridae). J Mol Evol 2016; 83:61-77. [PMID: 27481396 DOI: 10.1007/s00239-016-9754-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/23/2016] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels, Nav1, play a crucial role in the generation and propagation of action potentials and substantially contribute to the shape of their rising phase. The electric organ discharge (EOD) of African weakly electric fish (Mormyroidea) is the sum of action potentials fired from all electrocytes of the electric organ at the same time and hence voltage-gated sodium channels are one factor-together with the electrocyte's morphology and innervation pattern-that determines the properties of these EODs. Due to the fish-specific genome duplication, teleost fish possess eight copies of sodium channel genes (SCN), which encode for Nav1 channels. In mormyroids, SCN4aa is solely expressed in the electrocytes of the adult electric organ. In this study, we compared entire SCN4aa sequences of six species of the genus Campylomormyrus and identified nonsynonymous substitutions among them. SCN4aa in Campylomormyrus exhibits a much higher evolutionary rate compared to its paralog SCN4ab, whose expression is not restricted to the electric organ. We also found evidence for strong positive selection on the SCN4aa gene within Mormyridae and along the lineage ancestral to the Mormyridae. We have identified sites at which all nonelectric teleosts are monomorphic in their amino acid, but mormyrids have different amino acids. Our findings confirm the crucial role of SCN4aa in EOD evolution among mormyrid weakly electric fish. The inferred positive selection within Mormyridae makes this gene a prime candidate for further investigation of the divergent evolution of pulse-type EODs among closely related species.
Collapse
|
8
|
|
9
|
Genetet S, Ripoche P, Le Van Kim C, Colin Y, Lopez C. Evidence of a structural and functional ammonium transporter RhBG·anion exchanger 1·ankyrin-G complex in kidney epithelial cells. J Biol Chem 2015; 290:6925-36. [PMID: 25616663 DOI: 10.1074/jbc.m114.610048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The renal ammonium transporter RhBG and anion exchanger 1 kAE1 colocalize in the basolateral domain of α-intercalated cells in the distal nephron. Although we have previously shown that RhBG is linked to the spectrin-based skeleton through ankyrin-G and that its NH3 transport activity is dependent on this association, there is no evidence for an interaction of kAE1 with this adaptor protein. We report here that the kAE1 cytoplasmic N terminus actually binds to ankyrin-G, both in yeast two-hybrid analysis and by coimmunoprecipitation in situ in HEK293 cells expressing recombinant kAE1. A site-directed mutagenesis study allowed the identification of three dispersed regions on kAE1 molecule linking the third and fourth repeat domains of ankyrin-G. One secondary docking site corresponds to a major interacting loop of the erythroid anion exchanger 1 (eAE1) with ankyrin-R, whereas the main binding region of kAE1 does not encompass any eAE1 determinant. Stopped flow spectrofluorometry analysis of recombinant HEK293 cells revealed that the Cl(-)/HCO3 (-) exchange activity of a kAE1 protein mutated on the ankyrin-G binding site was abolished. This disruption impaired plasma membrane expression of kAE1 leading to total retention on cytoplasmic structures in polarized epithelial Madin-Darby canine kidney cell transfectants. kAE1 also directly interacts with RhBG without affecting its surface expression and NH3 transport function. This is the first description of a structural and functional RhBG·kAE1·ankyrin-G complex at the plasma membrane of kidney epithelial cells, comparable with the well known Rh·eAE1·ankyrin-R complex in the red blood cell membrane. This renal complex could participate in the regulation of acid-base homeostasis.
Collapse
Affiliation(s)
- Sandrine Genetet
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Pierre Ripoche
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Caroline Le Van Kim
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Yves Colin
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Claude Lopez
- From INSERM U1134, 75739 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, 75739 Paris, France, the Institut National de la Transfusion Sanguine, 75739 Paris, France, and the Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| |
Collapse
|
10
|
Harrer JU, Üçeyler N, Doppler K, Fischer TZ, Dib-Hajj SD, Waxman SG, Sommer C. Neuropathic pain in two-generation twins carrying the sodium channel Nav1.7 functional variant R1150W. Pain 2014; 155:2199-203. [DOI: 10.1016/j.pain.2014.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/04/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
|
11
|
Plasticity at axon initial segment of hippocampal CA3 neurons in rat after status epilepticus induced by lithium-pilocarpine. Acta Neurochir (Wien) 2013; 155:2373-80; discussion 2380. [PMID: 23942886 DOI: 10.1007/s00701-013-1836-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The axon initial segment (AIS) is a specialized membrane region in the axon of neurons wherein numerous specific voltage-gated sodium channels (VGSCs) are clustered and action potentials are initiated. The AIS is currently considered as a new plastic hotspot. METHODS We investigated the alterations in Nav1.6 (SCN8A) and its adapter protein ankyrin G in the AIS of the hippocampal cornu ammonis 3 (CA3) pyramidal cells of rat after status epilepticus induced by lithium-pilocarpine (PISE). RESULTS Nav1.6 and ankyrin G were colocalized in the AIS of hippocampal CA3 pyramidal neurons. Compared with the control group, the protein and mRNA expression of Nav1.6 increased within 24 h and 60 days after PISE. By contrast, ankyrin G protein expression decreased slightly within 24 h but increased within 60 days, whereas ankyrin G mRNA increased within 24 h and 60 days after PISE. However, the protein and mRNA expression levels of Nav1.6 and ankyrin G within 7 days after PISE did not differ significantly with those of the control. CONCLUSIONS Nav1.6 and ankyrin G may participate in the plastic changes in the AIS of hippocampus CA3 neurons after PISE and play potential roles in epileptogenesis by regulating neuronal excitability.
Collapse
|
12
|
Vanoye CG, Gurnett CA, Holland KD, George AL, Kearney JA. Novel SCN3A variants associated with focal epilepsy in children. Neurobiol Dis 2013; 62:313-22. [PMID: 24157691 DOI: 10.1016/j.nbd.2013.10.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/16/2013] [Accepted: 10/11/2013] [Indexed: 01/24/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for initiating and propagating action potentials in the brain. More than 800 mutations in genes encoding neuronal NaV channels including SCN1A and SCN2A have been associated with human epilepsy. Only one epilepsy-associated mutation has been identified in SCN3A encoding the NaV1.3 neuronal sodium channel. We performed a genetic screen of pediatric patients with focal epilepsy of unknown cause and identified four novel SCN3A missense variants: R357Q, D766N, E1111K and M1323V. We determined the functional consequences of these variants along with the previously reported K354Q mutation using heterologously expressed human NaV1.3. Functional defects were heterogeneous among the variants. The most severely affected was R357Q, which had a significantly smaller current density and slower activation than the wild-type (WT) channel as well as depolarized voltage dependences of activation and inactivation. Also notable was E1111K, which evoked a significantly greater level of persistent sodium current than WT channels. Interestingly, a common feature shared by all variant channels was increased current activation in response to depolarizing voltage ramps revealing a functional property consistent with conferring neuronal hyper-excitability. Discovery of a common biophysical defect among variants identified in unrelated pediatric epilepsy patients suggests that SCN3A may contribute to neuronal hyperexcitability and epilepsy.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine D Holland
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alfred L George
- Department of Medicine, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
13
|
Sun W, Wagnon JL, Mahaffey CL, Briese M, Ule J, Frankel WN. Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J Physiol 2012; 591:241-55. [PMID: 23090952 DOI: 10.1113/jphysiol.2012.240168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mice deficient for CELF4, a neuronal RNA-binding protein, have a complex seizure disorder that includes both convulsive and non-convulsive seizures, and is dependent upon Celf4 gene dosage and mouse strain background. It was previously shown that Celf4 is expressed predominantly in excitatory neurons, and that deficiency results in abnormal excitatory synaptic neurotransmission. To examine the physiological and molecular basis of this, we studied Celf4-deficient neurons in brain slices. Assessment of intrinsic properties of layer V cortical pyramidal neurons showed that neurons from mutant heterozygotes and homozygotes have a lower action potential (AP) initiation threshold and a larger AP gain when compared with wild-type neurons. Celf4 mutant neurons also demonstrate an increase in persistent sodium current (I(NaP)) and a hyperpolarizing shift in the voltage dependence of activation. As part of a related study, we find that CELF4 directly binds Scn8a mRNA, encoding sodium channel Na(v)1.6, the primary instigator of AP at the axon initial segment (AIS) and the main carrier of I(NaP). In the present study we find that CELF4 deficiency results in a dramatic elevation in the expression of Na(v)1.6 protein at the AIS in both null and heterozygous neurons. Together these results suggest that activation of Na(v)1.6 plays a crucial role in seizure generation in this complex model of neurological disease.
Collapse
Affiliation(s)
- Wenzhi Sun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA
| | | | | | | | | | | |
Collapse
|
14
|
Leussis MP, Madison JM, Petryshen TL. Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:18. [PMID: 23025490 PMCID: PMC3492013 DOI: 10.1186/2045-5380-2-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/20/2012] [Indexed: 11/26/2022]
Abstract
Bipolar disorder (BD) is a multi-factorial disorder caused by genetic and environmental influences. It has a large genetic component, with heritability estimated between 59-93%. Recent genome-wide association studies (GWAS) using large BD patient populations have identified a number of genes with strong statistical evidence for association with susceptibility for BD. Among the most significant and replicated genes is ankyrin 3 (ANK3), a large gene that encodes multiple isoforms of the ankyrin G protein. This article reviews the current evidence for genetic association of ANK3 with BD, followed by a comprehensive overview of the known biology of the ankyrin G protein, focusing on its neural functions and their potential relevance to BD. Ankyrin G is a scaffold protein that is known to have many essential functions in the brain, although the mechanism by which it contributes to BD is unknown. These functions include organizational roles for subcellular domains in neurons including the axon initial segment and nodes of Ranvier, through which ankyrin G orchestrates the localization of key ion channels and GABAergic presynaptic terminals, as well as creating a diffusion barrier that limits transport into the axon and helps define axo-dendritic polarity. Ankyrin G is postulated to have similar structural and organizational roles at synaptic terminals. Finally, ankyrin G is implicated in both neurogenesis and neuroprotection. ANK3 and other BD risk genes participate in some of the same biological pathways and neural processes that highlight several mechanisms by which they may contribute to BD pathophysiology. Biological investigation in cellular and animal model systems will be critical for elucidating the mechanism through which ANK3 confers risk of BD. This knowledge is expected to lead to a better understanding of the brain abnormalities contributing to BD symptoms, and to potentially identify new targets for treatment and intervention approaches.
Collapse
Affiliation(s)
- Melanie P Leussis
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
15
|
Dedman A, McQuillin A, Kandaswamy R, Sharp S, Anjorin A, Gurling H. Sequencing of the ANKYRIN 3 gene (ANK3) encoding ankyrin G in bipolar disorder reveals a non-conservative amino acid change in a short isoform of ankyrin G. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:328-35. [PMID: 22328486 DOI: 10.1002/ajmg.b.32030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 01/17/2012] [Indexed: 11/12/2022]
Abstract
Significant association between polymorphisms at the ANK3 gene with bipolar disorder has previously been reported and confirmed in several samples. Here we report on association between ANK3 and bipolar disorder in a new sample of 593 patients and 642 controls (UCL2) as well as the results of sequencing of the exons and flanking regions of ANK3 from bipolar patients. Single nucleotide polymorphisms (SNPs) associated with bipolar disorder in our original GWA study (UCL1) were genotyped and tested for association in the new sample. Novel SNPs found by sequencing were genotyped in both samples to test for association with bipolar disorder. None of the SNPs previously associated with bipolar disorder were associated in the UCL2 sample. One of the four SNPs associated in the UCL1 sample, rs1938526, was still significantly associated with bipolar disorder when the UCL1 and UCL2 samples were combined (P = 0.0095). The results demonstrate the impact of heterogeneity on replication of allelic associations even within well-defined ancestral populations. DNA sequencing revealed a novel low frequency (0.007) ANK3 SNP (ss469104599) which causes a non-conservative amino acid change at position 794 in the shorter isoforms of the ankyrin G protein. Protein-function analysis software predicted the amino acid change to be "probably damaging" and it could therefore be detrimental to the function of this isoform. Given that there was only a modest increase in the allele frequency of ss469104599 in cases compared to controls further association studies are needed in additional samples to establish a possible etiological role for this amino acid change.
Collapse
Affiliation(s)
- Alexandra Dedman
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
16
|
Lateralized gap junctions in pulmonary hypertension: lost but not alone. Heart Rhythm 2012; 9:1141-2. [PMID: 22452795 DOI: 10.1016/j.hrthm.2012.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Indexed: 11/21/2022]
|
17
|
Abstract
This study describes the construction and preliminary analysis of a database of summary level genetic findings for bipolar disorder from the literature. The database is available for noncommercial use at http://bioprogramming.bsd.uchicago.edu/BDStudies/. This may be the first complete collection of published gene-specific linkage and association findings on bipolar disorder, including genome-wide association studies. Both the positive and negative findings have been incorporated so that the statistical and contextual significance of each finding may be compared semi-quantitatively and qualitatively across studies of mixed technologies. The database is appropriate for searching a literature populated by mainly underpowered studies, and if 'hits' are viewed as tentative knowledge for future hypothesis generation. It can serve as the basis for a mega-analysis of candidate genes. Herein, we discuss the most robust and best replicated gene findings to date in a contextual manner.
Collapse
|
18
|
Wöber-Bingöl C, Tropeano M, Karwautz A, Wagner G, Campos-de-Sousa S, Zesch HE, Kienbacher C, Natriashvili S, Kanbur I, Ray M, Wöber C, Collier DA. No association between bipolar disorder risk polymorphisms in ANK3 and CACNA1C and common migraine. Headache 2011; 51:796-803. [PMID: 21395576 DOI: 10.1111/j.1526-4610.2011.01858.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Migraine and bipolar disorder are characterized by a high level of co-morbidity, and a common familial-genetic basis has recently been hypothesized for the 2 disorders. Genome-wide association studies have reported strong evidence of association between the polymorphisms rs10994336[T] in the ANK3 gene and rs1006737[A] in the CACNA1C gene and risk of bipolar disorder. OBJECTIVE The aim of this study was to evaluate the hypothesis of a genetic linkage between migraine and bipolar disorder by investigating the familial transmission of the 2 bipolar disorder risk polymorphisms, in a sample of family trios with probands with childhood migraine, and unrelated controls. METHODS Our sample comprised 192 family trios, each with a proband with childhood migraine (137 migraine without aura, 44 migraine with aura) and 228 unrelated controls. The markers rs10994336 and rs1006737 were genotyped using a TaqMan single nucleotide polymorphism Genotyping Assay. The transmission disequilibrium test analysis for the family trios and the case-control analysis were performed using the program UNPHASED. RESULTS The allelic and genotypic transmission disequilibrium test analysis did not show any evidence of transmission distortion of the 2 markers in both migraine overall (rs10994336: OR = 1.61, P = .11; rs1006737: OR = 1.12, P = .49) and in the migraine without aura and migraine with aura subgroups. Likewise, the case-control analysis of alleles and genotypes frequencies did not show any evidence of association. CONCLUSION In the present study, we did not find evidence for association between the bipolar disorder risk polymorphisms rs10994336 in the ANK3 gene and rs1006737 in the CACNA1C gene in migraine. However, as these are variants that have a small effect on the risk of bipolar disorder (OR < 1.5), we cannot exclude a similar small effect on migraine susceptibility with the present sample size.
Collapse
Affiliation(s)
- Ciçek Wöber-Bingöl
- Headache Outpatient Centre, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Leterrier C, Brachet A, Fache MP, Dargent B. Voltage-gated sodium channel organization in neurons: Protein interactions and trafficking pathways. Neurosci Lett 2010; 486:92-100. [DOI: 10.1016/j.neulet.2010.08.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/27/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
|
20
|
Leterrier C, Brachet A, Dargent B, Vacher H. Determinants of voltage-gated sodium channel clustering in neurons. Semin Cell Dev Biol 2010; 22:171-7. [PMID: 20934527 DOI: 10.1016/j.semcdb.2010.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 12/19/2022]
Abstract
In mammalian neurons, the generation and propagation of the action potential result from the presence of dense clusters of voltage-gated sodium channels (Nav) at the axonal initial segment (AIS) and nodes of Ranvier. In these two structures, the assembly of specific supra-molecular complexes composed of numerous partners, such as cytoskeletal scaffold proteins and signaling proteins ensures the high concentration of Nav channels. Understanding how neurons regulate the expression and discrete localization of Nav channels is critical to understanding the diversity of normal neuronal function as well as neuronal dysfunction caused by defects in these processes. Here, we review the mechanisms establishing the clustering of Nav channels at the AIS and in the node and discuss how the alterations of Nav channel clustering can lead to certain pathophysiologies.
Collapse
|
21
|
Targeted deletion of betaIII spectrin impairs synaptogenesis and generates ataxic and seizure phenotypes. Proc Natl Acad Sci U S A 2010; 107:6022-7. [PMID: 20231455 DOI: 10.1073/pnas.1001522107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The spectrin membrane skeleton controls the disposition of selected membrane channels, receptors, and transporters. In the brain betaIII spectrin binds directly to the excitatory amino acid transporter (EAAT4), the glutamate receptor delta, and other proteins. Mutations in betaIII spectrin link strongly to human spinocerebellar ataxia type 5 (SCA5), correlating with alterations in EAAT4. We have explored the mechanistic basis of this phenotype by targeted gene disruption of Spnb3. Mice lacking intact betaIII spectrin develop normally. By 6 months they display a mild nonprogressive ataxia. By 1 year most Spnb3(-/-) animals develop a myoclonic seizure disorder with significant reductions of EAAT4, EAAT1, GluRdelta, IP3R, and NCAM140. Other synaptic proteins are normal. The cerebellum displays increased dark Purkinje cells (PC), a thin molecular layer, fewer synapses, a loss of dendritic spines, and a 2-fold expansion of the PC dendrite diameter. Membrane and expanded Golgi profiles fill the PC dendrite and soma, and both regions accumulate EAAT4. Correlating with the seizure disorder are enhanced hippocampal levels of neuropeptide Y and EAAT3 and increased calpain proteolysis of alphaII spectrin. It appears that betaIII spectrin disruption impairs synaptogenesis by disturbing the intracellular pathways selectively regulating protein trafficking to the synapse. The mislocalization of these proteins secondarily disrupts glutamate transport dynamics, leading to seizures, neuronal damage, and compensatory changes in EAAT3 and neuropeptide Y.
Collapse
|
22
|
Chatelier A, Zhao J, Bois P, Chahine M. Biophysical characterisation of the persistent sodium current of the Nav1.6 neuronal sodium channel: a single-channel analysis. Pflugers Arch 2010; 460:77-86. [DOI: 10.1007/s00424-010-0801-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/02/2010] [Accepted: 02/05/2010] [Indexed: 12/26/2022]
|
23
|
Inhibitor kappaB Kinase beta deficiency in primary nociceptive neurons increases TRP channel sensitivity. J Neurosci 2009; 29:12919-29. [PMID: 19828806 DOI: 10.1523/jneurosci.1496-09.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inhibitor kappaB kinase (IKK) regulates the activity of the transcription factor nuclear factor-kappa B that normally protects neurons against excitotoxicity. Constitutively active IKK is enriched at axon initial segments and nodes of Ranvier (NR). We used mice with a Cre-loxP-mediated specific deletion of IKKbeta in sensory neurons of the dorsal root ganglion (SNS-IKKbeta(-/-)) to evaluate whether IKK plays a role in sensory neuron excitability and nociception. We observed increased sensitivity to mechanical, cold, noxious heat and chemical stimulation in SNS-IKKbeta(-/-) mice, with normal proprioceptive and motor functions as revealed by gait analysis. This was associated with increased calcium influx and increased inward currents in small- and medium-sized primary sensory neurons of SNS-IKKbeta(-/-) mice during stimulation with capsaicin or Formalin, specific activators of transient receptor potentials TRPV1 and TRPA1 calcium channels, respectively. In vitro stimulation of saphenous nerve preparations of SNS-IKKbeta(-/-) mice showed increased neuronal excitability of A- and C-fibers but unchanged A- and C-fiber conduction velocities, normal voltage-gated sodium channel currents, and normal accumulation of ankyrin G and the sodium channels Nav1.6 at NR. The results suggest that IKKbeta functions as a negative modulator of sensory neuron excitability, mediated at least in part by modulation of TRP channel sensitivity.
Collapse
|
24
|
Kovalsky Y, Amir R, Devor M. Simulation in Sensory Neurons Reveals a Key Role for Delayed Na+ Current in Subthreshold Oscillations and Ectopic Discharge: Implications for Neuropathic Pain. J Neurophysiol 2009; 102:1430-42. [DOI: 10.1152/jn.00005.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Somata of primary sensory neurons are thought to contribute to the ectopic neural discharge that is implicated as a cause of some forms of neuropathic pain. Spiking is triggered by subthreshold membrane potential oscillations that reach threshold. Oscillations, in turn, appear to result from reciprocation of a fast active tetrodotoxin-sensitive Na+ current ( INa+) and a passive outward IK+ current. We previously simulated oscillatory behavior using a transient Hodgkin–Huxley-type voltage-dependent INa+ and ohmic leak. This model, however, diverged from oscillatory parameters seen in live cells and failed to produce characteristic ectopic discharge patterns. Here we show that use of a more complete set of Na+ conductances—which includes several delayed components—enables simulation of the entire repertoire of oscillation-triggered electrogenic phenomena seen in live dorsal root ganglion (DRG) neurons. This includes a physiological window of induction and natural patterns of spike discharge. An INa+ component at 2–20 ms was particularly important, even though it represented only a tiny fraction of overall INa+ amplitude. With the addition of a delayed rectifier IK+ the singlet firing seen in some DRG neurons can also be simulated. The model reveals the key conductances that underlie afferent ectopia, conductances that are potentially attractive targets in the search for more effective treatments of neuropathic pain.
Collapse
|
25
|
Wang JA, Lin W, Morris T, Banderali U, Juranka PF, Morris CE. Membrane trauma and Na+ leak from Nav1.6 channels. Am J Physiol Cell Physiol 2009; 297:C823-34. [PMID: 19657055 DOI: 10.1152/ajpcell.00505.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During brain trauma, white matter experiences shear and stretch forces that, without severing axons, nevertheless trigger their secondary degeneration. In central nervous system (CNS) trauma models, voltage-gated sodium channel (Nav) blockers are neuroprotective. This, plus the rapid tetrodotoxin-sensitive Ca2+ overload of stretch-traumatized axons, points to "leaky" Nav channels as a pivotal early lesion in brain trauma. Direct effects of mechanical trauma on neuronal Nav channels have not, however, been tested. Here, we monitor immediate responses of recombinant neuronal Nav channels to stretch, using patch-clamp and Na+-dye approaches. Trauma constituted either bleb-inducing aspiration of cell-attached oocyte patches or abrupt uniaxial stretch of cells on an extensible substrate. Nav1.6 channel transient current displayed irreversible hyperpolarizing shifts of steady-state inactivation [availability(V)] and of activation [g(V)] and, thus, of window current. Left shift increased progressively with trauma intensity. For moderately intense patch trauma, a approximately 20-mV hyperpolarizing shift was registered. Nav1.6 voltage sensors evidently see lower energy barriers posttrauma, probably because of the different bilayer mechanics of blebbed versus intact membrane. Na+ dye-loaded human embryonic kidney (HEK) cells stably transfected with alphaNav1.6 were subjected to traumatic brain injury-like stretch. Cytoplasmic Na+ levels abruptly increased and the trauma-induced influx had a significant tetrodotoxin-sensitive component. Nav1.6 channel responses to cell and membrane trauma are therefore consistent with the hypothesis that mechanically induced Nav channel leak is a primary lesion in traumatic brain injury. Nav1.6 is the CNS node of Ranvier Nav isoform. When, during head trauma, nodes experienced bleb-inducing membrane damage of varying intensities, nodal Nav1.6 channels should immediately "leak" over a broadly left-smeared window current range.
Collapse
Affiliation(s)
- Jun A Wang
- Neuroscience, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J Neurosci 2009; 29:7820-32. [PMID: 19535594 DOI: 10.1523/jneurosci.0932-09.2009] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although it is a widely studied psychiatric syndrome, major depressive disorder remains a poorly understood illness, especially with regard to the disconnect between treatment initiation and the delayed onset of clinical improvement. We have recently validated chronic social defeat stress in mice as a model in which a depression-like phenotype is reversed by chronic, but not acute, antidepressant administration. Here, we use chromatin immunoprecipitation (ChIP)-chip assays--ChIP followed by genome wide promoter array analyses--to study the effects of chronic defeat stress on chromatin regulation in the mouse nucleus accumbens (NAc), a key brain reward region implicated in depression. Our results demonstrate that chronic defeat stress causes widespread and long-lasting changes in gene regulation, including alterations in repressive histone methylation and in phospho-CREB (cAMP response element-binding protein) binding, in the NAc. We then show similarities and differences in this regulation to that observed in another mouse model of depression, prolonged adult social isolation. In the social defeat model, we observed further that many of the stress-induced changes in gene expression are reversed by chronic imipramine treatment, and that resilient mice-those resistant to the deleterious effects of defeat stress-show patterns of chromatin regulation in the NAc that overlap dramatically with those seen with imipramine treatment. These findings provide new insight into the molecular basis of depression-like symptoms and the mechanisms by which antidepressants exert their delayed clinical efficacy. They also raise the novel idea that certain individuals resistant to stress may naturally mount antidepressant-like adaptations in response to chronic stress.
Collapse
|
27
|
Chen Z, Chen S, Chen L, Zhou J, Dai Q, Yang L, Li X, Zhou L. Long-term increasing co-localization of SCN8A and ankyrin-G in rat hippocampal cornu ammonis 1 after pilocarpine induced status epilepticus. Brain Res 2009; 1270:112-20. [PMID: 19306853 DOI: 10.1016/j.brainres.2009.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/01/2009] [Accepted: 03/03/2009] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels (VGSC) are important determinants of neuronal excitability which are implicated in the pathogenesis of epilepsy. Ankyrin-G contributes to the distribution and regulation of VGSC. Here we investigated the alterations of the two alpha-subunits SCN8A and SCN1A and their adapter ankyrin-G in the hippocampal cornu ammonis 1 (CA1) of rats after pilocarpine induced status epilepticus (PISE), compared to the sham-control group (C1) and blank-control group (C2). Significant increase of SCN8A mRNA (41.08% increase compared to C1, P<0.001; 30.88% increase compared to C2, P=0.011) was detected 60 days after PISE. At D1 SCN8A mRNA reduced but no significant changes were detected when compared to controls (one-way ANOVA, F=1.232, P=0.276). After measuring the optical density of Western blot, we detected significant differences between the levels of SCN8A protein in different groups but no difference between the protein levels of SCN1A at D1 and D60 after pilocarpine treatment compared to the control. At D60 the relative copies of ankyrin-G mRNA on internal control beta-actin in PISE group increased significantly compared to C1 and C2 (one-way ANOVA, F=16.537, P<0.001). Significantly increase of ankyrin-G immunoreactivity in Western blot from the PISE group 1 day and 60 days after PISE was observed, compared to the controls (one-way ANOVA, F=24.255 at D1, P<0.001; F=29.280 at D60, P<0.001). After analyzing the double-stained cells counting, we detected significant differences between the numbers of SCN8A+/ankyrin-G+ immunoreactive cells in different groups in acute and chronic period following PISE (two way-ANOVA, F(group)=37.905, P<0.001; F(day)=45.310, P<0.001). The data revealed that both SCN8A and ankyrin-G increased significantly in the CA1 subfield of the rat hippocampus 60 days following pilocarpine induced status epilepticus and co-localized with each other.
Collapse
Affiliation(s)
- Ziyi Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58th Zhongshan 2nd Road, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gunasekaran R, Narayani RS, Vijayalakshmi K, Alladi PA, Shobha K, Nalini A, Sathyaprabha TN, Raju TR. Exposure to cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients alters Nav1.6 and Kv1.6 channel expression in rat spinal motor neurons. Brain Res 2008; 1255:170-9. [PMID: 19109933 DOI: 10.1016/j.brainres.2008.11.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 12/14/2022]
Abstract
Cerebro Spinal Fluid (CSF) from patients with ALS has been documented to have a toxic effect on motor neurons both in vivo and in vitro. Here we show that the CSF from Amyotrophic Lateral Sclerosis (ALS) patients (ALS-CSF) has the potential to perturb ion channel expression, specifically the Na(v)1.6, and K(v)1.6 channels in newborn rat spinal motor neurons both in vivo and in vitro. ALS-CSF and CSF from nonALS patients (nonALS-CSF) were intrathecally injected into 3-day-old rat pups at the rate of 1 microl/2.5 min using a microinjector. In addition, embryonic rat spinal cord cultures were also exposed to 10% ALS or nonALS-CSF on the 9th day in vitro (9DIV) in serum free DMEM medium. After 48 h of CSF exposure, the cultures and the spinal cord sections were processed for immunostaining of the above mentioned ion channels. We observed a decrease in the expression of Na(v)1.6 and K(v)1.6 channels in motor neurons in ALS-CSF treated group, and the presence of trophic factors like Brain Derived Neurotrophic Factor (BDNF) and Ciliary Neurotrophic Factor CNTF partially reversed the effects produced by ALS-CSF. Altered expression of these voltage-gated channels may interfere with the electrical activity of motor neurons, and thereby lead to the degeneration of neurons.
Collapse
Affiliation(s)
- R Gunasekaran
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Post Box no: 2900, Hosur Road, Bangalore-560 029, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, Beck H. Role of Axonal NaV1.6 Sodium Channels in Action Potential Initiation of CA1 Pyramidal Neurons. J Neurophysiol 2008; 100:2361-80. [DOI: 10.1152/jn.90332.2008] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In many neuron types, the axon initial segment (AIS) has the lowest threshold for action potential generation. Its active properties are determined by the targeted expression of specific voltage-gated channel subunits. We show that the Na+ channel NaV1.6 displays a striking aggregation at the AIS of cortical neurons. To assess the functional role of this subunit, we used Scn8a med mice that are deficient for NaV1.6 subunits but still display prominent Na+ channel aggregation at the AIS. In CA1 pyramidal cells from Scn8a med mice, we found a depolarizing shift in the voltage dependence of activation of the transient Na+ current ( INaT), indicating that NaV1.6 subunits activate at more negative voltages than other NaV subunits. Additionally, persistent and resurgent Na+ currents were significantly reduced. Current-clamp recordings revealed a significant elevation of spike threshold in Scn8a med mice as well as a shortening of the estimated delay between spike initiation at the AIS and its arrival at the soma. In combination with simulations using a realistic computer model of a CA1 pyramidal cell, our results imply that a hyperpolarized voltage dependence of activation of AIS NaV1.6 channels is important both in determining spike threshold and localizing spike initiation to the AIS. In addition to altered spike initiation, Scn8a med mice also showed a strongly reduced spike gain as expected with combined changes in persistent and resurgent currents and spike threshold. These results suggest that NaV1.6 subunits at the AIS contribute significantly to its role as spike trigger zone and shape repetitive discharge properties of CA1 neurons.
Collapse
|
30
|
Stabach PR, Devarajan P, Stankewich MC, Bannykh S, Morrow JS. Ankyrin facilitates intracellular trafficking of alpha1-Na+-K+-ATPase in polarized cells. Am J Physiol Cell Physiol 2008; 295:C1202-14. [PMID: 18768923 DOI: 10.1152/ajpcell.00273.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Defects in ankyrin underlie many hereditary disorders involving the mislocalization of membrane proteins. Such phenotypes are usually attributed to ankyrin's role in stabilizing a plasma membrane scaffold, but this assumption may not be accurate. We found in Madin-Darby canine kidney cells and in other cultured cells that the 25-residue ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase facilitates the entry of alpha(1),beta(1)-Na(+)-K(+)-ATPase into the secretory pathway and that replacement of the cytoplasmic domain of vesicular stomatitis virus G protein (VSV-G) with this ankyrin-binding sequence bestows ankyrin dependency on the endoplasmic reticulum (ER) to Golgi trafficking of VSV-G. Expression of the ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase alone as a soluble cytosolic peptide acts in trans to selectively block ER to Golgi transport of both wild-type alpha(1)-Na(+)-K(+)-ATPase and a VSV-G fusion protein that includes the ankyrin-binding sequence, whereas the trafficking of other proteins remains unaffected. Similar phenotypes are also generated by small hairpin RNA-mediated knockdown of ankyrin R or the depletion of ankyrin in semipermeabilized cells. These data indicate that the adapter protein ankyrin acts not only at the plasma membrane but also early in the secretory pathway to facilitate the intracellular trafficking of alpha(1)-Na(+)-K(+)-ATPase and presumably other selected proteins. This novel ankyrin-dependent assembly pathway suggests a mechanism whereby hereditary disorders of ankyrin may be manifested as diseases of membrane protein ER retention or mislocalization.
Collapse
Affiliation(s)
- Paul R Stabach
- Dept. of Pathology, Yale Univ., 310 Cedar St., New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
31
|
Sohet F, Colin Y, Genetet S, Ripoche P, Métral S, Le Van Kim C, Lopez C. Phosphorylation and ankyrin-G binding of the C-terminal domain regulate targeting and function of the ammonium transporter RhBG. J Biol Chem 2008; 283:26557-67. [PMID: 18635543 DOI: 10.1074/jbc.m803120200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RhBG, a human member of the Amt/Mep/Rh/superfamily of ammonium transporters, has been shown to facilitate NH(3) transport and to be anchored to the basolateral plasma membrane of kidney epithelial cells, via ankyrin-G. We showed here that triple alanine substitution of the (419)FLD(421) sequence, which links the cytoplasmic C-terminal domain of RhBG to ankyrin-G, not only disrupted the interaction of RhBG with the spectrin-based skeleton but also delayed its cell surface expression, decreased its plasma membrane stability, and abolished its NH(3) transport function in epithelial cell lines. Similarly, we demonstrated that both anchoring to the membrane skeleton and ammonium transport activity are regulated by the phosphorylation status of the C-terminal tail of RhBG. Tyrosine 429, which belongs to the previously reported YED basolateral targeting signal of RhBG, was demonstrated to be phosphorylated in vitro using purified Src and Syk kinases and ex vivo by analyzing the effect of pervanadate treatment on wild-type RhBG or Y429A mutants. Then, we showed that Y429D and Y429E mutations, mimicking constitutive phosphorylation, abolished NH(3) transport and enhanced Triton X-100 solubilization of RhBG from the cell membrane. In contrast, the nonphosphorylated/nonphosphorylatable Y429A and Y429F mutants behaved the same as wild-type RhBG. Conversely, Y/A or Y/F but not Y/E or Y/D mutations of residue 429 abolished the exclusive basolateral localization of RhBG in polarized epithelial cells. All these results led to a model in which targeting and ammonium transport function of RhBG are regulated by both phosphorylation and membrane skeleton binding of the C-terminal cytoplasmic domain.
Collapse
Affiliation(s)
- Fabien Sohet
- INSERM, U665, Paris F-75015, the Institut National de la Transfusion Sanguine, 6 Rue Alexandre Cabanel, Paris F-75015, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Susuki K, Rasband MN. Spectrin and ankyrin-based cytoskeletons at polarized domains in myelinated axons. Exp Biol Med (Maywood) 2008; 233:394-400. [PMID: 18367627 DOI: 10.3181/0709-mr-243] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In myelinated nerve fibers, action potential initiation and propagation requires that voltage-gated ion channels be clustered at high density in the axon initial segments and nodes of Ranvier. The molecular organization of these subdomains depends on specialized cytoskeletal and scaffolding proteins such as spectrins, ankyrins, and 4.1 proteins. These cytoskeletal proteins are considered to be important for 1) formation, localization, and maintenance of specific integral membrane protein complexes, 2) a barrier restricting the diffusion of both cytoplasmic and membrane proteins to distinct regions or compartments of the cell, and 3) stabilization of axonal membrane integrity. Increased insights into the role of the cytoskeleton could provide important clues about the pathophysiology of various neurological disorders.
Collapse
Affiliation(s)
- Keiichiro Susuki
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
33
|
Lowe JS, Palygin O, Bhasin N, Hund TJ, Boyden PA, Shibata E, Anderson ME, Mohler PJ. Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. ACTA ACUST UNITED AC 2008; 180:173-86. [PMID: 18180363 PMCID: PMC2213608 DOI: 10.1083/jcb.200710107] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage-gated Nav channels are required for normal electrical activity in neurons, skeletal muscle, and cardiomyocytes. In the heart, Nav1.5 is the predominant Nav channel, and Nav1.5-dependent activity regulates rapid upstroke of the cardiac action potential. Nav1.5 activity requires precise localization at specialized cardiomyocyte membrane domains. However, the molecular mechanisms underlying Nav channel trafficking in the heart are unknown. In this paper, we demonstrate that ankyrin-G is required for Nav1.5 targeting in the heart. Cardiomyocytes with reduced ankyrin-G display reduced Nav1.5 expression, abnormal Nav1.5 membrane targeting, and reduced Na+ channel current density. We define the structural requirements on ankyrin-G for Nav1.5 interactions and demonstrate that loss of Nav1.5 targeting is caused by the loss of direct Nav1.5–ankyrin-G interaction. These data are the first report of a cellular pathway required for Nav channel trafficking in the heart and suggest that ankyrin-G is critical for cardiac depolarization and Nav channel organization in multiple excitable tissues.
Collapse
Affiliation(s)
- John S Lowe
- Department of Internal Medicine, Division of Cardiology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cusdin FS, Clare JJ, Jackson AP. Trafficking and cellular distribution of voltage-gated sodium channels. Traffic 2007; 9:17-26. [PMID: 17988224 DOI: 10.1111/j.1600-0854.2007.00673.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrical excitability in cells such as neurons and myocytes depends not only upon the expression of voltage-gated sodium channels but also on their correct targeting within the plasma membrane. Placing sodium channels within a broader cell biological context is beginning to shed new light on a variety of important questions such as the integration of neuronal signaling. Mutations that affect sodium channel trafficking have been shown to underlie several life-threatening conditions including cardiac arrhythmias, revealing an important clinical context to these studies.
Collapse
Affiliation(s)
- Fiona S Cusdin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|