1
|
Breton VL, Dufour S, Chinvarun Y, Del Campo JM, Bardakjian BL, Carlen PL. Transitions between neocortical seizure and non-seizure-like states and their association with presynaptic glutamate release. Neurobiol Dis 2020; 146:105124. [PMID: 33010482 DOI: 10.1016/j.nbd.2020.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022] Open
Abstract
The transition between seizure and non-seizure states in neocortical epileptic networks is governed by distinct underlying dynamical processes. Based on the gamma distribution of seizure and inter-seizure durations, over time, seizures are highly likely to self-terminate; whereas, inter-seizure durations have a low chance of transitioning back into a seizure state. Yet, the chance of a state transition could be formed by multiple overlapping, unknown synaptic mechanisms. To identify the relationship between the underlying synaptic mechanisms and the chance of seizure-state transitions, we analyzed the skewed histograms of seizure durations in human intracranial EEG and seizure-like events (SLEs) in local field potential activity from mouse neocortical slices, using an objective method for seizure state classification. While seizures and SLE durations were demonstrated to have a unimodal distribution (gamma distribution shape parameter >1), suggesting a high likelihood of terminating, inter-SLE intervals were shown to have an asymptotic exponential distribution (gamma distribution shape parameter <1), suggesting lower probability of cessation. Then, to test cellular mechanisms for these distributions, we studied the modulation of synaptic neurotransmission during, and between, the in vitro SLEs. Using simultaneous local field potential and whole-cell voltage clamp recordings, we found a suppression of presynaptic glutamate release at SLE termination, as demonstrated by electrically- and optogenetically-evoked excitatory postsynaptic currents (EPSCs), and focal hypertonic sucrose application. Adenosine A1 receptor blockade interfered with the suppression of this release, changing the inter-SLE shape parameter from asymptotic exponential to unimodal, altering the chance of state transition occurrence with time. These findings reveal a critical role for presynaptic glutamate release in determining the chance of neocortical seizure state transitions.
Collapse
Affiliation(s)
- Vanessa L Breton
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada.
| | - Suzie Dufour
- Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; National Optics Institute, Biophotonics, Quebec, Canada G1P 4S4
| | - Yotin Chinvarun
- Comprehensive Epilepsy Program and Neurology Unit, Phramongkutklao Hospital, Bangkok, Thailand
| | - Jose Martin Del Campo
- Department of Medicine (Neurology), University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Berj L Bardakjian
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Peter L Carlen
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; Department of Medicine (Neurology), University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
2
|
Khalil R, Moftah MZ, Moustafa AA. The effects of dynamical synapses on firing rate activity: a spiking neural network model. Eur J Neurosci 2017; 46:2445-2470. [PMID: 28921686 DOI: 10.1111/ejn.13712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 11/28/2022]
Abstract
Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABAA signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity.
Collapse
Affiliation(s)
- Radwa Khalil
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Marie Z Moftah
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed A Moustafa
- Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
3
|
Activity Clamp Provides Insights into Paradoxical Effects of the Anti-Seizure Drug Carbamazepine. J Neurosci 2017; 37:5484-5495. [PMID: 28473648 PMCID: PMC5452340 DOI: 10.1523/jneurosci.3697-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/04/2017] [Accepted: 04/09/2017] [Indexed: 11/21/2022] Open
Abstract
A major challenge in experimental epilepsy research is to reconcile the effects of anti-epileptic drugs (AEDs) on individual neurons with their network-level actions. Highlighting this difficulty, it is unclear why carbamazepine (CBZ), a frontline AED with a known molecular mechanism, has been reported to increase epileptiform activity in several clinical and experimental studies. We confirmed in an in vitro mouse model (in both sexes) that the frequency of interictal bursts increased after CBZ perfusion. To address the underlying mechanisms, we developed a method, activity clamp, to distinguish the response of individual neurons from network-level actions of CBZ. We first recorded barrages of synaptic conductances from neurons during epileptiform activity and then replayed them in pharmacologically isolated neurons under control conditions and in the presence of CBZ. CBZ consistently decreased the reliability of the second action potential in each burst of activity. Conventional current-clamp recordings using excitatory ramp or square-step current injections failed to reveal this effect. Network modeling showed that a CBZ-induced decrease of neuron recruitment during epileptic bursts can lead to an increase in burst frequency at the network level by reducing the refractoriness of excitatory transmission. By combining activity clamp with computer simulations, the present study provides a potential explanation for the paradoxical effects of CBZ on epileptiform activity. SIGNIFICANCE STATEMENT The effects of anti-epileptic drugs on individual neurons are difficult to separate from their network-level actions. Although carbamazepine (CBZ) has a known anti-epileptic mechanism, paradoxically, it has also been reported to increase epileptiform activity in clinical and experimental studies. To investigate this paradox during realistic neuronal epileptiform activity, we developed a method, activity clamp, to distinguish the effects of CBZ on individual neurons from network-level actions. We demonstrate that CBZ consistently decreases the reliability of the second action potential in each burst of epileptiform activity. Network modeling shows that this effect on individual neuronal responses could explain the paradoxical effect of CBZ at the network level.
Collapse
|
4
|
Wanke E, Gullo F, Dossi E, Valenza G, Becchetti A. Neuron-glia cross talk revealed in reverberating networks by simultaneous extracellular recording of spikes and astrocytes' glutamate transporter and K+ currents. J Neurophysiol 2016; 116:2706-2719. [PMID: 27683885 PMCID: PMC5133298 DOI: 10.1152/jn.00509.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/22/2016] [Indexed: 01/11/2023] Open
Abstract
In neocortex networks, we simultaneously captured spikes and the slower astrocytes' K+and glutamate transporter (GluT) currents with the use of individual MEA electrodes. Inward and outward K+currents in different regions of the glial syncytium suggested that spatial buffering was operant. Moreover, in organotypic slices from ventral tegmental area and prefrontal cortex, the large GluT current amplitudes allowed to measure transporter currents with a single electrode. Our method allows direct study of the dynamic interplay of different cell types in excitable and nonexcitable tissue. Astrocytes uptake synaptically released glutamate with electrogenic transporters (GluT) and buffer the spike-dependent extracellular K+ excess with background K+ channels. We studied neuronal spikes and the slower astrocytic signals on reverberating neocortical cultures and organotypic slices from mouse brains. Spike trains and glial responses were simultaneously captured from individual sites of multielectrode arrays (MEA) by splitting the recorded traces into appropriate filters and reconstructing the original signal by deconvolution. GluT currents were identified by using dl-threo-β-benzyloxyaspartate (TBOA). K+ currents were blocked by 30 μM Ba2+, suggesting a major contribution of inwardly rectifying K+ currents. Both types of current were tightly correlated with the spike rate, and their astrocytic origin was tested in primary cultures by blocking glial proliferation with cytosine β-d-arabinofuranoside (AraC). The spike-related, time-locked inward and outward K+ currents in different regions of the astrocyte syncytium were consistent with the assumptions of the spatial K+ buffering model. In organotypic slices from ventral tegmental area and prefrontal cortex, the GluT current amplitudes exceeded those observed in primary cultures by several orders of magnitude, which allowed to directly measure transporter currents with a single electrode. Simultaneously measuring cell signals displaying widely different amplitudes and kinetics will help clarify the neuron-glia interplay and make it possible to follow the cross talk between different cell types in excitable as well as nonexcitable tissue.
Collapse
Affiliation(s)
- Enzo Wanke
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Francesca Gullo
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Elena Dossi
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Gaetano Valenza
- Research Centre "E. Piaggio" and Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| | - Andrea Becchetti
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| |
Collapse
|
5
|
Shaping Neuronal Network Activity by Presynaptic Mechanisms. PLoS Comput Biol 2015; 11:e1004438. [PMID: 26372048 PMCID: PMC4570815 DOI: 10.1371/journal.pcbi.1004438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023] Open
Abstract
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. The activity of neuronal networks underlies basic neural functions such as sleep, learning and sensorimotor gating. Computational models of neuronal networks have been developed to capture the complexity of the network activity and predict how neuronal networks generate spontaneous activity. However, most computational models do not simulate the intricate synaptic release process that governs the interaction between neurons and has been shown to significantly impact neuronal network activity and animal behavior, learning and memory. Our paper demonstrates the importance of simulating the elaborate synaptic release process to understand how neuronal networks generate spontaneous activity and respond to manipulations of the release process. The model provides mechanistic explanations and predictions for experimental pharmacological and genetic manipulations. Thus, the model presents a novel computational platform to understand how mechanistic changes in the synaptic release process modulate network oscillatory activity that might impact basic neural functions.
Collapse
|
6
|
Morgado-Valle C, Fernandez-Ruiz J, Lopez-Meraz L, Beltran-Parrazal L. Substitution of extracellular Ca2+ by Sr2+ prolongs inspiratory burst in pre-Bötzinger complex inspiratory neurons. J Neurophysiol 2014; 113:1175-83. [PMID: 25429120 DOI: 10.1152/jn.00705.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The pre-Bötzinger complex (preBötC) underlies inspiratory rhythm generation. As a result of network interactions, preBötC neurons burst synchronously to produce rhythmic premotor inspiratory activity. Each inspiratory burst consists of action potentials (APs) on top of a 10- to 20-mV synchronous depolarization lasting 0.3-0.8 s known as inspiratory drive potential. The mechanisms underlying the initiation and termination of the inspiratory burst are unclear, and the role of Ca(2+) is a matter of intense debate. To investigate the role of extracellular Ca(2+) in inspiratory burst initiation and termination, we substituted extracellular Ca(2+) with Sr(2+). We found for the first time an ionic manipulation that significantly interferes with burst termination. In a rhythmically active slice, we current-clamped preBötC neurons (Vm ≅ -60 mV) while recording integrated hypoglossal nerve (∫XIIn) activity as motor output. Substitution of extracellular Ca(2+) with either 1.5 or 2.5 mM Sr(2+) significantly prolonged the duration of inspiratory bursts from 653.4 ± 30.7 ms in control conditions to 981.6 ± 78.5 ms in 1.5 mM Sr(2+) and 2,048.2 ± 448.5 ms in 2.5 mM Sr(2+), with a concomitant increase in decay time and area. Substitution of extracellular Ca(2+) by Sr(2+) is a well-established method to desynchronize neurotransmitter release. Our findings suggest that the increase in inspiratory burst duration is determined by a presynaptic mechanism involving desynchronization of glutamate release within the network.
Collapse
Affiliation(s)
- Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa, Veracruz, Mexico; and
| | - Juan Fernandez-Ruiz
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Lopez-Meraz
- Centro de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa, Veracruz, Mexico; and
| | - Luis Beltran-Parrazal
- Centro de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa, Veracruz, Mexico; and
| |
Collapse
|
7
|
Diao L, Hellier JL, Uskert-Newsom J, Williams PA, Staley KJ, Yee AS. Diphenytoin, riluzole and lidocaine: three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity. Neuropharmacology 2013; 73:48-55. [PMID: 23707481 DOI: 10.1016/j.neuropharm.2013.04.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Epilepsy is a condition affecting 1-2% of the population, characterized by the presence of spontaneous, recurrent seizures. The most common type of acquired epilepsy is temporal lobe epilepsy (TLE). Up to 30% of patients with TLE are refractory to currently available compounds, and there is an urgent need to identify novel targets for therapy. Here, we utilized the in-vitro CA3 burst preparation to examine alterations in network excitability, characterized by changes in interburst interval. Specifically, we show that bath application of three different sodium channel blockers-diphenytoin, riluzole, and lidocaine-slow spontaneous CA3 bursts. This in turn, decreased the epileptiform activity. These compounds work at different sites on voltage-gated sodium channels, but produce a similar network phenotype of decreased excitability. In the case of diphenytoin and riluzole, the change in network activity (i.e., increased interburst intervals) was persistent following drug washout. Lidocaine application, however, only increased the CA3 interburst interval when it was in the bath solution. Thus, its action was not permanent and resulted in returning CA3 bursting to baseline levels. These data demonstrate that the CA3 burst preparation provides a relatively easy and quick platform for identifying compounds that can decrease network excitability, providing the initial screen for further and more complex in-vivo, freely-behaving animal studies.
Collapse
Affiliation(s)
- Lihong Diao
- University of Colorado Anschutz Medical Campus, Mailstop 8105, PO Box 6511, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lavi A, Sheinin A, Shapira R, Zelmanoff D, Ashery U. DOC2B and Munc13-1 differentially regulate neuronal network activity. ACTA ACUST UNITED AC 2013; 24:2309-23. [PMID: 23537531 DOI: 10.1093/cercor/bht081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alterations in the levels of synaptic proteins affect synaptic transmission and synaptic plasticity. However, the precise effects on neuronal network activity are still enigmatic. Here, we utilized microelectrode array (MEA) to elucidate how manipulation of the presynaptic release process affects the activity of neuronal networks. By combining pharmacological tools and genetic manipulation of synaptic proteins, we show that overexpression of DOC2B and Munc13-1, proteins known to promote vesicular maturation and release, elicits opposite effects on the activity of the neuronal network. Although both cause an increase in the overall number of spikes, the distribution of spikes is different. While DOC2B enhances, Munc13-1 reduces the firing rate within bursts of spikes throughout the network; however, Munc13-1 increases the rate of network bursts. DOC2B's effects were mimicked by Strontium that elevates asynchronous release but not by a DOC2B mutant that enhances spontaneous release rate. This suggests for the first time that increased asynchronous release on the single-neuron level promotes bursting activity in the network level. This innovative study demonstrates the complementary role of the network level in explaining the physiological relevance of the cellular activity of presynaptic proteins and the transformation of synaptic release manipulation from the neuron to the network level.
Collapse
Affiliation(s)
- Ayal Lavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anton Sheinin
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Shapira
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Zelmanoff
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Uri Ashery
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Deterministic and stochastic neuronal contributions to distinct synchronous CA3 network bursts. J Neurosci 2012; 32:4743-54. [PMID: 22492030 DOI: 10.1523/jneurosci.4277-11.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Computational studies have suggested that stochastic, deterministic, and mixed processes all could be possible determinants of spontaneous, synchronous network bursts. In the present study, using multicellular calcium imaging coupled with fast confocal microscopy, we describe neuronal behavior underlying spontaneous network bursts in developing rat and mouse hippocampal area CA3 networks. Two primary burst types were studied: giant depolarizing potentials (GDPs) and spontaneous interictal bursts recorded in bicuculline, a GABA(A) receptor antagonist. Analysis of the simultaneous behavior of multiple CA3 neurons during synchronous GDPs revealed a repeatable activation order from burst to burst. This was validated using several statistical methods, including high Kendall's coefficient of concordance values for firing order during GDPs, high Pearson's correlations of cellular activation times between burst pairs, and latent class analysis, which revealed a population of 5-6% of CA3 neurons reliably firing very early during GDPs. In contrast, neuronal firing order during interictal bursts appeared homogeneous, with no particular cells repeatedly leading or lagging during these synchronous events. We conclude that GDPs activate via a deterministic mechanism, with distinct, repeatable roles for subsets of neurons during burst generation, while interictal bursts appear to be stochastic events with cells assuming interchangeable roles in the generation of these events.
Collapse
|
10
|
Abstract
Synchronous activation of neural networks is an important physiological mechanism, and dysregulation of synchrony forms the basis of epilepsy. We analyzed the propagation of synchronous activity through chronically epileptic neural networks. Electrocorticographic recordings from epileptic patients demonstrate remarkable variance in the pathways of propagation between sequential interictal spikes (IISs). Calcium imaging in chronically epileptic slice cultures demonstrates that pathway variance depends on the presence of GABAergic inhibition and that spike propagation becomes stereotyped following GABA receptor blockade. Computer modeling suggests that GABAergic quenching of local network activations leaves behind regions of refractory neurons, whose late recruitment forms the anatomical basis of variability during subsequent network activation. Targeted path scanning of slice cultures confirmed local activations, while ex vivo recordings of human epileptic tissue confirmed the dependence of interspike variance on GABA-mediated inhibition. These data support the hypothesis that the paths by which synchronous activity spreads through an epileptic network change with each activation, based on the recent history of localized activity that has been successfully inhibited.
Collapse
|
11
|
Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity. J Neurosci 2012; 31:18137-48. [PMID: 22159125 PMCID: PMC3257321 DOI: 10.1523/jneurosci.3041-11.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Postmortem and functional imaging studies of patients with psychiatric disorders, including schizophrenia, are consistent with a dysfunction of interneurons leading to compromised inhibitory control of network activity. Parvalbumin (PV)-expressing, fast-spiking interneurons interacting with pyramidal neurons generate cortical gamma oscillations (30-80 Hz) that synchronize cortical activity during cognitive processing. In postmortem studies of schizophrenia patients, these interneurons show reduced PV and glutamic acid decarboxylase 67 (GAD67), an enzyme that synthesizes GABA, but the consequences of this downregulation are unclear. We developed a biophysically realistic and detailed computational model of a cortical circuit including asynchronous release from GABAergic interneurons to investigate how reductions in PV and GABA affect gamma oscillations induced by sensory stimuli. Networks with reduced GABA were disinhibited and had altered gamma oscillations in response to stimulation; PV-deficient GABA synapses had increased asynchronous release of GABA, which decreased the level of excitation and reduced gamma-band activity. Combined reductions of PV and GABA resulted in a diminished gamma-band oscillatory activity in response to stimuli, similar to that observed in schizophrenia patients. Our results suggest a mechanism by which reduced GAD67 and PV in fast-spiking interneurons may contribute to cortical dysfunction in schizophrenia and related psychiatric disorders.
Collapse
|
12
|
Cohen D, Segal M. Network bursts in hippocampal microcultures are terminated by exhaustion of vesicle pools. J Neurophysiol 2011; 106:2314-21. [DOI: 10.1152/jn.00969.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synchronized network activity is an essential attribute of the brain. Yet the cellular mechanisms that determine the duration of network bursts are not fully understood. In the present study, synchronized network bursts were evoked by triggering an action potential in a single neuron in otherwise silent microcultures consisting of 4–30 hippocampal neurons. The evoked burst duration, ∼2 s, depended on the recovery time after a previous burst. While interburst intervals of 35 s enabled full-length bursts, they were shortened by half at 5-s intervals. This reduction in burst duration could not be attributed to postsynaptic parameters such as glutamate receptor desensitization, accumulating afterhyperpolarization, inhibitory tone, or sodium channel inactivation. Reducing extracellular Ca2+ concentration ([Ca2+]o) relieved the effect of short intervals on burst duration, while depletion of synaptic vesicles with α-latrotoxin gradually eliminated network bursts. Finally, a transient exposure to high [K+]o slowed down the recovery time following a burst discharge. We conclude that the limiting factor regulating burst duration is most likely the depletion of presynaptic resources.
Collapse
Affiliation(s)
- Dror Cohen
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| |
Collapse
|
13
|
McCloskey DP, Scharfman HE. Progressive, potassium-sensitive epileptiform activity in hippocampal area CA3 of pilocarpine-treated rats with recurrent seizures. Epilepsy Res 2011; 97:92-102. [PMID: 21880468 DOI: 10.1016/j.eplepsyres.2011.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 07/12/2011] [Accepted: 07/24/2011] [Indexed: 11/28/2022]
Abstract
Rat hippocampal area CA3 pyramidal cells synchronously discharge in rhythmic bursts of action potentials after acute disinhibition or convulsant treatment in vitro. These burst discharges resemble epileptiform activity, and are of interest because they may shed light on mechanisms underlying limbic seizures. However, few studies have examined CA3 burst discharges in an animal model of epilepsy, because a period of prolonged, severe seizures (status epilepticus) is often used to induce the epileptic state, which can lead to extensive neuronal loss in CA3. Therefore, the severity of pilocarpine-induced status epilepticus was decreased with anticonvulsant treatment to reduce damage. Rhythmic burst discharges were recorded in the majority of slices from these animals, between two weeks and nine months after status epilepticus. The incidence and amplitude of bursts progressively increased with time after status, even after spontaneous behavioral seizures had begun. The results suggest that modifying the pilocarpine models of temporal lobe epilepsy to reduce neuronal loss leads to robust network synchronization in area CA3. The finding that these bursts increase long after spontaneous behavioral seizures begin supports previous arguments that temporal lobe epilepsy exhibits progressive pathophysiology.
Collapse
Affiliation(s)
- Daniel P McCloskey
- Department of Psychology and Program in Developmental Neuroscience, College of Staten Island, City University of New York, Staten Island, New York 10314, United States.
| | | |
Collapse
|
14
|
Baltz T, Herzog A, Voigt T. Slow oscillating population activity in developing cortical networks: models and experimental results. J Neurophysiol 2011; 106:1500-14. [PMID: 21697440 DOI: 10.1152/jn.00889.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During early development neuronal networks express slow oscillating synchronized activity. The activity can be driven by several, not necessarily mutually exclusive, mechanisms. Each mechanism might have distinctive consequences for the phenomenology, formation, or sustainment of the early activity pattern. Here we study the emergence of the oscillatory activity in three computational models and multisite extracellular recordings that we obtained from developing cortical networks in vitro. The modeled networks consist of leaky integrate-and-fire neurons with adaptation coupled via depressing synapses, which were driven by neurons that are intrinsically bursting, intrinsically random spiking, or driven by spontaneous synaptic activity. The activity of model networks driven by intrinsically bursting cells best matched the phenomenology of 1-wk-old cultures, in which early oscillatory activity has just begun. Intrinsically bursting neurons were present in cortical cultures, but we found them only in those cultures that were younger than 3 wk in vitro. On the other hand, synaptically dependent random spiking was highest after 3 wk in vitro. In conclusion, model networks driven by intrinsically bursting cells show a good approximation of the emergent recurrent population activity in young networks, whereas the activity of more mature networks seems to be better explained by spontaneous synaptic activity. Moreover, similar to previous experimental observations, distributed stimulation in the model was more effective in suppressing population bursts than repeated stimulation of the same neurons. This observation can be explained by an effective depression of a larger fraction of synapses by distributed stimulation.
Collapse
Affiliation(s)
- Thomas Baltz
- Institute of Physiology, Otto-von-Guericke-University, Magdeburg, Germany
| | | | | |
Collapse
|
15
|
Volman V, Levine H, Sejnowski TJ. Shunting inhibition controls the gain modulation mediated by asynchronous neurotransmitter release in early development. PLoS Comput Biol 2010; 6:e1000973. [PMID: 21079676 PMCID: PMC2973817 DOI: 10.1371/journal.pcbi.1000973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022] Open
Abstract
The sensitivity of a neuron to its input can be modulated in several ways. Changes in the slope of the neuronal input-output curve depend on factors such as shunting inhibition, background noise, frequency-dependent synaptic excitation, and balanced excitation and inhibition. However, in early development GABAergic interneurons are excitatory and other mechanisms such as asynchronous transmitter release might contribute to regulating neuronal sensitivity. We modeled both phasic and asynchronous synaptic transmission in early development to study the impact of activity-dependent noise and short-term plasticity on the synaptic gain. Asynchronous release decreased or increased the gain depending on the membrane conductance. In the high shunt regime, excitatory input due to asynchronous release was divisive, whereas in the low shunt regime it had a nearly multiplicative effect on the firing rate. In addition, sensitivity to correlated inputs was influenced by shunting and asynchronous release in opposite ways. Thus, asynchronous release can regulate the information flow at synapses and its impact can be flexibly modulated by the membrane conductance.
Collapse
Affiliation(s)
- Vladislav Volman
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
16
|
Pisciotta M, Morgavi G, Jahnsen H. Characterization of the in vitro propagation of epileptiform electrophysiological activity in organotypic hippocampal slice cultures coupled to 3D microelectrode arrays. Brain Res 2010; 1358:46-53. [PMID: 20713026 DOI: 10.1016/j.brainres.2010.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 11/25/2022]
Abstract
Dynamic aspects of the propagation of epileptiform activity have so far received little attention. With the aim of providing new insights about the spatial features of the propagation of epileptic seizures in the nervous system, we studied in vitro the initiation and propagation of traveling epileptiform waves of electrophysiological activity in the hippocampus by means of substrate three-dimensional microelectrode arrays (MEAs) for extracellular measurements. Pharmacologically disinhibited hippocampal slices spontaneously generate epileptiform bursts mostly originating in CA3 and propagating to CA1. Our study specifically addressed the activity-dependent changes of the propagation of traveling electrophysiological waves in organotypic hippocampal slices during epileptiform discharge and in particular our question is: what happens to the epileptic signals during their propagation through the slice? Multichannel data analysis enabled us to quantify an activity-dependent increase in the propagation velocity of spontaneous bursts. Moreover, through the evaluation of the coherence of the signals, it was possible to point out that only the lower-frequency components (<95Hz) of the electrical activity are completely coherent with respect to the activity originating in the CA3, while components at higher frequencies lose the coherence, possibly suggesting that the cellular mechanism mediating propagation of electrophysiological activity becomes ineffective for those firing rates exceeding an upper bound or that some noise of neuronal origin was added to the signal during propagation.
Collapse
Affiliation(s)
- Marzia Pisciotta
- Division of Neurophysiology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
17
|
Functional, metabolic, and synaptic changes after seizures as potential targets for antiepileptic therapy. Epilepsy Behav 2010; 19:105-13. [PMID: 20705520 DOI: 10.1016/j.yebeh.2010.06.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 01/11/2023]
Abstract
Little is known about how the brain limits seizure duration and terminates seizures. Depending on severity and duration, a single seizure is followed by various functional, metabolic, and synaptic changes that may form targets for novel therapeutic strategies. It is long known that most seizures are followed by a period of postictal refractoriness during which the threshold for induction of additional seizures is increased. The endogenous anticonvulsant mechanisms involved in this phenomenon may be relevant for both spontaneous seizure arrest and increase of seizure threshold after seizure arrest. Postictal refractoriness has been extensively studied in various seizure and epilepsy models, including electrically and chemically induced seizures, kindling, and genetic animal models of epilepsy. During kindling development, two antagonistic processes occur simultaneously, one responsible for kindling-like events and the other for terminating ictus and postictal refractoriness. Frequently occurring seizures may lead to an accumulation of postictal refractoriness that may last weeks. The mechanisms involved in seizure termination and postictal refractoriness include changes in ionic microenvironment, in pH, and in various endogenous neuromodulators such as adenosine and neuropeptides. In animal models, the anticonvulsant efficacy of several antiepileptic drugs (AEDs) is increased during postictal refractoriness, which is a logical consequence of the interaction between endogenous anticonvulsant processes and the mechanism of AEDs. As discussed in this review, enhanced understanding of these endogenous processes may lead to novel targets for AED development.
Collapse
|
18
|
Shao LR, Dudek FE. Both synaptic and intrinsic mechanisms underlie the different properties of population bursts in the hippocampal CA3 area of immature versus adult rats. J Physiol 2010; 587:5907-23. [PMID: 19884320 DOI: 10.1113/jphysiol.2009.179887] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Pharmacological blockade of GABA(A) receptors on CA3 pyramidal cells in hippocampal slices from immature rats (i.e. second to third postnatal weeks), compared to CA3 slices from adult rats, is known to cause prolonged burst discharges (i.e. several seconds vs. tens of milliseconds). Synaptic and intrinsic mechanisms responsible for this developmental difference in burst duration were analysed in isolated minislices of the CA3 area. The frequency and amplitude of spontaneous EPSCs in CA3 pyramidal cells were greater in slices from immature than mature rats. In the presence of GABA(A)- and GABA(B)-receptor antagonists, the burst discharges of immature CA3 pyramidal cells were still prolonged in thinner slices (350 microm, vs. 450 microm in adults, to compensate for developmental differences in neuronal density) and in NMDA- and mGlu1-receptor antagonists. The AMPA receptor antagonist DNQX blocked the remaining burst discharges, suggesting that differences in recurrent excitatory circuits contributed to the prolonged bursts of immature CA3 pyramidal cells. In slices from immature versus adult rats, the CA3 recurrent synaptic responses showed potentiation to repetitive stimulation, suggestive of a lower transmitter release probability. The intrinsic firing ability was greater in CA3 pyramidal neurons from immature than adult rats, and the medium-duration afterhyperpolarization was smaller. These data suggest that, compared to adults, the CA3 area of immature rats contains a more robust recurrent excitatory synaptic network, greater intrinsic membrane excitability, and an increased capacity for sustained transmitter release, which together may account for the more prolonged network bursts in immature versus adult CA3.
Collapse
Affiliation(s)
- Li-Rong Shao
- Department of Biomedical Sciences, Anatomy and Neurobiology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
19
|
Tabak J, Mascagni M, Bertram R. Mechanism for the universal pattern of activity in developing neuronal networks. J Neurophysiol 2010; 103:2208-21. [PMID: 20164396 DOI: 10.1152/jn.00857.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous episodic activity is a fundamental mode of operation of developing networks. Surprisingly, the duration of an episode of activity correlates with the length of the silent interval that precedes it, but not with the interval that follows. Here we use a modeling approach to explain this characteristic, but thus far unexplained, feature of developing networks. Because the correlation pattern is observed in networks with different structures and components, a satisfactory model needs to generate the right pattern of activity regardless of the details of network architecture or individual cell properties. We thus developed simple models incorporating excitatory coupling between heterogeneous neurons and activity-dependent synaptic depression. These models robustly generated episodic activity with the correct correlation pattern. The correlation pattern resulted from episodes being triggered at random levels of recovery from depression while they terminated around the same level of depression. To explain this fundamental difference between episode onset and termination, we used a mean field model, where only average activity and average level of recovery from synaptic depression are considered. In this model, episode onset is highly sensitive to inputs. Thus noise resulting from random coincidences in the spike times of individual neurons led to the high variability at episode onset and to the observed correlation pattern. This work further shows that networks with widely different architectures, different cell types, and different functions all operate according to the same general mechanism early in their development.
Collapse
Affiliation(s)
- Joël Tabak
- Dept. of Biological Science, BRF 206, Florida State Univ., Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|
20
|
Chang CY, Mennerick S. Dynamic modulation of phasic and asynchronous glutamate release in hippocampal synapses. J Neurophysiol 2009; 103:392-401. [PMID: 19889850 DOI: 10.1152/jn.00683.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although frequency-dependent short-term presynaptic plasticity has been of long-standing interest, most studies have emphasized modulation of the synchronous, phasic component of transmitter release, most evident with a single or a few presynaptic stimuli. Asynchronous transmitter release, vesicle fusion not closely time locked to presynaptic action potentials, can also be prominent under certain conditions, including repetitive stimulation. Asynchrony has often been attributed to residual Ca(2+) buildup in the presynaptic terminal. We verified that a number of manipulations of Ca(2+) handling and influx selectively alter asynchronous release relative to phasic transmitter release during action potential trains in cultured excitatory autaptic hippocampal neurons. To determine whether other manipulations of vesicle release probability also selectively modulate asynchrony, we probed the actions of one thoroughly studied modulator class whose actions on phasic versus asynchronous release have not been investigated. We examined the effects of the phorbol ester PDBu, which has protein kinase C (PKC) dependent and independent actions on presynaptic transmitter release. PDBu increased phasic and asynchronous release in parallel. However, while PKC inhibition had relatively minor inhibitory effects on PDBu potentiation of phasic and total release during action potential trains, PKC inhibition strongly reduced phorbol-potentiated asynchrony, through actions most evident late during stimulus trains. These results lend new insight into PKC-dependent and -independent effects on transmitter release and suggest the possibility of differential control of synchronous versus asynchronous vesicle release.
Collapse
Affiliation(s)
- Chun Yun Chang
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
21
|
de Curtis M, Gnatkovsky V. Reevaluating the mechanisms of focal ictogenesis: The role of low-voltage fast activity. Epilepsia 2009; 50:2514-25. [PMID: 19674056 DOI: 10.1111/j.1528-1167.2009.02249.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mechanisms that control the transition into a focal seizure are still uncertain. The introduction of presurgical intracranial recordings to localize the epileptogenic zone in patients with drug-resistant focal epilepsies opened a new window to the interpretation of seizure generation (ictogenesis). One of the most frequent focal patterns observed with intracranial electrodes at seizure onset is characterized by low-voltage fast activity in the beta-gamma range that may or may not be preceded by changes of ongoing interictal activities. In the present commentary, the mechanisms of generation of focal seizures are reconsidered, focusing on low-voltage fast activity patterns. Experimental findings on models of temporal lobe seizures support the view that the low-voltage fast activity observed at seizure onset is associated with reinforcement and synchronization of inhibitory networks. A minor role for the initiation of the ictal pattern is played by principal neurons that are progressively recruited with a delay, when inhibition declines and synchronous high-voltage discharges ensue. The transition from inhibition into excitatory recruitment is probably mediated by local increase in potassium concentration associated with synchronized interneuronal firing. These findings challenge the classical theory that proposes an increment of excitation and/or a reduction of inhibition as a cause for the transition to seizure in focal epilepsies. A new definition of ictogenesis mechanisms, as herewith hypothesized, might possibly help to develop new therapeutic strategies for focal epilepsies.
Collapse
Affiliation(s)
- Marco de Curtis
- Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy.
| | | |
Collapse
|
22
|
Stacey WC, Lazarewicz MT, Litt B. Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. J Neurophysiol 2009; 102:2342-57. [PMID: 19657077 DOI: 10.1152/jn.00397.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is great interest in the role of coherent oscillations in the brain. In some cases, high-frequency oscillations (HFOs) are integral to normal brain function, whereas at other times they are implicated as markers of epileptic tissue. Mechanisms underlying HFO generation, especially in abnormal tissue, are not well understood. Using a physiological computer model of hippocampus, we investigate random synaptic activity (noise) as a potential initiator of HFOs. We explore parameters necessary to produce these oscillations and quantify the response using the tools of stochastic resonance (SR) and coherence resonance (CR). As predicted by SR, when noise was added to the network the model was able to detect a subthreshold periodic signal. Addition of basket cell interneurons produced two novel SR effects: 1) improved signal detection at low noise levels and 2) formation of coherent oscillations at high noise that were entrained to harmonics of the signal frequency. The periodic signal was then removed to study oscillations generated only by noise. The combined effects of network coupling and synaptic noise produced coherent, periodic oscillations within the network, an example of CR. Our results show that, under normal coupling conditions, synaptic noise was able to produce gamma (30-100 Hz) frequency oscillations. Synaptic noise generated HFOs in the ripple range (100-200 Hz) when the network had parameters similar to pathological findings in epilepsy: increased gap junctions or recurrent synaptic connections, loss of inhibitory interneurons such as basket cells, and increased synaptic noise. The model parameters that generated these effects are comparable with published experimental data. We propose that increased synaptic noise and physiological coupling mechanisms are sufficient to generate gamma oscillations and that pathologic changes in noise and coupling similar to those in epilepsy can produce abnormal ripples.
Collapse
Affiliation(s)
- William C Stacey
- 1Department of Bioengineering, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19194, USA.
| | | | | |
Collapse
|
23
|
He J, Hsiang HL, Wu C, Mylvagnanam S, Carlen PL, Zhang L. Cellular mechanisms of cobalt-induced hippocampal epileptiform discharges. Epilepsia 2008; 50:99-115. [PMID: 18727680 DOI: 10.1111/j.1528-1167.2008.01767.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To explore the cellular mechanisms of cobalt-induced epileptiform discharges in mouse hippocampal slices. METHODS Hippocampal slices were prepared from adult mice and briefly exposed to a CoCl(2)-containing external solution. Population and single cell activities were examined via extracellular and whole-cell patch recordings. RESULTS Brief cobalt exposure induced spontaneous, ictal-like discharges originating from the CA3 area. These discharges were suppressed by anticonvulsants, gap junction blockers, or by raising extracellular Ca(2+), but their generation was not associated with overall hyperexcitability or impairment in GABAergic inhibition in the CA3 circuit. Electroencephalographic ictal discharges of similar waveforms were observed in behaving rats following intrahippocampal cobalt infusion. DISCUSSION Mechanisms involving activity-dependent facilitation of gap junctional communication may play a major role in cobalt-induced epileptiform discharges.
Collapse
Affiliation(s)
- Jiwei He
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Volman V, Levine H. Activity-dependent stochastic resonance in recurrent neuronal networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:060903. [PMID: 18643209 DOI: 10.1103/physreve.77.060903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Indexed: 05/26/2023]
Abstract
We use a biophysical model of a local neuronal circuit to study the implications of synaptic plasticity for the detection of weak sensory stimuli. Networks with fast plastic coupling show behavior consistent with stochastic resonance. The addition of an additional slow coupling that accounts for the asynchronous release of neurotransmitter results in qualitatively different properties of signal detection, and also leads to the appearance of transient post-stimulus bistability. Our results suggest testable hypothesis with regard to the self-organization and dynamics of local neuronal circuits.
Collapse
Affiliation(s)
- Vladislav Volman
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093-0319, USA.
| | | |
Collapse
|
25
|
Abstract
Although often overshadowed by factors influencing seizure initiation, seizure termination is a critical step in the return to the interictal state. Understanding the mechanisms contributing to seizure termination could potentially identify novel targets for anticonvulsant drug development and may also highlight the pathophysiological processes contributing to seizure initiation. In this article, we review known physiological mechanisms contributing to seizure termination and discuss additional mechanisms that are likely to be relevant even though specific data are not yet available. This review is organized according to successively increasing "size scales"-from membranes to synapses to networks to circuits. We first discuss mechanisms of seizure termination acting at the shortest distances and affecting the excitable membranes of neurons in the seizure onset zone. Next we consider the contributions of ensembles of neurons and glia interacting at intermediate distances within the region of the seizure onset zone. Lastly, we consider the contribution of brain nuclei, such as the substantia nigra pars reticulata (SNR), that are capable of modulating seizures and exert their influence over the seizure onset zone (and neighboring areas) from a relatively great-in neuroanatomical terms-distance. It is our hope that the attention to the mechanisms contributing to seizure termination will stimulate novel avenues of epilepsy research and will contribute to improved patient care.
Collapse
Affiliation(s)
- Fred A Lado
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, NY 10461, USA.
| | | |
Collapse
|