1
|
Hassan AS, Fajardo ME, Cummings M, McPherson LM, Negro F, Dewald JPA, Heckman CJ, Pearcey GEP. Estimates of persistent inward currents are reduced in upper limb motor units of older adults. J Physiol 2021; 599:4865-4882. [PMID: 34505294 DOI: 10.1113/jp282063] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Ageing is a natural process causing alterations in the neuromuscular system, which contributes to reduced quality of life. Motor unit (MU) contributes to weakness, but the mechanisms underlying reduced firing rates are unclear. Persistent inward currents (PICs) are crucial for initiation, gain control and maintenance of motoneuron firing, and are directly proportional to the level of monoaminergic input. Since concentrations of monoamines (i.e. serotonin and noradrenaline) are reduced with age, we sought to determine if estimates of PICs are reduced in older (>60 years old) compared to younger adults (<35 years old). We decomposed MU spike trains from high-density surface electromyography over the biceps and triceps brachii during isometric ramp contractions to 20% of maximum. Estimates of PICs (ΔFrequency; or simply ΔF) were computed using the paired MU analysis technique. Regardless of the muscle, peak firing rates of older adults were reduced by ∼1.6 pulses per second (pps) (P = 0.0292), and ΔF was reduced by ∼1.9 pps (P < 0.0001), compared to younger adults. We further found that age predicted ΔF in older adults (P = 0.0261), resulting in a reduction of ∼1 pps per decade, but there was no relationship in younger adults (P = 0.9637). These findings suggest that PICs are reduced in the upper limbs of older adults during submaximal isometric contractions. Reduced PIC magnitude represents one plausible mechanism for reduced firing rates and function in older individuals, but further work is required to understand the implications in other muscles and during a variety of motor tasks. KEY POINTS: Persistent inward currents play an important role in the neural control of human movement and are influenced by neuromodulation via monoamines originating in the brainstem. During ageing, motor unit firing rates are reduced, and there is deterioration of brainstem nuclei, which may reduce persistent inward currents in alpha motoneurons. Here we show that estimates of persistent inward currents (ΔF) of both elbow flexor and extensor motor units are reduced in older adults. Estimates of persistent inward currents have a negative relationship with age in the older adults, but not in the young. This novel mechanism may play a role in the alteration of motor firing rates that occurs with ageing, which may have consequences for motor control.
Collapse
Affiliation(s)
- Altamash S Hassan
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Melissa E Fajardo
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mark Cummings
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura Miller McPherson
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita' degli Studi di Brescia, Brescia, Italy
| | - Julius P A Dewald
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
2
|
Janes TA, Fournier S, Chamberland S, Funk GD, Kinkead R. Respiratory motoneuron properties during the transition from gill to lung breathing in the American bullfrog. Am J Physiol Regul Integr Comp Physiol 2019; 316:R281-R297. [PMID: 30601705 PMCID: PMC6459380 DOI: 10.1152/ajpregu.00303.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 12/23/2022]
Abstract
Amphibian respiratory development involves a dramatic metamorphic transition from gill to lung breathing and coordination of distinct motor outputs. To determine whether the emergence of adult respiratory motor patterns was associated with similarly dramatic changes in motoneuron (MN) properties, we characterized the intrinsic electrical properties of American bullfrog trigeminal MNs innervating respiratory muscles comprising the buccal pump. In premetamorphic tadpoles (TK stages IX-XVIII) and adult frogs, morphometric analyses and whole cell recordings were performed in trigeminal MNs identified by fluorescent retrograde labeling. Based on the amplitude of the depolarizing sag induced by hyperpolarizing voltage steps, two MN subtypes (I and II) were identified in tadpoles and adults. Compared with type II MNs, type I MNs had larger sag amplitudes (suggesting a larger hyperpolarization-activated inward current), greater input resistance, lower rheobase, hyperpolarized action potential threshold, steeper frequency-current relationships, and fast firing rates and received fewer excitatory postsynaptic currents. Postmetamorphosis, type I MNs exhibited similar sag, enhanced postinhibitory rebound, and increased action potential amplitude with a smaller-magnitude fast afterhyperpolarization. Compared with tadpoles, type II MNs from frogs received higher-frequency, larger-amplitude excitatory postsynaptic currents. Input resistance decreased and rheobase increased postmetamorphosis in all MNs, concurrent with increased soma area and hyperpolarized action potential threshold. We suggest that type I MNs are likely recruited in response to smaller, buccal-related synaptic inputs as well as larger lung-related inputs, whereas type II MNs are likely recruited in response to stronger synaptic inputs associated with larger buccal breaths, lung breaths, or nonrespiratory behaviors involving powerful muscle contractions.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Pediatrics, Université Laval and Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec City, Québec , Canada
| | - Stéphanie Fournier
- Department of Pediatrics, Université Laval and Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec City, Québec , Canada
| | - Simon Chamberland
- Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York University Langone Medical Center , New York, New York
| | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Richard Kinkead
- Department of Pediatrics, Université Laval and Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec City, Québec , Canada
| |
Collapse
|
3
|
Abstract
Breathing movements have been demonstrated in the fetuses of every mammalian species investigated and are a critical component of normal fetal development. The classic sheep preparations instrumented for chronic fetal monitoring determined that fetal breathing movements (FBMs) occur in aggregates interspersed with long periods of quiescence that are strongly associated with neurophysiological state. The fetal sheep model also provided data regarding the neurochemical modulation of behavioral state and FBMs under a variety of in utero conditions. Subsequently, in vitro rodent models have been developed to advance our understanding of cellular, synaptic, network, and more detailed neuropharmacological aspects of perinatal respiratory neural control. This includes the ontogeny of the inspiratory rhythm generating center, the preBötzinger complex (preBötC), and the anatomical and functional development of phrenic motoneurons (PMNs) and diaphragm during the perinatal period. A variety of newborn animal models and studies of human infants have provided insights into age-dependent changes in state-dependent respiratory control, responses to hypoxia/hypercapnia and respiratory pathologies.
Collapse
Affiliation(s)
- John J Greer
- Department of Physiology, Centre for Neuroscience, Women and Children Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Maria P, Lydia K, Jia-Jin JC, Irena HP. Assessment of Human Motoneuron Afterhyperpolarization Duration in Health and Disease. Biocybern Biomed Eng 2012. [DOI: 10.1016/s0208-5216(12)70041-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Carrascal L, Nieto-González JL, Torres B, Nunez-Abades P. Diminution of voltage threshold plays a key role in determining recruitment of oculomotor nucleus motoneurons during postnatal development. PLoS One 2011; 6:e28748. [PMID: 22174887 PMCID: PMC3235164 DOI: 10.1371/journal.pone.0028748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/14/2011] [Indexed: 01/20/2023] Open
Abstract
The size principle dictates the orderly recruitment of motoneurons (Mns). This principle assumes that Mns of different sizes have a similar voltage threshold, cell size being the crucial property in determining neuronal recruitment. Thus, smaller neurons have higher membrane resistance and require a lower depolarizing current to reach spike threshold. However, the cell size contribution to recruitment in Mns during postnatal development remains unknown. To investigate this subject, rat oculomotor nucleus Mns were intracellularly labeled and their electrophysiological properties recorded in a brain slice preparation. Mns were divided into 2 age groups: neonatal (1-7 postnatal days, n = 14) and adult (20-30 postnatal days, n = 10). The increase in size of Mns led to a decrease in input resistance with a strong linear relationship in both age groups. A well-fitted inverse correlation was also found between input resistance and rheobase in both age groups. However, input resistance versus rheobase did not correlate when data from neonatal and adult Mns were combined in a single group. This lack of correlation is due to the fact that decrease in input resistance of developing Mns did not lead to an increase in rheobase. Indeed, a diminution in rheobase was found, and it was accompanied by an unexpected decrease in voltage threshold. Additionally, the decrease in rheobase co-varied with decrease in voltage threshold in developing Mns. These data support that the size principle governs the recruitment order in neonatal Mns and is maintained in adult Mns of the oculomotor nucleus; but during postnatal development the crucial property in determining recruitment order in these Mns was not the modifications of cell size-input resistance but of voltage threshold.
Collapse
Affiliation(s)
- Livia Carrascal
- Departamento de Fisiología, Universidad de Sevilla, Sevilla, Spain
| | | | - Blas Torres
- Departamento de Fisiología, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
6
|
Pascoe MA, Holmes MR, Enoka RM. Discharge characteristics of biceps brachii motor units at recruitment when older adults sustained an isometric contraction. J Neurophysiol 2011; 105:571-81. [PMID: 21160000 PMCID: PMC3059164 DOI: 10.1152/jn.00841.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/10/2010] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to compare the discharge characteristics of motor units recruited during an isometric contraction that was sustained with the elbow flexor muscles by older adults at target forces that were less than the recruitment threshold force of each isolated motor unit. The discharge times of 27 single motor units were recorded from the biceps brachii in 11 old adults (78.8 ± 5.9 yr). The target force was set at either a relatively small (6.6 ± 3.7% maximum) or large (11.4 ± 4.5% maximum) difference below the recruitment threshold force and the contraction was sustained until the motor unit was recruited and discharged action potentials for about 60 s. The time to recruitment was longer for the large target-force difference (P = 0.001). At recruitment, the motor units discharged repetitively for both target-force differences, which contrasts with data from young adults when motor units discharged intermittently at recruitment for the large difference between recruitment threshold force and target force. The coefficient of variation (CV) for the first five interspike intervals (ISIs) increased from the small (18.7 ± 7.9) to large difference (35.0 ± 10.2%, P = 0.008) for the young adults, but did not differ for the two target force differences for the old adults (26.3 ± 14.7 to 24.0 ± 13.1%, P = 0.610). When analyzed across the discharge duration, the average CV for the ISI decreased similarly for the two target-force differences (P = 0.618) in old adults. These findings contrast with those of young adults and indicate that the integration of synaptic input during sustained contractions differs between young and old adults.
Collapse
Affiliation(s)
- Michael A Pascoe
- Neurophysiology of Movement Laboratory, Carlson 202G 354 UCB, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | |
Collapse
|
7
|
Nakanishi ST, Whelan PJ. Diversification of Intrinsic Motoneuron Electrical Properties During Normal Development and Botulinum Toxin–Induced Muscle Paralysis in Early Postnatal Mice. J Neurophysiol 2010; 103:2833-45. [DOI: 10.1152/jn.00022.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During early postnatal development, between birth and postnatal days 8–11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal α-motoneurons. However, these developmental changes in the properties of α-motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron–muscle interactions. In this study, we show that botulinum toxin–induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.
Collapse
Affiliation(s)
- S. T. Nakanishi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - P. J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Dragomir A, Akay Y, Curran AK, Akay M. Investigating the complexity of respiratory patterns during the laryngeal chemoreflex. J Neuroeng Rehabil 2008; 5:17. [PMID: 18570656 PMCID: PMC2467426 DOI: 10.1186/1743-0003-5-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 06/20/2008] [Indexed: 12/02/2022] Open
Abstract
Background The laryngeal chemoreflex exists in infants as a primary sensory mechanism for defending the airway from the aspiration of liquids. Previous studies have hypothesized that prolonged apnea associated with this reflex may be life threatening and might be a cause of sudden infant death syndrome. Methods In this study we quantified the output of the respiratory neural network, the diaphragm EMG signal, during the laryngeal chemoreflex and eupnea in early postnatal (3–10 days) piglets. We tested the hypothesis that diaphragm EMG activity corresponding to reflex-related events involved in clearance (restorative) mechanisms such as cough and swallow exhibit lower complexity, suggesting that a synchronized homogeneous group of neurons in the central respiratory network are active during these events. Nonlinear dynamic analysis was performed using the approximate entropy to asses the complexity of respiratory patterns. Results Diaphragm EMG, genioglossal activity EMG, as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) were recorded from 5 unanesthetized chronically instrumented intact piglets. Approximate entropy values of the EMG during cough and swallow were found significantly (p < 0.05 and p < 0.01 respectively) lower than those of eupneic EMG. Conclusion Reduced complexity values of the respiratory neural network output corresponding to coughs and swallows suggest synchronous neural activity of a homogeneous group of neurons. The higher complexity values exhibited by eupneic respiratory activity are the result of a more random behaviour, which is the outcome of the integrated action of several groups of neurons involved in the respiratory neural network.
Collapse
Affiliation(s)
- Andrei Dragomir
- Harrington Department of Bioengineering, Ira A. Fulton School of Engineering Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
9
|
Dragomir A, Akay Y, Curran AK, Akay M. Complexity measures of the central respiratory networks during wakefulness and sleep. J Neural Eng 2008; 5:254-61. [PMID: 18506077 DOI: 10.1088/1741-2560/5/2/015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since sleep is known to influence respiratory activity we studied whether the sleep state would affect the complexity value of the respiratory network output. Specifically, we tested the hypothesis that the complexity values of the diaphragm EMG (EMGdia) activity would be lower during REM compared to NREM. Furthermore, since REM is primarily generated by a homogeneous population of neurons in the medulla, the possibility that REM-related respiratory output would be less complex than that of the awake state was also considered. Additionally, in order to examine the influence of neuron vulnerabilities within the rostral ventral medulla (RVM) on the complexity of the respiratory network output, we inhibited respiratory neurons in the RVM by microdialysis of GABA(A) receptor agonist muscimol. Diaphragm EMG, nuchal EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) were recorded from five unanesthetized chronically instrumented intact piglets (3-10 days old). Complexity of the diaphragm EMG (EMGdia) signal during wakefulness, NREM and REM was evaluated using the approximate entropy method (ApEn). ApEn values of the EMGdia during NREM and REM sleep were found significantly (p < 0.05 and p < 0.001, respectively) lower than those of awake EMGdia after muscimol inhibition. In the absence of muscimol, only the differences between REM and wakefulness ApEn values were found to be significantly different.
Collapse
Affiliation(s)
- Andrei Dragomir
- Harrington Department of Bioengineering, Ira. A. Fulton School of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
10
|
Piotrkiewicz M, Kudina L, Mierzejewska J, Jakubiec M, Hausmanowa-Petrusewicz I. Age-related change in duration of afterhyperpolarization of human motoneurones. J Physiol 2007; 585:483-90. [PMID: 17932149 DOI: 10.1113/jphysiol.2007.142356] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Motor unit (MU) potentials were recorded from brachial biceps of healthy subjects aged 5.5-79 years. The subjects were subdivided into young (5.5-19 year) and adult (37.5-79 year) groups, between which single MU discharge characteristics were compared. Firing rates were in the ranges of 8.3-21.7 s(-1) (mean 12.87 s(-1)) and 5.9-18.7 s(-1) (mean 11.08 s(-1)) for young and adult groups, respectively. Standard deviations (s.d.) of interspike intervals (ISIs) were in the range 4.84-11.57 ms (mean 8.39 ms) for the young group and 4.26-12.23 ms (mean 7.76 ms) for the adult group. Both differences were statistically significant (P < 0.001). Special attention was paid to the previously developed method of ISI variability analysis, which enabled the comparison of MUs with respect to afterhyperpolarization (AHP) duration of their motoneurones (MNs). The results show that AHP duration increases gradually with increasing age, which is in line with the transformation of muscle properties towards a slower phenotype. This transformation seems to be a continuous process, covering the entire lifespan of a human being, from childhood to senescence. The results presented here are significant for their insight into the ageing process of the neuromuscular system. The age-related change in AHP duration has not been investigated previously in human studies and has been met with ambiguous results in animal studies.
Collapse
Affiliation(s)
- M Piotrkiewicz
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4, Trojdena Str., Warsaw, Poland.
| | | | | | | | | |
Collapse
|
11
|
Shvarev YN, Lagercrantz H. Early postnatal changes in respiratory activity in ratin vitroand modulatory effects of substance P. Eur J Neurosci 2006; 24:2253-63. [PMID: 17042798 DOI: 10.1111/j.1460-9568.2006.05087.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developmental changes in the respiratory activity and its modulation by substance P (SP) were studied in the neonatal rat brainstem-spinal cord preparation from the day of birth to day 3 (P0-P3). The respiratory network activity in the ventrolateral medulla was represented by two types of bursts: basic regular bursts with typical decrementing shape and biphasic bursts appearing after augmented biphasic discharges in inspiratory neurons. With advancing postnatal age the respiratory output was considerably modified; the basic rhythm became faster by 20%, whereas the biphasic burst rate, which was originally 15 times slower, declined further by 180% and the C4 burst duration significantly decreased by 20% due to reduced decay time without preceding changes in the central inspiratory drive. SP had an age-dependent excitatory effect on respiratory activity. In the basic rhythm, SP could induce transient rhythm cessations on P0-P2 but not on P3. For the biphasic burst frequency, the sensitivity to SP significantly decreased from P0 to P3, whereas the range of SP-induced changes increased. In both types of bursts, SP prolonged C4 burst duration due to increasing decay time. This effect was three times greater on P3 and did not depend on the central inspiratory drive. Our results suggest that the potency of SP to regulate the respiratory activity elevates during the early postnatal period. The developmental changes in the respiratory activity appear to represent the transient stage in the maturation of rhythm and pattern generation mechanisms facilitating adaptive behavior of a quickly growing organism.
Collapse
Affiliation(s)
- Y N Shvarev
- Neonatal Research Unit, Department of Woman and Child Health, Q2: 07, Astrid Lindgren Children's Hospital, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | | |
Collapse
|
12
|
Zimmer MB, Goshgarian HG. Spontaneous crossed phrenic activity in the neonatal respiratory network. Exp Neurol 2005; 194:530-40. [PMID: 16022876 DOI: 10.1016/j.expneurol.2005.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 11/16/2022]
Abstract
Hemisection of the cervical spinal cord causes paralysis of the ipsilateral hemidiaphragm in adult rats. Activation of a latent crossed phrenic motor pathway can restore diaphragmatic function, although structural changes take place before the pathway can be activated. Since mechanisms are employed to eliminate non-functional projections during development, we predicted that this latent neural pathway might be active during development. Therefore, we examined the effect of spinal hemisection (C2) on respiratory-like activity bilaterally using the brainstem--spinal cord preparation from neonatal rats (0-4 days). Spontaneous crossed phrenic activity (respiratory-like activity recorded from the ipsilateral C4 or C5 ventral roots following C2 hemisection) was observed in an age-dependent manner; younger preparations exhibited more than older preparations. Increasing drive (increasing [K+] or superfusion of theophylline) either increased or induced crossed phrenic activity. Hemisection caused no change in the frequency, the burst area, duration or peak amplitude contralateral to hemisection. Unlike adult rats, this study shows that crossed phrenic activity is present in the in vitro respiratory network of neonatal rats suggesting that a crossed neural pathway may be functionally active in neonates.
Collapse
Affiliation(s)
- M Beth Zimmer
- Wayne State University, School of Medicine, Department of Anatomy and Cell Biology, 540 East Canfield, Detroit, MI 48201, USA.
| | | |
Collapse
|
13
|
Greer JJ, Funk GD. Perinatal development of respiratory motoneurons. Respir Physiol Neurobiol 2005; 149:43-61. [PMID: 15951250 DOI: 10.1016/j.resp.2005.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/09/2005] [Accepted: 03/09/2005] [Indexed: 01/19/2023]
Abstract
Breathing movements require the coordinated recruitment of cranial and spinal motoneurons innervating muscles of the upper airway and ribcage. A significant part of respiratory motoneuron development and maturation occurs prenatally to support the generation of fetal breathing movements in utero and sustained breathing at birth. Postnatally, motoneuron properties are further refined and match changes in the maturing respiratory musculoskeletal system. In this review, we outline developmental changes in key respiratory motoneuronal populations occurring from the time of motoneuron birth in the embryo through the postnatal period. We will also bring attention to major deficiencies in the current knowledge of perinatal respiratory motoneuron development. To date, our understanding of processes occurring during the prenatal period comes primarily from analysis of phrenic motoneurons (PMNs), whereas information about postnatal development derives largely from studies of PMN and hypoglossal motoneuron properties.
Collapse
Affiliation(s)
- John J Greer
- Department of Physiology, Division of Neuroscience, 513 HMRC, Perinatal Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2.
| | | |
Collapse
|
14
|
Li Y, Brewer D, Burke RE, Ascoli GA. Developmental changes in spinal motoneuron dendrites in neonatal mice. J Comp Neurol 2005; 483:304-17. [PMID: 15682391 DOI: 10.1002/cne.20438] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We examined the age-dependent morphological changes of lumbar spinal motoneurons (MNs) in neonatal Swiss-Webster mice during the first 2 weeks of postnatal life. Neurons labeled by intracellular injection of biocytin in hemisected lumbosacral spinal cords in vitro were reconstructed from serial sections. Digitized data were compared for young (P3; postnatal days 2-4; n = 9) and older animals (P11; postnatal days 10-13; n = 8). As expected, measures of dendritic size (e.g., stem branch diameter, total surface area, maximum distance to tips, and lateral tree spread) were all significantly greater for P11 than for P3 mice. In contrast, the number of dendrites per MN and parameters related to tree topology (e.g., terminations per tree and maximum branch order), although slightly greater for P11 animals, were not significantly different between the two ages. Dendrite growth appeared to be proportional throughout the tree because the ratios between average terminal and internal branch lengths were similar for the two groups. Furthermore, this elongation was proportional to enlargement of overall spinal cord dimensions. A variety of other morphometric measures showed no significant difference between age groups. The relative constancy of MN dendritic topology up to P13 was surprising, given the striking maturation in motor function during this time period.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
15
|
Carrascal L, Nieto-Gonzalez JL, Cameron WE, Torres B, Nunez-Abades PA. Changes during the postnatal development in physiological and anatomical characteristics of rat motoneurons studied in vitro. ACTA ACUST UNITED AC 2005; 49:377-87. [PMID: 16111564 DOI: 10.1016/j.brainresrev.2005.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 02/07/2005] [Accepted: 02/08/2005] [Indexed: 12/21/2022]
Abstract
The postnatal maturation of rat brainstem (oculomotor and hypoglossal nuclei) and spinal motoneurons, based on data collected from in vitro studies, is reviewed here. Membrane input resistance diminishes with age, but to a greater extent for hypoglossal than for oculomotor motoneurons. The time constant of the membrane diminishes with age in a similar fashion for both oculomotor and hypoglossal motoneurons. The current required to reach threshold (rheobase) decreases in oculomotor motoneurons, in contrast with the increase observed in hypoglossal motoneurons. The depolarization voltage required to generate an action potential also diminishes in oculomotor motoneurons, whereas it remains constant in hypoglossal motoneurons. A membrane potential rectification (sag) appears in response to negative current steps, hyperpolarizing brainstem motoneurons more than 20 mV relative to the rest. This membrane response is more frequent in adult motoneurons. The durations of the action potential and its medium afterhyperpolarization (mAHP) decrease with postnatal development in all motoneurons studied, although the shortening of mAHP is more evident in oculomotor motoneurons. A rise in firing rate for all motoneurons with age is universal; this trend is also more pronounced in oculomotor motoneurons. Developing motoneurons exhibit a postinhibitory rebound depolarization that is capable of triggering an action potential or a short burst of spikes. This phenomenon is voltage-dependent and requires less of a membrane hyperpolarization to elicit an action potential in adult than in neonatal cells. In all developing brainstem and spinal motoneurons, the adult somal size is reached within the newborn period, although their dendrites continue to elongate. In summary, input resistance, time constant, and durations of action potential and mAHP decrease, while the frequency of sag and postinhibitory rebound, as well as the motoneuron firing rate and dendritic length, increase with postnatal age. These trends are universal to all the motoneuronal populations studied; however, the extent of these changes differs for each motoneuronal pool. A further distinction is evident in the inconsistent age-dependent change in rheobase and depolarization voltage for the two brainstem motoneuron nuclei.
Collapse
Affiliation(s)
- Livia Carrascal
- Departamento de Fisiología y Zoología, Universidad de Sevilla, Calle Prof. García González, Sevilla, Spain
| | | | | | | | | |
Collapse
|
16
|
YAMAOKA A, INOUE T, HIRONAKA S, NEMOTO A, MUKAI Y, ITABASHI K. Postnatal Changes in Electrophysiological Properties of Rat Jaw-Closing Motoneurons. ACTA ACUST UNITED AC 2005. [DOI: 10.15369/sujms1989.17.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Lo FS, Erzurumlu RS. Neonatal deafferentation does not alter membrane properties of trigeminal nucleus principalis neurons. J Neurophysiol 2001; 85:1088-96. [PMID: 11247979 PMCID: PMC3676675 DOI: 10.1152/jn.2001.85.3.1088] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the brain stem trigeminal complex of rats and mice, presynaptic afferent arbors and postsynaptic target cells form discrete modules ("barrelettes"), the arrangement of which duplicates the patterned distribution of whiskers and sinus hairs on the ipsilateral snout. Within the barrelette region of the nucleus principalis of the trigeminal nerve (PrV), neurons participating in barrelettes and those with dendritic spans covering multiple barrelettes (interbarrelette neurons) can be identified by their morphological and electrophysiological characteristics as early as postnatal day 1. Barrelette cells have focal dendritic processes, are characterized by a transient K(+) conductance (I(A)), whereas interbarrelette cells with larger soma and extensive dendritic fields characteristically exhibit low-threshold T-type Ca(2+) spikes (LTS). In this study, we surveyed membrane properties of barrelette and interbarrelette neurons during and after consolidation of barrelettes in the PrV and effects of peripheral deafferentation on these properties. During postnatal development (PND1-13), there were no changes in the resting potential, composition of active conductances and Na(+) spikes of both barrelette and interbarrelette cells. The only notable changes were a decline in input resistance and a slight increase in the amplitude of LTS. The infraorbital (IO) branch of the trigeminal nerve provides the sole afferent input source to the whisker pad. IO nerve transection at birth abolishes barrelette formation as well as whisker-related neuronal patterns all the way to the neocortex. Surprisingly this procedure had no effect on membrane properties of PrV neurons. The results of the present study demonstrate that distinct membrane properties of barrelette and interbarrelette cells are maintained even in the absence of input from the whiskers during the critical period of pattern formation.
Collapse
Affiliation(s)
- F S Lo
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
18
|
Cameron WE, Núñez-Abades PA. Physiological changes accompanying anatomical remodeling of mammalian motoneurons during postnatal development. Brain Res Bull 2000; 53:523-7. [PMID: 11165787 DOI: 10.1016/s0361-9230(00)00385-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The development of respiratory motoneurons provides unique data that may be generalized to other mammalian motoneuron populations. Like other motoneurons, respiratory motoneurons undergo developmental changes in the shape of the action potential and their repetitive firing. The unique observations concern the postnatal change in the recruitment pattern of cat phrenic motoneurons that is correlated with a halving of mean input resistance, a stasis of growth in the cell membrane and a reduction in the complexity of the dendritic tree. A similar pattern of change was observed for hypoglossal motoneurons studied in rat brainstem slices. Without an increase in total membrane surface area, the decreased resistance must result from a reduced specific membrane resistance. Two mechanisms are proposed to explain this decrease in resistance: proliferation and redistribution of either synaptic inputs and/or potassium channels. Although there was a significant contribution of synaptic input in determining input resistance throughout postnatal development, it was the density of cesium- or barium-sensitive potassium conductances that differentiated low resistance from high resistance motoneurons. Low resistance motoneurons had more cesium- and barium-sensitive channels than their high resistance counterparts. Based on the variations in the relative changes observed in input resistance versus membrane time constant with these two potassium channel blockers (cesium and barium), it is proposed that the distribution of these potassium channels change with age. Initially, their distribution is skewed toward the dendrites but as development progresses, the distribution becomes more uniform across the motoneuron membrane. During postnatal development, the rapid decrease in input resistance results from a proliferation of potassium channels in the membrane and of synaptic inputs converging onto developing respiratory motoneurons while the membrane is being spatially redistributed but not expanded.
Collapse
Affiliation(s)
- W E Cameron
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97201, USA.
| | | |
Collapse
|
19
|
Abstract
Investigation of the differentiation of electrical properties of motoneurons has been stimulated by the importance of these neurons for embryonic behavior and facilitated by their experimental accessibility. In this review, we examine the development of different patterns of excitability and their functions, and discuss the emergence of repetitive firing and localization of ion channels in axons and dendrites. Finally, we summarize studies of the role of extrinsic factors in differentiation. These changes associated with differentiation of young motoneurons may presage those occurring later in the context of plasticity in the mature nervous system.
Collapse
Affiliation(s)
- N C Spitzer
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0357, USA.
| | | | | |
Collapse
|
20
|
Cameron WE, Núñez-Abades PA, Kerman IA, Hodgson TM. Role of potassium conductances in determining input resistance of developing brain stem motoneurons. J Neurophysiol 2000; 84:2330-9. [PMID: 11067976 DOI: 10.1152/jn.2000.84.5.2330] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of potassium conductances in determining input resistance was studied in 166 genioglossal (GG) motoneurons using sharp electrode recording in brain stem slices of the rats aged 5-7 days, 13-15 days, and 19-24 days postnatal (P). A high magnesium (Mg(2+); 6 mM) perfusate was used to block calcium-mediated synaptic release while intracellular or extracellular cesium (Cs(+)) and/or extracellular tetraethylammonium (TEA) or barium (Ba(2+)) were used to block potassium conductances. In all cases, the addition of TEA to the high Mg(2+) perfusate generated a larger increase in both input resistance (R(n)) and the first membrane time constant (tau(0)) than did high Mg(2+) alone indicating a substantial nonsynaptic contribution to input resistance. With intracellular injection of Cs(+), GG motoneurons with lower resistance (<40 MOmega), on the average, showed a larger percent increase in R(n) than cells with higher resistance (>40 MOmega). There was also a significant increase in the effect of internal Cs(+) on R(n) and tau(0) with age. The largest percent increase (67%) in the tau(0) due to intracellular Cs(+) occurred at P13-15, a developmental stage characterized by a large reduction in specific membrane resistance. Addition of external Cs(+) blocked conductances (further increasing R(n) and tau(0)) beyond those blocked by the TEA perfusate. Substitution of external calcium with 2 mM barium chloride produced a significant increase in both R(n) and tau(0) at all ages studied. The addition of either intracellular Cs(+) or extracellular Ba(2+) created a depolarization shift of the membrane potential. The amount of injected current required to maintain the membrane potential was negatively correlated with the control R(n) of the cell at most ages. Thus low resistance cells had, on the average, more Cs(+)- and Ba(2+)-sensitive channels than their high resistance counterparts. There was also a disproportionately larger percent increase in tau(0) as compared with R(n) for both internal Cs(+) and external Ba(2+). Based on a model by Redman and colleagues, it might be suggested that the majority of these potassium conductances underlying membrane resistance are initially located in the distal dendrites but become more uniformly distributed over the motoneuron surface in the oldest animals.
Collapse
Affiliation(s)
- W E Cameron
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | |
Collapse
|
21
|
Núñez-Abades PA, Pattillo JM, Hodgson TM, Cameron WE. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons. J Neurophysiol 2000; 84:2317-29. [PMID: 11067975 DOI: 10.1152/jn.2000.84.5.2317] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of synaptic input to input resistance was examined in 208 developing genioglossal motoneurons in 3 postnatal age groups (5-7 day, 13-16 day, and 18-24 day) using sharp electrode recording in a slice preparation of the rat brain stem. High magnesium (Mg(2+); 6 mM) media generated significant increases (21-38%) in both the input resistance (R(n)) and the first time constant (tau(0)) that were reversible. A large percent of the conductance blocked by high Mg(2+) was also sensitive to tetrodotoxin (TTX). Little increase in resistance was attained by adding blockers of specific amino acid (glutamate, glycine, and GABA) transmission over that obtained with the high Mg(2+). Comparing across age groups, there was a significantly larger percent change in R(n) with the addition of high Mg(2+) at postnatal days 13 to 15 (P13-15; 36%) than that found at P5-6 (21%). Spontaneous postsynaptic potentials were sensitive to the combined application of glycine receptor antagonist, strychnine, and the GABA(A) receptor antagonist, bicuculline. Application of either 10 microM strychnine or bicuculline separately produced a reversible increase in both R(n) and tau(0). Addition of 10 microM bicuculline to a strychnine perfusate failed to further increase either R(n) or tau(0). The strychnine/bicuculline-sensitive component of the total synaptic conductance increased with age so that this form of neurotransmission constituted the majority (>60%) of the observed percent decrease in R(n) and tau(0) in the oldest age group. The proportion of change in tau(0) relative to R(n) following strychnine or high magnesium perfusate varied widely from cell to cell and from age to age without pattern. Based on a model from the literature, this pattern indicates a nonselective distribution of the blocked synaptic conductances over the cell body and dendrites. Taken together, the fast inhibitory synapses (glycine, GABA(A)) play a greater role in determining cell excitability in developing brain stem motoneurons as postnatal development progresses. These findings suggest that synaptically mediated conductances effect the membrane behavior of developing motoneurons.
Collapse
Affiliation(s)
- P A Núñez-Abades
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The respiratory motoneuron is the critical link between the neural elements responsible for respiratory rhythm generation and the respiratory muscles. Studies of respiratory motoneurons provide important information on the mechanisms that govern respiratory motor output because of the obligatory synapse that exists between these respiratory motoneurons and the respiratory muscle fibers they innervate. This review focuses almost exclusively upon one type of respiratory motoneuron, the hypoglossal motoneuron. Intrinsic properties (membrane properties and ion channels) as well as fast excitatory and inhibitory synaptic transmission to these motoneurons have been extensively studied during the last 10 years. This review summarizes many of these new findings. It is hoped that some of these findings can be generalized to all respiratory motoneurons and these will be of importance in formulating models that can predict the behavior of these critical elements in the respiratory system.
Collapse
Affiliation(s)
- A J Berger
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Box 357290, Seattle, WA 98195-7290, USA.
| |
Collapse
|
23
|
Ellenberger HH. Nucleus ambiguus and bulbospinal ventral respiratory group neurons in the neonatal rat. Brain Res Bull 1999; 50:1-13. [PMID: 10507466 DOI: 10.1016/s0361-9230(99)00078-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The in vitro brainstem-spinal cord preparation of the neonatal rat is an important model system for studies of the respiratory control system, yet there have not been studies to anatomically characterize respiratory neuron populations in the neonate. Fluorescent retrograde tracers were used to identify bulbospinal neurons of the ventral respiratory group and motoneurons of nucleus ambiguus in neonatal rats. Fluoro-Gold injections into the C4 ventral horn labeled bulbospinal neurons within a densely packed column within the ventrolateral intermediate reticular nucleus from the level of the pyramidal decussation to the facial nucleus. This cell column corresponded closely to the location of the ventral respiratory group of the adult rat. In particular, neurons were labeled in regions corresponding to the rostral ventral respiratory group and the Bötzinger complex. Unlike adult rats, the preBötzinger complex also contained many bulbospinal neurons. Fluoro-Gold-labeled neurons were also located in the medial reticular nuclei, raphe pallidus, and obscurus and spinal vestibular nucleus. As in adult rats, bulbospinal ventral respiratory group neurons overlapped with cervical vagal motoneurons in the external formation, and partially with those in the loose formation, but not with those in the semicompact or compact formation of nucleus ambiguus. These results indicate that the distribution of bulbospinal ventral respiratory group neurons corresponds with that observed in physiological studies of neonatal rats.
Collapse
Affiliation(s)
- H H Ellenberger
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
24
|
Ptak K, Di Pasquale E, Monteau R. Substance P and central respiratory activity: a comparative in vitro study on foetal and newborn rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:217-27. [PMID: 10320761 DOI: 10.1016/s0165-3806(99)00044-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experiments were performed in vitro on foetal (embryonic days 18 to 21, E18-21) and newborn rat (postnatal days 0 to 3, P0-3) brainstem spinal cord preparations to analyse the perinatal developmental changes in the effects induced by substance P. Superfusion of the preparations with SP-containing artificial cerebrospinal fluid (aCSF) induced significant increase in the respiratory frequency of newborn rats (10-9 M), whereas concentration up to 10-7 M induced no change in foetal preparations. A whole cell patch clamp approach was used to record intracellularly from phrenic motoneurones. In newborn or E20-21 foetal rats SP-containing aCSF depolarised the phrenic motoneurones, increased their input resistance, reduced the rheobase current and shifted the frequency-intensity curves upward. In E18 foetal rats, no change was evoked by SP. A peptidase inhibitor mixture was used to block the enzymatic degradation of endogenous SP. This mixture was ineffective in changing the respiratory frequency in newborn and foetal preparations. In newborn rat phrenic motoneurones, the peptidase inhibitor mixture induced changes similar to those caused by SP but no change was induced in foetal rats. These results indicate that SP may modulate (i) the activity of the respiratory rhythm generator in newborn but not in foetal rats, and (ii) the activity of phrenic motoneurones at E20, E21 and in newborn rats but not at E18. Results obtained using the peptidase inhibitor mixture suggest that endogenous SP is probably not involved in the control of the respiratory rhythm in the prenatal period, but may influence the activity of the phrenic motoneurones after birth.
Collapse
Affiliation(s)
- K Ptak
- Laboratoire de Neurobiologie des Fonctions Végétatives, ESA CNRS 6034, Faculté des Sciences de St. Jérôme, 13397, Marseille Cedex 20, France
| | | | | |
Collapse
|
25
|
Abstract
In this review, the maturational changes occurring in the mammalian respiratory network from fetal to adult ages are analyzed. Most of the data presented were obtained on rodents using in vitro approaches. In gestational day 18 (E18) fetuses, this network functions but is not yet able to sustain a stable respiratory activity, and most of the neonatal modulatory processes are not yet efficient. Respiratory motoneurons undergo relatively little cell death, and even if not yet fully mature at E18, they are capable of firing sustained bursts of potentials. Endogenous serotonin exerts a potent facilitation on the network and appears to be necessary for the respiratory rhythm to be expressed. In E20 fetuses and neonates, the respiratory activity has become quite stable. Inhibitory processes are not yet necessary for respiratory rhythmogenesis, and the rostral ventrolateral medulla (RVLM) contains inspiratory bursting pacemaker neurons that seem to constitute the kernel of the network. The activity of the network depends on CO2 and pH levels, via cholinergic relays, as well as being modulated at both the RVLM and motoneuronal levels by endogenous serotonin, substance P, and catecholamine mechanisms. In adults, the inhibitory processes become more important, but the RVLM is still a crucial area. The neonatal modulatory processes are likely to continue during adulthood, but they are difficult to investigate in vivo. In conclusion, 1) serotonin, which greatly facilitates the activity of the respiratory network at all developmental ages, may at least partly define its maturation; 2) the RVLM bursting pacemaker neurons may be the kernel of the network from E20 to adulthood, but their existence and their role in vivo need to be further confirmed in both neonatal and adult mammals.
Collapse
Affiliation(s)
- G Hilaire
- Unité Propre de Recherche, Centre National de la Recherche Scientifique 9011, Biologie des Rythmes et du Développement, Marseille; and Laboratoire de Neurophysiologie Clinique et Expérimentale, Amiens, France
| | | |
Collapse
|
26
|
Martin-Caraballo M, Greer JJ. Electrophysiological properties of rat phrenic motoneurons during perinatal development. J Neurophysiol 1999; 81:1365-78. [PMID: 10085362 DOI: 10.1152/jn.1999.81.3.1365] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Past studies determined that there is a critical period at approximately embryonic day (E)17 during which phrenic motoneurons (PMNs) undergo a number of pivotal developmental events, including the inception of functional recruitment via synaptic drive from medullary respiratory centers, contact with spinal afferent terminals, the completion of diaphragm innervation, and a major transformation of PMN morphology. The objective of this study was to test the hypothesis that there would be a marked maturation of motoneuron electrophysiological properties occurring in conjunction with these developmental processes. PMN properties were measured via whole cell patch recordings with a cervical slice-phrenic nerve preparation isolated from perinatal rats. From E16 to postnatal day 1, there was a considerable transformation in a number of motoneuron properties, including 1) 10-mV increase in the hyperpolarization of the resting membrane potential, 2) threefold reduction in the input resistance, 3) 12-mV increase in amplitude and 50% decrease duration of action potential, 4) major changes in the shapes of potassium- and calcium-mediated afterpotentials, 5) decline in the prominence of calcium-dependent rebound depolarizations, and 6) increases in rheobase current and steady-state firing rates. Electrical coupling among PMNs was detected in 15-25% of recordings at all ages studied. Collectively, these data and those from parallel studies of PMN-diaphragm ontogeny describe how a multitude of regulatory mechanisms operate in concert during the embryonic development of a single mammalian neuromuscular system.
Collapse
Affiliation(s)
- M Martin-Caraballo
- Department of Physiology, Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | | |
Collapse
|
27
|
Greer JJ, Allan DW, Martin-Caraballo M, Lemke RP. An overview of phrenic nerve and diaphragm muscle development in the perinatal rat. J Appl Physiol (1985) 1999; 86:779-86. [PMID: 10066685 DOI: 10.1152/jappl.1999.86.3.779] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this overview, we outline what is known regarding the key developmental stages of phrenic nerve and diaphragm formation in perinatal rats. These developmental events include the following. Cervical axons emerge from the spinal cord during embryonic (E) day 11. At approximately E12.5, phrenic and brachial axons from the cervical segments merge at the brachial plexi. Subsequently, the two populations diverge as phrenic axons continue to grow ventrally toward the diaphragmatic primordium and brachial axons turn laterally to grow into the limb bud. A few pioneer axons extend ahead of the majority of the phrenic axonal population and migrate along a well-defined track toward the primordial diaphragm, which they reach by E13.5. The primordial diaphragmatic muscle arises from the pleuroperitoneal fold, a triangular protrusion of the body wall composed of the fusion of the primordial pleuroperitoneal and pleuropericardial tissues. The phrenic nerve initiates branching within the diaphragm at approximately E14, when myoblasts in the region of contact with the phrenic nerve begin to fuse and form distinct primary myotubes. As the nerve migrates through the various sectors of the diaphragm, myoblasts along the nerve's path begin to fuse and form additional myotubes. The phrenic nerve intramuscular branching and concomitant diaphragmatic myotube formation continue to progress up until E17, at which time the mature pattern of innervation and muscle architecture are approximated. E17 is also the time of the commencement of inspiratory drive transmission to phrenic motoneurons (PMNs) and the arrival of phrenic afferents to the motoneuron pool. During the period spanning from E17 to birth (gestation period of approximately 21 days), there is dramatic change in PMN morphology as the dendritic branching is rearranged into the rostrocaudal bundling characteristic of mature PMNs. This period is also a time of significant changes in PMN passive membrane properties, action-potential characteristics, and firing properties.
Collapse
Affiliation(s)
- J J Greer
- Department of Physiology, University of Alberta, Edmonton, Canada T6G 2S2.
| | | | | | | |
Collapse
|
28
|
Su CK, Mellen NM, Feldman JL. Intrinsic and extrinsic factors affecting phrenic motoneuronal excitability in neonatal rats. Brain Res 1997; 774:62-8. [PMID: 9452193 DOI: 10.1016/s0006-8993(97)81688-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We examined intrinsic and extrinsic factors affecting phrenic motoneuron (PMN) excitability in neonatal rats. Using an in vitro brainstem-spinal cord en bloc, 127 PMNs were recorded under whole-cell patch-clamp conditions. Inspiratory synaptic drives and passive membrane properties, including whole-cell membrane capacitance (Cm), input resistance (Rn), and time constant (tau), were measured with either voltage- or current-clamp techniques. On the basis of firing behavior during inspiration, two types of PMNs could be distinguished: active (107/127 = 84%) and silent PMNs (20/127 = 16%). Active PMNs always produced multiple spikes during inspiration, while silent PMNs remained silent for most inspiratory cycles. Compared to silent PMNs, active PMNs had significantly higher Rn, inspiratory drive potential, and more depolarized resting membrane potential (RMP). With respect to inspiratory drive current, no significant difference was observed between the two types of PMN. Analysis of action potential waveforms did not show a significant difference between their threshold levels. Our results suggest that in addition to size-related properties, RMP determines the recruitment of PMNs and consequently, of motor units in the diaphragm.
Collapse
Affiliation(s)
- C K Su
- Department of Physiological Science, University of California, Los Angeles 90095-1527, USA
| | | | | |
Collapse
|
29
|
Núñez-Abades PA, Cameron WE. Relationship between membrane properties and cell size of developing rat genioglossal motoneurons studied in vitro. Neurosci Lett 1997; 223:41-4. [PMID: 9058418 DOI: 10.1016/s0304-3940(97)13398-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electrical properties and morphology of 21 genioglossal motoneurons were measured in a slice preparation of the rat brainstem at four different postnatal ages. The motoneurons labeled with neurobiotin were reconstructed and quantified in three-dimensional space. There was no strong correlation found between the input resistance or membrane time constant and the total membrane surface area. We conclude that there is no electrical property of these developing motoneurons that can accurately predict their anatomical size.
Collapse
Affiliation(s)
- P A Núñez-Abades
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|
30
|
Abstract
The detailed morphology of rat phrenic motoneurons (PMs) was studied in 40 electrophysiologically identified cells with intracellular injection of Neurobiotin. In 15 cells, the dendritic trees were fully analyzed by using path-distance analysis, and total surface area and volume were estimated. Based on their relative onset times (ROT; i.e., the time of firing onset relative to the onset of whole phrenic activity), PMs were classified into three types; early recruited (type E; ROT < 10%), late recruited (type L; ROT > 12.5%), and quiescent (type Q; not recruited under normal conditions). Dendrites constituted 93.3% of the surface area of cells and 38.9% of the cell volumes. The number of primary dendrites (nPD) averaged 10.1, and the mean number of terminations was 38.8. The combined diameters of primary dendrites of PMs correlated well with the total dendritic surface area and the number of dendritic terminations. Comparisons among cell types revealed that type Q cells had greater dendritic surface areas and volumes than type E or type L cells. With path-distance analysis, this difference was found to be due to differences between the cell types in the numbers of their dendrites, their combined dendritic lengths, and the number of their branches. The differences between these data and those available for cat motoneurons are discussed. The input resistance of PMs correlated with their total surface area but did not correlate with their somal surface area, indicating that, in rat, PM input resistance is a function of the entire neuronal membrane rather than of the somal surface alone.
Collapse
Affiliation(s)
- H Torikai
- Department of Orthopedics, School of Medicine, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Di Pasquale E, Tell F, Monteau R, Hilaire G. Perinatal developmental changes in respiratory activity of medullary and spinal neurons: an in vitro study on fetal and newborn rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 91:121-30. [PMID: 8821483 DOI: 10.1016/0165-3806(95)00170-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Experiments were performed in vitro on fetal and newborn rat brainstem-spinal cord preparations to analyse the perinatal developmental changes in inspiratory motor output. The amplitude of the inspiratory bursts of the whole C4 ventral root (global extracellular recording), the firing patterns of 80 medullary inspiratory neurons (unitary extracellular recording) and the firing and membrane properties of 71 respiratory neurons in the C4 ventral horn (whole-cell recording) were analysed at embryonic day 18 (E18), 21 (E21) and post natal days 0 to 3 (P0-3). At E18, the amplitude of the C4 bursts was weak and variable from one respiratory cycle to the next, as well as the discharge pattern of most of the medullary inspiratory neurons. C4 motoneurons were immature, very excitable and displaying variable inspiratory discharges, but already able to deliver sustained bursts of potentials when depolarised. At E21 and P0-3, the amplitude of the C4 bursts was increased and stable, most of the medullary inspiratory neurons already were able to generate a stable firing pattern and C4 motoneurons showed maturational changes in terms of the resting potential, spike amplitude and input membrane resistance. This work suggests that the short period extending from E18 to E21 is a critical maturational period for the medullary respiratory network which becomes able to elaborate a stable respiratory motor output.
Collapse
Affiliation(s)
- E Di Pasquale
- URA CNRS 1832, Faculté des Sciences de St Jérôme, Marseille, France
| | | | | | | |
Collapse
|
32
|
Tsuzuki S, Yoshida S, Yamamoto T, Oka H. Developmental changes in the electrophysiological properties of neonatal rat oculomotor neurons studied in vitro. Neurosci Res 1995; 23:389-97. [PMID: 8602279 DOI: 10.1016/0168-0102(95)00966-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The electrophysiological properties of oculomotor neurons were studied in neonatal rats aged 1-15 days. Action potentials were recorded from brainstem slices (frontal section) using the intracellular recording method at 35 degrees C. No significant age-dependent differences were detected in the resting potential (around -55 mV) and in the amplitude of the action potential (approximately 60 mV). However, the input resistance of oculomotor neurons declined with age from a mean of 60.8 M omega for rats 1-3 days old to 17.0 M omega for rats 14-15 days old. In addition, the duration of the action potential measured at the half-amplitude gradually decreased from 0.74 ms to 0.34 ms with increasing age. Increases were detected in the maximum rate of rise (from 117 V/s to 181 V/s) and the maximum rate of fall (from -67 V/s to -103 V/s) of the action potential. When long-lasting (500 ms) depolarizing current pulses were applied to oculomotor neurons, some neurons exhibited continuous repetitive discharge (i.e. tonic firing) while others showed transient discharge (phasic firing). The proportion of tonic-type neurons increased with age: the value was 9% for rats 1-5 days old, 37% for rats 6-10 days old and 54% for rats 11-15 days old. Concomitantly, the number of neurons showing a time-dependent inward rectification increased and the average maximum frequency of the discharge rose from 150 to 420 Hz, approximately, with age. Furthermore, it was found that the electrophysiological properties of oculomotor neurons of rats 14-15 days old were similar to those in adult rats. It is concluded that oculomotor neurons in neonatal rats show rapid alterations in their electrophysiological properties and that the ratio of tonic-type to phasic-type neurons changes during the early stages of development.
Collapse
Affiliation(s)
- S Tsuzuki
- Department of Ophthalmology, Fukui Medical School, Japan
| | | | | | | |
Collapse
|
33
|
Kerai B, Greensmith L, Vrbová G, Navarrete R. Effect of transient neonatal muscle paralysis on the growth of soleus motoneurones in the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 85:89-95. [PMID: 7781172 DOI: 10.1016/0165-3806(94)00198-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The postnatal growth of soleus motoneurones was studied during normal development and following transient paralysis of the soleus muscle in neonatal rats. Paralysis was achieved by implanting a silicon strip containing alpha-bungarotoxin alongside the soleus muscle in rat pups within 3-6 h of birth. The soleus muscle was completely paralysed for at least 24 h, and by 9 days neuromuscular transmission was fully restored. The soma size of normal and target-deprived soleus motoneurones was compared at intervals during the first 3 postnatal weeks and in adults, using the retrograde horseradish peroxidase technique. There was a four-fold increase in the soma area of normal motoneurons during the first 3 postnatal weeks, with the greater part of the increase occurring between 7 and 14 days. At 3 days, the distribution of soma areas was unimodal and became bimodal by 21 days. Paralysis during the first postnatal week did not significantly affect the developmental changes in motoneurone soma area or their distribution up to 3 weeks of age. Thus, motoneurones deprived of functional neuromuscular contact appear to grow normally during the early postnatal period, although previous results show that at later stages (2-3 months of age), many of these motoneurones die and the remaining cells are smaller than normal.
Collapse
Affiliation(s)
- B Kerai
- Department of Anatomy, Charing Cross and Westminster Medical School, London, UK
| | | | | | | |
Collapse
|
34
|
Núñez-Abades PA, Cameron WE. Morphology of developing rat genioglossal motoneurons studied in vitro: relative changes in diameter and surface area of somata and dendrites. J Comp Neurol 1995; 353:129-42. [PMID: 7714244 DOI: 10.1002/cne.903530112] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study describes the postnatal change in size of motoneurons in the hypoglossal nucleus that innervate the genioglossus muscle. Such anatomical information is essential for determining the cellular mechanisms responsible for the changes observed in the electrical properties of these motoneurons during postnatal development. The cells analyzed here are part of an earlier study (Núñez-Abades et al. [1994] J. Comp. Neurol. 339:401-420) where 40 genioglossal (GG) motoneurons from four age groups (1-2, 5-6, 13-15, and 19-30 postnatal days) were labeled by intracellular injection of neurobiotin in an in vitro slice preparation of the rat brainstem and their cellular morphology was reconstructed in three-dimensional space. The sequence of postnatal dendritic growth can be described in two phases. The first phase, between birth (1-2 days) and 13-15 days, was characterized by no change in either dendritic diameter (any branch order) or dendritic surface area of GG motoneurons. However, maturation of the dendritic tree produced more surface area at greater distances from the soma by redistributing existing membrane (retracting some terminal branches). During the second phase, between 13-15 days and 19-30 days, the dendritic surface area doubled as a result of an increase in the dendritic diameter across all branch orders and a generation of new terminal branches. In contrast to the growth exhibited by the dendrites, there was little discernible postnatal growth of somata. At all ages, dendrites of GG motoneurons show the largest amount of tapering in the first-and second-order dendrites. The calculated dendritic trunk parameter deviated from a value 1.0, indicating that the dendritic tree of developing GG motoneurons cannot be modeled accurately as an equivalent cylinder. However, the value of this parameter increased with age. Strong correlations were found between the diameter of the first-order dendrite and the dendritic surface area, dendritic volume, combined dendritic length, and, to a lesser extent, the number of terminal dendrites in GG motoneurons. Correlations were also found between somal and dendritic geometry but only when data were pooled across all age groups. These data support earlier studies on kitten phrenic motoneurons, which concluded that postnatal growth of motoneurons was not a continuous process. Based on the fact that there was no growth in the first 2 weeks, the changes in the membrane properties described during this phase of postnatal development (e.g., decrease in input resistance) cannot be attributed to increases in the total membrane surface area of these motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P A Núñez-Abades
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
35
|
Abstract
Intracellular recording techniques were used to characterize changes that take place in rat hypoglossal motoneuronal excitability from early postnatal stages to adulthood. This study focused primarily on the first two weeks of postnatal life, when major changes in the maturation of the neuromuscular system take place. Neonatal hypoglossal motoneurons were identified by their location within the hypoglossal nucleus and by their characteristic electrophysiology. These criteria were supported by antidromic activation and intracellular staining of retrogradely labeled hypoglossal motoneurons. Action potential duration decreased progressively during postnatal development. The reduction was primarily due to a more rapid repolarization, suggesting developmental changes in voltage-dependent potassium conductances. The duration of the calcium-dependent afterhyperpolarization decreased by half during the first two weeks of postnatal life. Changes in subthreshold responses included a decrease in input resistance and an increase in the degree of hyperpolarizing sag and inward rectification with age. Rheobase current was negatively correlated with input resistance, and increased progressively during postnatal development. Membrane time constant decreased almost four-fold over the first two postnatal weeks, suggesting that membrane resistivity is not constant. This decrease in membrane resistivity could account for a large fraction of the change in input resistance and rheobase with age. Thus, the early postnatal development of the rat includes systematic changes in the electrophysiological properties of motoneurons innervating tongue muscles. Some of these modifications are not easily explained by a mere change in neuronal surface area but likely involve changes in the density of expressed ion channels.
Collapse
Affiliation(s)
- F Viana
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195
| | | | | |
Collapse
|
36
|
Abstract
In mammals, a three-phasic respiratory rhythm is generated by a network of various types of neurons in the lower brainstem. The cellular mechanisms of rhythmogenesis involve cooperative interactions between synaptic processes and specific membrane properties. The network seems to be driven by extrinsic sources in mature animals, whereas in the immature network pacemaker neurons might be involved.
Collapse
Affiliation(s)
- D W Richter
- Department of Physiology, University of Göttingen, Germany
| | | | | |
Collapse
|
37
|
Cameron WE, He F, Kalipatnapu P, Jodkowski JS, Guthrie RD. Morphometric analysis of phrenic motoneurons in the cat during postnatal development. J Comp Neurol 1991; 314:763-76. [PMID: 1816274 DOI: 10.1002/cne.903140409] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dendritic geometry of 20 phrenic motoneurons from four postnatal ages (2 weeks, 1 and 2 months, and adult) was examined by using intracellular injection of horseradish peroxidase. The number of primary dendrites (approximately 11-12) remained constant throughout postnatal development. In general, postnatal growth of the dendrites resulted from an increase in the branching and in the length and diameter of segments at all orders of the dendritic tree. There was one exception. Between 2 weeks and 1 month, the maximum extent of the dendrites increased in parallel with the growth of the spinal cord; however, there was no increase in either combined dendritic length or total membrane surface area. In addition, there was a significant decrease in the number of dendritic terminals per cell (59.8 +/- 9.3 vs. 46.4 +/- 7.4 for 2 weeks and 1 month, respectively). The distance from the soma, where the peak number of dendritic terminals per cell occurred, ranged from 700-900 microns at 2 weeks and 2 months to 1,300-1,700 microns in the adult. The diameter of dendrites as a function of distance from the soma along the dendritic path increased with age. The process of maturation tended to increase the distance from the soma over which the surface area and dendritic trunk parameter (sigma d1.5/D1.5) remained constant. The three-dimensional distribution of dendrites was analyzed by dividing space into six equal volumes or hexants. This analysis revealed that the postnatal growth in surface area in the rostral and caudal hexants was proportionately larger than that in either the medial, lateral, dorsal, or ventral hexants. Strong linear correlations were found between the diameter of the primary dendrite and the combined length, surface area, volume, and number of terminals of the dendrite at all ages studied.
Collapse
Affiliation(s)
- W E Cameron
- Department of Pediatrics, Magee-Womens Hospital, Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
38
|
Cameron WE, Brozanski BS, Guthrie RD. Postnatal development of phrenic motoneurons in the cat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1990; 51:142-5. [PMID: 2297892 DOI: 10.1016/0165-3806(90)90269-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The postnatal growth of phrenic motoneurons in the cat was studied using retrograde transport of horseradish peroxidase (HRP). The mean somal surface area of these developing motoneurons increased 2.5 times from day 3 to adult while the mean somal volume increased four-fold. This change in mean somal surface area during postnatal development was found to be correlated with the change in mean axonal conduction velocity measured from phrenic motoneurons.
Collapse
Affiliation(s)
- W E Cameron
- Department of Pediatrics, University of Pittsburgh and Magee-Womens Hospital, PA 15213
| | | | | |
Collapse
|