1
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Gereau RW, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547740. [PMID: 37461736 PMCID: PMC10350076 DOI: 10.1101/2023.07.04.547740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Peripheral sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli including touch, temperature, and pain to the central nervous system. Recent advances in single-cell RNA-sequencing (scRNA-seq) have provided new insights into the diversity of sensory ganglia cell types in rodents, non-human primates, and humans, but it remains difficult to compare transcriptomically defined cell types across studies and species. Here, we built cross-species harmonized atlases of DRG and TG cell types that describe 18 neuronal and 11 non-neuronal cell types across 6 species and 19 studies. We then demonstrate the utility of this harmonized reference atlas by using it to annotate newly profiled DRG nuclei/cells from both human and the highly regenerative axolotl. We observe that the transcriptomic profiles of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The new resources and data presented here can guide future studies in comparative transcriptomics, simplify cell type nomenclature differences across studies, and help prioritize targets for future pain therapy development.
Collapse
Affiliation(s)
- Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I Pantaleo
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Lisa A McIlvried
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Bryan A Copits
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Zachariah Bertels
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - John S Del Rosario
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Allie J Widman
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Richard A Slivicki
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Jiwon Yi
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Robert W Gereau
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Pickar JG, Bolton PS. Spinal manipulative therapy and somatosensory activation. J Electromyogr Kinesiol 2012; 22:785-94. [PMID: 22349622 DOI: 10.1016/j.jelekin.2012.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/06/2011] [Accepted: 01/23/2012] [Indexed: 10/28/2022] Open
Abstract
Manually-applied movement and mobilization of body parts as a healing activity has been used for centuries. A relatively high velocity, low amplitude force applied to the vertebral column with therapeutic intent, referred to as spinal manipulative therapy (SMT), is one such activity. It is most commonly used by chiropractors, but other healthcare practitioners including osteopaths and physiotherapists also perform SMT. The mechanisms responsible for the therapeutic effects of SMT remain unclear. Early theories proposed that the nervous system mediates the effects of SMT. The goal of this article is to briefly update our knowledge regarding several physical characteristics of an applied SMT, and review what is known about the signaling characteristics of sensory neurons innervating the vertebral column in response to spinal manipulation. Based upon the experimental literature, we propose that SMT may produce a sustained change in the synaptic efficacy of central neurons by evoking a high frequency, bursting discharge from several types of dynamically-sensitive, mechanosensitive paraspinal primary afferent neurons.
Collapse
Affiliation(s)
- J G Pickar
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA.
| | | |
Collapse
|
3
|
Tanner KD, Reichling DB, Gear RW, Paul SM, Levine JD. Altered temporal pattern of evoked afferent activity in a rat model of vincristine-induced painful peripheral neuropathy. Neuroscience 2003; 118:809-17. [PMID: 12710988 DOI: 10.1016/s0306-4522(03)00023-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is known that the level of activity in nociceptive primary afferent nerve fibers increases in neuropathic conditions that produce pain, but changes in the temporal patterning of action potentials have not been analyzed in any detail. Because the patterning of action potentials in sensory nerve fibers might play a role in the development of pathological pain states, we studied patterning of mechanical stimulus-evoked action potential trains in nociceptive primary afferents in a rat model of vincristine-induced painful peripheral neuropathy. Systemic administration of vincristine (100 microg/kg) caused approximately half the C-fiber nociceptors to become markedly hyperresponsive to mechanical stimulation. Instantaneous frequency plots showed that vincristine induced an irregular pattern of action-potential firing in hyperresponsive C-fibers, characterized by interspersed occurrences of high- and low-frequency firing. This pattern was associated with an increase in the percentage of interspike intervals 100-199 ms in duration compared with that in C-fibers from control rats and vincristine-treated C-fibers that did not become hyperresponsive. Variability in the temporal pattern of action potential firing was quantified by determining the coefficient of variability (CV2) for adjacent interspike intervals. This analysis revealed that vincristine altered the pattern of action-potential timing, so that combinations of higher firing frequency and higher variability occurred that were not observed in control fibers. The abnormal temporal structure of nociceptor responses induced by vincristine in some C-fiber nociceptors could contribute to the pathogenesis of chemotherapy-induced neuropathic pain, perhaps by inducing activity-dependent post-synaptic effects in sensory pathways.
Collapse
Affiliation(s)
- K D Tanner
- Department of Oral and Maxillofacial Surgery, Medicine, and Anatomy, Room C-555, Campus Box 0440, NIH Pain Center, University of California, San Francisco, CA 94143-0440, USA
| | | | | | | | | |
Collapse
|
6
|
Abraham P, Fromy B, Merzeau S, Jardel A, Saumet JL. Dynamics of local pressure-induced cutaneous vasodilation in the human hand. Microvasc Res 2001; 61:122-9. [PMID: 11162202 DOI: 10.1006/mvre.2000.2290] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that a pressure-induced vasodilation results from local nonnociceptive stimulation of the skin of the human hand. We aimed to test the hypothesis that this vasodilation was not a short-lived response to a single type of pressure strain, but could be a widely activated and prolonged protective cutaneous response. We studied the dynamics of pressure-induced vasodilation during various ramp changes in local externally applied pressure using laser Doppler flowmetry. Changes from an adjacent control probe were subtracted from pressure-induced local changes. Following an initial transient decrease, continuous 4.4, 5.6, and 11.1 Pa.s(-1) increases of pressure resulted in a secondary increase of blood flow whose amplitude was maximal for 11.1 Pa.s(-1) (22.9 +/- 12.6% above baseline) (mean +/- SEM). The increase in flow was not noted at 16.7 Pa.s(-1). If the 16.7 Pa.s(-1) ramp pressure increase was interrupted at min 2 or 4, a prolonged vasodilation response was found, but not if it was stopped at min 8. When the 16.7 Pa.s(-1) increasing pressure was returned to zero after 4 min of pressure increase (-8.1 +/- 8.9% before pressure removal), vasodilation occurred and reached a maximum of 26.0 +/- 9.6% at 7 min after removal of pressure (P < 0.05 from baseline). Pressure-induced vasodilation is a slow-responding and transient adaptive phenomenon, initiated by a wide range of pressure changes below the range of noxious stimulation. We propose that this response is a protective mechanism without which certain pressure-associated lesions may develop.
Collapse
Affiliation(s)
- P Abraham
- Laboratoire de Physiologie et d'Explorations Vasculaires, Centre Hospitalier Universitaire d'Angers, Angers Cedex 01, 49033, France
| | | | | | | | | |
Collapse
|