1
|
Correia JP, Vaz JR, Domingos C, Freitas SR. From thinking fast to moving fast: motor control of fast limb movements in healthy individuals. Rev Neurosci 2022; 33:919-950. [PMID: 35675832 DOI: 10.1515/revneuro-2021-0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
The ability to produce high movement speeds is a crucial factor in human motor performance, from the skilled athlete to someone avoiding a fall. Despite this relevance, there remains a lack of both an integrative brain-to-behavior analysis of these movements and applied studies linking the known dependence on open-loop, central control mechanisms of these movements to their real-world implications, whether in the sports, performance arts, or occupational setting. In this review, we cover factors associated with the planning and performance of fast limb movements, from the generation of the motor command in the brain to the observed motor output. At each level (supraspinal, peripheral, and motor output), the influencing factors are presented and the changes brought by training and fatigue are discussed. The existing evidence of more applied studies relevant to practical aspects of human performance is also discussed. Inconsistencies in the existing literature both in the definitions and findings are highlighted, along with suggestions for further studies on the topic of fast limb movement control. The current heterogeneity in what is considered a fast movement and in experimental protocols makes it difficult to compare findings in the existing literature. We identified the role of the cerebellum in movement prediction and of surround inhibition in motor slowing, as well as the effects of fatigue and training on central motor control, as possible avenues for further research, especially in performance-driven populations.
Collapse
Affiliation(s)
- José Pedro Correia
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - João R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - Christophe Domingos
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413, Rio Maior, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| |
Collapse
|
2
|
Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 2022; 27:402-441. [PMID: 36543175 DOI: 10.1123/mc.2022-0094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control—the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis—to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.
Collapse
|
3
|
Abolins V, Latash ML. Unintentional Force Drifts as Consequences of Indirect Force Control with Spatial Referent Coordinates. Neuroscience 2021; 481:156-165. [PMID: 34774968 DOI: 10.1016/j.neuroscience.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
We explored the phenomenon of unintentional force drifts in the absence of visual feedback. Based on the idea of direct force control with internal models and on the idea of indirect force control with referent coordinates to the involved muscle groups, contrasting predictions were drawn for changes in the drift magnitude when acting against external spring loads. Fifteen young subjects performed typical accurate force production tasks by pressing with the Index finger at 20% of maximal voluntary contraction (MVC) in isometric conditions and while acting against one of the three external springs with different stiffness. The visual feedback on the force was turned off after 5 s. At the end of each 20-s trial, the subjects relaxed and then tried to reproduce the final force level. The force drifts were significantly smaller in the spring conditions, particularly when acting against more compliant springs. The subjects were unaware of the force drifts and, during force matching, produced forces close to the initial force magnitude, which were not different across the conditions. There was a trend toward larger drifts during performance by the dominant hand. We view these observations as strong arguments in favor of the theory of control with spatial referent coordinates. In particular, force drifts were likely consequences of drifts of referent coordinates to both agonist and antagonist muscles. The lack of drift effects on both perception-to-report and perception-to-act fit the scheme of kinesthetic perception based on the interaction of efferent (referent coordinate) and afferent processes.
Collapse
Affiliation(s)
- Valters Abolins
- Cyber-Physical Systems Laboratory, Institute of Electronics and Computer Science, Riga LV-1006, Latvia.
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Feldman AG, Zhang L. Eye and head movements and vestibulo-ocular reflex in the context of indirect, referent control of motor actions. J Neurophysiol 2020; 124:115-133. [PMID: 32490708 PMCID: PMC7474454 DOI: 10.1152/jn.00076.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 01/03/2023] Open
Abstract
Conventional explanations of the vestibulo-ocular reflex (VOR) and eye and head movements are revisited by considering two alternative frameworks addressing the question of how the brain controls motor actions. Traditionally, biomechanical and/or computational frameworks reflect the views of several prominent scholars of the past, including Helmholtz and von Holst, who assumed that the brain directly specifies the desired motor outcome and uses efference copy to influence perception. However, empirical studies resulting in the theory of referent control of action and perception (an extension of the equilibrium-point hypothesis) revealed that direct specification of motor outcome is inconsistent with nonlinear properties of motoneurons and with the physical principle that the brain can control motor actions only indirectly, by changing or maintaining the values of neurophysiological parameters that influence, but can remain independent of, biomechanical variables. Some parameters are used to shift the origin (referent) points of spatial frames of reference (FRs) or system of coordinates in which motor actions emerge without being predetermined. Parameters are adjusted until the emergent motor actions meet the task demands. Several physiological parameters and spatial FRs have been identified, supporting the notion of indirect, referent control of movements. Instead of integration of velocity-dependent signals, position-dimensional referent signals underlying head motion can likely be transmitted to motoneurons of extraocular muscles. This would produce compensatory eye movement preventing shifts in gaze during head rotation, even after bilateral destruction of the labyrinths. The referent control framework symbolizes a shift in the paradigm for the understanding of VOR and eye and head movement production.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - Lei Zhang
- Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
5
|
Androwis GJ, Michael PA, Jewaid D, Nolan KJ, Strongwater A, Foulds RA. Motor control investigation of dystonic cerebral palsy: A pilot study of passive knee trajectory. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:4562-5. [PMID: 26737309 DOI: 10.1109/embc.2015.7319409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of this study is to better understand dystonia in CP and be able to objectively distinguish between individuals who experience spasticity, dystonia, or a combination of these conditions while evaluating the effect of 2Hz vestibular stimulation. Selected outcome measures included knee ROM, angular velocity and acceleration and all measures increased post vestibular stimulation; these results are indications of a possible reduction in the level of disability. The current investigation also identified an unexpected and unique behavior of the knee in children with dystonic cerebral palsy (CP) that was noticed while administering the Pendulum Knee Drop test (PKD) at approximately 0.4 rad (a mid-angle between full extension and zero vertical). There was a catch-like phenomenon at the described mid-angle in dystonic individuals. These results may suggest that dystonia is not a velocity dependent hypersensitivity of reflexes, but may include position dependent muscle reflexes and co-contractions. This reinforces the need for a more precise objective measure or perhaps a modified measure such as a mid-angle PKD test. Furthermore, based on the results obtained through the modified technique, beneficial alterations can be made to the form of treatment such as: robotic therapy or physical therapy that specifically accommodates the unique motor control disorder in individuals with dystonic CP.
Collapse
|
6
|
Abstract
The target article (Smeets, Oostwoud Wijdenes, & Brenner, 2016) proposes that short latency responses to changes in target location during reaching reflect an unconscious, continuous, and incremental minimization of the distance between the hand and the target, which does not require detection of the change in target location. We, instead, propose that short-latency visuomotor responses invoke reflex- or startle-like mechanisms, an idea supported by evidence that such responses are both automatic and resistant to cognitive influences. In addition, the target article fails to address the biological underpinnings for the range of response latencies reported across the literature, including the circuits that might underlie the proposed sensorimotor loops. When considering the range of latencies reported in the literature, we propose that mechanisms grounded in neurophysiology should be more informative than the simple information processing perspective adopted by the target article.
Collapse
|
7
|
Mandon L, Boudarham J, Robertson J, Bensmail D, Roche N, Roby-Brami A. Faster Reaching in Chronic Spastic Stroke Patients Comes at the Expense of Arm-Trunk Coordination. Neurorehabil Neural Repair 2015; 30:209-20. [DOI: 10.1177/1545968315591704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. The velocity of reaching movements is often reduced in patients with stroke-related hemiparesis; however, they are able to voluntarily increase paretic hand velocity. Previous studies have proposed that faster speed improves movement quality. Objective. To investigate the combined effects of reaching distance and speed instruction on trunk and paretic upper-limb coordination. The hypothesis was that increased speed would reduce elbow extension and increase compensatory trunk movement. Methods. A single session study in which reaching kinematics were recorded in a group of 14 patients with spastic hemiparesis. A 3-dimensional motion analysis system was used to track the trajectories of 5 reflective markers fixed on the finger, wrist, elbow, acromion, and sternum. The reaching movements were performed to 2 targets at 60% and 90% arm length, respectively, at preferred and maximum velocity. The experiment was repeated with the trunk restrained by a strap. Results. All the patients were able to voluntarily increase reaching velocity. In the trunk free, faster speed condition, elbow extension velocity increased but elbow extension amplitude decreased and trunk movement increased. In the trunk restraint condition, elbow extension amplitude did not decrease with faster speed. Seven patients scaled elbow extension and elbow extension velocity as a function of reach distance, the other 7 mainly increased trunk compensation with increased task constraints. There were no clear clinical characteristics that could explain this difference. Conclusions. Faster speed may encourage some patients to use compensation. Individual indications for therapy could be based on a quantitative analysis of reaching coordination.
Collapse
Affiliation(s)
- Laurence Mandon
- Raymond Poincaré Hospital, Garches, France
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, UVSQ, Garches, France
| | - Julien Boudarham
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, UVSQ, Garches, France
| | - Johanna Robertson
- Raymond Poincaré Hospital, Garches, France
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, UVSQ, Garches, France
| | - Djamel Bensmail
- Raymond Poincaré Hospital, Garches, France
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, UVSQ, Garches, France
| | - Nicolas Roche
- Raymond Poincaré Hospital, Garches, France
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, UVSQ, Garches, France
| | - Agnès Roby-Brami
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, UVSQ, Garches, France
- CNRS, UMR 7222, ISIR, Paris, France
- Sorbonne Universités, UPMC University Pierre et Marie Curie, UMR 7222, Paris, France
- INSERM, U1150, Agathe-ISIR, Paris, France
| |
Collapse
|
8
|
Mateo S, Roby-Brami A, Reilly KT, Rossetti Y, Collet C, Rode G. Upper limb kinematics after cervical spinal cord injury: a review. J Neuroeng Rehabil 2015; 12:9. [PMID: 25637224 PMCID: PMC4417243 DOI: 10.1186/1743-0003-12-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/13/2015] [Indexed: 11/10/2022] Open
Abstract
Although a number of upper limb kinematic studies have been conducted, no review actually addresses the key-features of open-chain upper limb movements after cervical spinal cord injury (SCI). The aim of this literature review is to provide a clear understanding of motor control and kinematic changes during open-chain upper limb reaching, reach-to-grasp, overhead movements, and fast elbow flexion movements after tetraplegia. Using data from MEDLINE between 1966 and December 2014, we examined temporal and spatial kinematic measures and when available electromyographic recordings. We included fifteen control case and three series case studies with a total of 164 SCI participants and 131 healthy control participants. SCI participants efficiently performed a broad range of tasks with their upper limb and movements were planned and executed with strong kinematic invariants like movement endpoint accuracy and minimal cost. Our review revealed that elbow extension without triceps brachii relies on increased scapulothoracic and glenohumeral movements providing a dynamic coupling between shoulder and elbow. Furthermore, contrary to normal grasping patterns where grasping is prepared during the transport phase, reaching and grasping are performed successively after SCI. The prolonged transport phase ensures correct hand placement while the grasping relies on wrist extension eliciting either whole hand or lateral grip. One of the main kinematic characteristics observed after tetraplegia is motor slowing attested by increased movement time. This could be caused by (i) decreased strength, (ii) triceps brachii paralysis which disrupts normal agonist-antagonist co-contractions, (iii) accuracy preservation at movement endpoint, and/or (iv) grasping relying on tenodesis. Another feature is a reduction of maximal superior reaching during overhead movements which could be caused by i) strength deficit in agonist muscles like pectoralis major, ii) strength deficit in proximal synergic muscles responsible for scapulothoracic and glenohumeral joint stability, iii) strength deficit in distal synergic muscles preventing the maintenance of elbow extension by shoulder elbow dynamic coupling, iv) shoulder joint ankyloses, and/or v) shoulder pain. Further studies on open chain movements are needed to identify the contribution of each of these factors in order to tailor upper limb rehabilitation programs for SCI individuals.
Collapse
Affiliation(s)
- Sébastien Mateo
- Université de Lyon, Université Lyon 1, INSERM U1028; CNRS UMR5292; Lyon Neuroscience Research Center, ImpAct Team, F-69676, Lyon, France.
- Hospices Civils de Lyon, Hôpital Henry Gabrielle, Mouvement et Handicap, F-69000, Lyon, France.
- Université de Lyon, Université Lyon 1, Centre de Recherche et d'Innovation sur le Sport, EA 647, Performance Motrice, Mentale et du Matériel, F-69621, Villeurbanne, France.
- Service de Médecine Physique et Réadaptation, Hôpital Henry Gabrielle, 20 route de Vourles, F-69230, Saint Genis Laval, France.
| | - Agnès Roby-Brami
- Université de Paris, Université Paris 6, UPMC, Institut des systèmes intelligents et de robotique, CNRS UMR 7222, équipe Agathe INSERM U 1150, F-75006, Paris, France.
| | - Karen T Reilly
- Université de Lyon, Université Lyon 1, INSERM U1028; CNRS UMR5292; Lyon Neuroscience Research Center, ImpAct Team, F-69676, Lyon, France.
| | - Yves Rossetti
- Université de Lyon, Université Lyon 1, INSERM U1028; CNRS UMR5292; Lyon Neuroscience Research Center, ImpAct Team, F-69676, Lyon, France.
- Hospices Civils de Lyon, Hôpital Henry Gabrielle, Mouvement et Handicap, F-69000, Lyon, France.
| | - Christian Collet
- Université de Lyon, Université Lyon 1, Centre de Recherche et d'Innovation sur le Sport, EA 647, Performance Motrice, Mentale et du Matériel, F-69621, Villeurbanne, France.
| | - Gilles Rode
- Université de Lyon, Université Lyon 1, INSERM U1028; CNRS UMR5292; Lyon Neuroscience Research Center, ImpAct Team, F-69676, Lyon, France.
- Hospices Civils de Lyon, Hôpital Henry Gabrielle, Mouvement et Handicap, F-69000, Lyon, France.
- Service de Médecine Physique et Réadaptation, Hôpital Henry Gabrielle, 20 route de Vourles, F-69230, Saint Genis Laval, France.
| |
Collapse
|
9
|
Zhou T, Solnik S, Wu YH, Latash ML. Unintentional movements produced by back-coupling between the actual and referent body configurations: violations of equifinality in multi-joint positional tasks. Exp Brain Res 2014; 232:3847-59. [PMID: 25150552 DOI: 10.1007/s00221-014-4059-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
We tested several predictions of a recent theory that combines the ideas of control with referent configurations, hierarchical control, and the uncontrolled manifold (UCM) hypothesis. In particular, we tested a hypothesis that unintentional changes in hand coordinate can happen following a long-lasting transient perturbation. The subjects grasped a handle with the right hand, occupied an initial position against a bias force produced by the HapticMaster robot, and then tried not to react to changes in the robot-produced force. Changes in the force were smooth and transient; they always ended with the same force as the bias force. The force-change amplitude and the time the force was kept at the new level (dwell time) varied across conditions. After the transient force change was over, the handle rested in a position that differed significantly from the initial position. The amplitude of this unintentional movement increased with the amplitude of transient force change and with the dwell time. In the new position, the across-trials joint configuration variance was mostly confined to a subspace compatible with the average handle coordinate and orientation (the UCMs for these variables). We view these results as the first experimental support for the hypothesis on back-coupling between the referent and actual body configurations during multi-joint actions. The results suggest that even under the instruction "not to react to transient force changes," the subjects may be unable to prevent unintentional drift of the referent configuration. The structure of joint configuration variance after such movements was similar to that in earlier reports on joint configuration variance after intentional movements. We conclude that the intentional and unintentional movements are products of a single neural system that can lead to intentional and unintentional shifts of the referent body configuration.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Kinesiology, Rec.Hall-267, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | | |
Collapse
|
10
|
Motor control and position sense: action-perception coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 826:17-31. [PMID: 25330882 DOI: 10.1007/978-1-4939-1338-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Bilateral coupling facilitates recovery of rhythmical movements from perturbation in healthy and post-stroke subjects. Exp Brain Res 2013; 227:263-74. [DOI: 10.1007/s00221-013-3509-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
|
12
|
Does the movement matter? Determinants of the latency of temporally urgent motor reactions. Brain Res 2011; 1416:35-43. [DOI: 10.1016/j.brainres.2011.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 11/23/2022]
|
13
|
Ludvig D, Visser TS, Giesbrecht H, Kearney RE. Identification of time-varying intrinsic and reflex joint stiffness. IEEE Trans Biomed Eng 2011; 58:1715-23. [PMID: 21317071 DOI: 10.1109/tbme.2011.2113184] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dynamic joint stiffness defines the dynamic relationship between the position of a joint and the torque acting about it and can be separated into intrinsic and reflex components. Under stationary conditions, these can be identified using a nonlinear parallel-cascade algorithm that models intrinsic stiffness-a linear dynamic response to position-and reflex stiffness-a nonlinear dynamic response to velocity-as parallel pathways. Experiments using this method show that both intrinsic and reflex stiffness depend strongly on the operating point, defined by position and torque, likely because of some underlying nonlinear behavior not modeled by the parallel-cascade structure. Consequently, both intrinsic and reflex stiffness will appear to be time-varying whenever the operating point changes rapidly, as during movement. This paper describes and validates an extension of the parallel-cascade algorithm to time-varying conditions. It describes the ensemble method used to estimate time-varying intrinsic and reflex stiffness. Simulation results demonstrate that the algorithm can track rapid changes in joint stiffness accurately. Finally, the performance of the algorithm in the presence of noise is tested. We conclude that the new algorithm is a powerful new tool for the study of joint stiffness during functional tasks.
Collapse
Affiliation(s)
- Daniel Ludvig
- Biomedical Engineering Department, McGill University, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
14
|
Feldman AG. Space and time in the context of equilibrium‐point theory. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2010; 2:287-304. [DOI: 10.1002/wcs.108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anatol G. Feldman
- Department of Physiology, University of Montreal, Montreal, Quebec, H3C 3T4, Canada
| |
Collapse
|
15
|
Kurtzer I, Pruszynski JA, Scott SH. Long-Latency Responses During Reaching Account for the Mechanical Interaction Between the Shoulder and Elbow Joints. J Neurophysiol 2009; 102:3004-15. [DOI: 10.1152/jn.00453.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although considerable research indicates that reaching movements rely on knowledge of the arm's mechanical properties and environment to anticipate and counter predictable loads, far less research has examined whether this degree of sophistication is present for on-line corrections during reaching. Here we examine the R2/3 response to mechanical perturbations (45–100 ms, also called the long-latency reflex), which is highly flexible and includes the fastest possible contribution from primary motor cortex, a key neural substrate for self-initiated action. Torque perturbations were occasionally and unexpectedly applied to the subject's shoulder and/or elbow in the course of performing reaching movements. Critically, these perturbations would evoke different patterns of feedback corrections from a shoulder extensor muscle if it countered only the local shoulder displacement relative to unperturbed motion or accounted for the mechanical interactions between the shoulder and elbow joints and countered the underlying shoulder torque. Our results show that the earliest response (R1: 20–45 ms) reflected local shoulder displacement, whereas the R2/3 response (45–100 ms) reflected knowledge of multijoint dynamics. Moreover, the same pattern of feedback occurred whether the shoulder muscle helped initiate the movement (during its agonist phase) or helped terminate the movement (during its antagonist phase). These results contribute to the accumulating evidence that highly sophisticated feedback control underlies motor behavior and are consistent with a shared neural substrate, such as primary motor cortex, for feedforward and feedback control.
Collapse
Affiliation(s)
| | | | - Stephen H. Scott
- Centre for Neuroscience Studies,
- Department of Anatomy and Cell Biology, and
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Reach-to-grasp movement as a minimization process. Exp Brain Res 2009; 201:75-92. [DOI: 10.1007/s00221-009-2012-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 09/07/2009] [Indexed: 11/27/2022]
|
17
|
Ronsse R, Sternad D, Lefèvre P. A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput 2009; 21:1335-70. [PMID: 19018700 DOI: 10.1162/neco.2008.03-08-720] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Current research on discrete and rhythmic movements differs in both experimental procedures and theory, despite the ubiquitous overlap between discrete and rhythmic components in everyday behaviors. Models of rhythmic movements usually use oscillatory systems mimicking central pattern generators (CPGs). In contrast, models of discrete movements often employ optimization principles, thereby reflecting the higher-level cortical resources involved in the generation of such movements. This letter proposes a unified model for the generation of both rhythmic and discrete movements. We show that a physiologically motivated model of a CPG can not only generate simple rhythmic movements with only a small set of parameters, but can also produce discrete movements if the CPG is fed with an exponentially decaying phasic input. We further show that a particular coupling between two of these units can reproduce main findings on in-phase and antiphase stability. Finally, we propose an integrated model of combined rhythmic and discrete movements for the two hands. These movement classes are sequentially addressed in this letter with increasing model complexity. The model variations are discussed in relation to the degree of recruitment of the higher-level cortical resources, necessary for such movements.
Collapse
Affiliation(s)
- Renaud Ronsse
- Department of Electrical Engineering and Computer Science, Montefiore Institute, Université de Liège, B-4000 Liège, Belgium.
| | | | | |
Collapse
|
18
|
From intention to action: motor cortex and the control of reaching movements. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 629:139-78. [PMID: 19227499 DOI: 10.1007/978-0-387-77064-2_8] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The motor cortex was experimentally identified more than a century ago using surface electrical stimulation and lesions. Those first studies initiated a debate about the role of the motor cortex in the control of voluntary movement that continues to this day. The main issue concerns the degree to which the descending motor command emanating from the motor cortex specifies the spatiotemporal form of a movement or its causal forces, torques and muscle activity. The neurophysiological evidence supports both perspectives. This chapter surveys some of that evidence, with particular focus on the latter, more 'traditional', role of motor cortex.
Collapse
|
19
|
New insights into action–perception coupling. Exp Brain Res 2008; 194:39-58. [PMID: 19082821 DOI: 10.1007/s00221-008-1667-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
20
|
Foisy M, Feldman AG. Threshold control of arm posture and movement adaptation to load. Exp Brain Res 2006; 175:726-44. [PMID: 16847611 DOI: 10.1007/s00221-006-0591-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Accepted: 06/09/2006] [Indexed: 11/26/2022]
Abstract
We addressed the fundamental questions of which variables underlie the control of arm movement and how they are stored in motor memory, reproduced and modified in the process of adaptation to changing load conditions. Such variables are defined differently in two major theories of motor control (internal models and threshold control). To resolve the controversy, these theories were tested (experiment 1) based on their ability to explain why active movement away from a stable posture is not opposed by stabilizing mechanisms (the posture-movement problem). The internal model theory suggests that the system counteracts the opposing forces by increasing the muscle activity in proportion to the distance from the initial posture (position-dependent EMG control). In contrast, threshold control fully excludes these opposing forces by shifting muscle activation thresholds and thus resetting the stabilizing mechanisms to a new posture. Subjects were sitting, holding the vertical handle of a double-joint manipulandum with their right hand and were facing a computer screen on which the handle and target to be reached were displayed. In response to an auditory signal, subjects quickly moved the handle from an initial position to one of two (frontal and sagittal) targets. No load was applied during the movement but in separate trials, a brief perturbation was applied to the handle by torque motors controlling the manipulandum. Perturbations were applied prior to or 3 s after movement offset, in the latter case in one of eight directions. The EMG activity of the majority of the seven recorded muscles was at zero level before movement onset and returned to zero level after movement offset. Those muscles that remained active before or after the movement could be made silent whereas previously silent muscles could be activated after a small passive displacement (several millimeters) elicited by perturbations in appropriate directions. Results showed that the activation thresholds of motoneurons of arm muscles were reset from the initial to a final position and that EMG activity was not position-dependent. These results were inconsistent with the internal model theory but confirmed the threshold control theory. Then the ability of threshold control theory to explain rapid movement adaptation to a position-dependent load was investigated (experiment 2 and 3). Subjects produced fast movement to the frontal target with and without a position-dependent load applied to the handle. Trials were organized in blocks alternating between the load and no-load condition (20 blocks in total, with randomly chosen number of five to ten trials in each). Subjects were instructed "do not correct" in experiment 2 and "correct" movement errors during the trial in experiment 3. Five threshold arm configurations underlying the movement production and adaptation were identified. When instructed "do not correct", movement precision was fully restored on average after two trials. No significant improvement was observed as the experiment progressed despite the fact that the same load condition was repeated after one block of trials. Thus, in each block, the adaptation was made anew, implying that subjects relied on short-term memory and could not recall the threshold arm configurations they specified to accurately reach the same target in the same load condition in previous blocks. When instructed to "correct" within each trial, precision was restored faster, on average after one trial. Major aspects of the production and adaptation of arm movement (including the kinematics, movement errors, instruction-dependent behavior, and absence of position-related EMG activity) are explained in terms of threshold control.
Collapse
Affiliation(s)
- Martin Foisy
- Neurological Science Research Center, Department of Physiology, Rehabilitation Institute of Montreal, University of Montreal and Center for Interdisciplinary Research Studies in Rehabilitation CRIR, 6300 Darlington Ave, Montreal, QC, Canada
| | | |
Collapse
|
21
|
Pilon JF, Feldman AG. Threshold control of motor actions prevents destabilizing effects of proprioceptive delays. Exp Brain Res 2006; 174:229-39. [PMID: 16676171 DOI: 10.1007/s00221-006-0445-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 03/10/2006] [Indexed: 11/30/2022]
Abstract
It is usually assumed that proprioceptive feedback comes to motoneurons too late to contribute to the initial activity of agonist muscles during fast arm movements, leading to the suggestion that this feedback is only efficient in slow movements and postural control. The argument does not take into account that the changes in the motoneuronal membrane potentials and the associated changes in the state of spinal neurons preceding the initial activity of muscles deeply affect, in a forward way, the state of reflex systems by shifting their thresholds, as suggested in the lambda model for motor control. As a result, the initial muscle activity emerges with full contribution of these systems so that the effects of reflex delays become negligible. We tested the hypothesis that threshold control of muscle activation may be instrumental in preventing destabilizing effects of proprioceptive delays in spinal and trans-cortical pathways to motoneurons. The analysis was made by recording fast elbow movements (peak velocity approximately 300-500 degrees/s) and simulating them in a dynamic model that incorporates the notion of threshold control of intrinsic and reflex muscle properties. The model was robust in reproducing experimental movement patterns (R (2)>0.95). It generated stable output despite substantial proprioceptive (up to 100 ms) and electromechanical (40 ms) delays. Stability was thus ensured for delays not only in segmental (about 25-50 ms) but also in trans-cortical loops (50-70 ms). Our study illustrates that a natural physiological process--threshold control--may manifest feed-forward properties hitherto attributed to hypothetical internal neural models.
Collapse
Affiliation(s)
- Jean-François Pilon
- Institute of Biomedical Engineering, University of Montreal and Rehabilitation Institute of Montreal (CRIR), 6300 Darlington Avenue, Montreal, QC, Canada, H3S 2J4
| | | |
Collapse
|
22
|
Hasan Z. The Human Motor Control System's Response to Mechanical Perturbation: Should It, Can It and Does It Ensure Stability? J Mot Behav 2005; 37:484-93. [PMID: 16280319 DOI: 10.3200/jmbr.37.6.484-493] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
From among the diverse meanings of stability, the one the author adopts here is that the effects of a perturbation are opposed, and therefore small effects remain small. Except in linear systems, however, instability need not lead to unbounded motion and may actually be desirable when maneuverability is important. Moreover, properties of nerves, muscles, and tendons present serious challenges to stabilization. A review of observations from the motor control literature reveals that responses to perturbations in many common situations assist rather than resist the perturbation and are therefore presumably destabilizing. The observations encompass situations of position maintenance as well as impending or ongoing movement. The author proposes that the motor control system responds to a sudden perturbation by a pattern of muscle activity that mimics an accustomed voluntary movement, oblivious of stability considerations. What prevents runaway motion in the face of short-term instability appears to be voluntary intervention.
Collapse
Affiliation(s)
- Z Hasan
- Department of Movement Sciences, University of Illinois at Chicago, Mail Code 898, 1919 W. Taylor Street, Room 447, Chicago, IL 60612, USA.
| |
Collapse
|
23
|
Sergio LE, Hamel-Pâquet C, Kalaska JF. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. J Neurophysiol 2005; 94:2353-78. [PMID: 15888522 DOI: 10.1152/jn.00989.2004] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded the activity of 132 proximal-arm-related neurons in caudal primary motor cortex (M1) of two monkeys while they generated either isometric forces against a rigid handle or arm movements with a heavy movable handle, in the same eight directions in a horizontal plane. The isometric forces increased in monotonic fashion in the direction of the force target. The forces exerted against the handle in the movement task were more complex, including an initial accelerating force in the direction of movement followed by a transient decelerating force opposite to the direction of movement as the hand approached the target. EMG activity of proximal-arm muscles reflected the difference in task dynamics, showing directional ramplike activity changes in the isometric task and reciprocally tuned "triphasic" patterns in the movement task. The apparent instantaneous directionality of muscle activity, when expressed in hand-centered spatial coordinates, remained relatively stable during the isometric ramps but often showed a large transient shift during deceleration of the arm movements. Single-neuron and population-level activity in M1 showed similar task-dependent changes in temporal pattern and instantaneous directionality. The momentary dissociation of the directionality of neuronal discharge and movement kinematics during deceleration indicated that the activity of many arm-related M1 neurons is not coupled only to the direction and speed of hand motion. These results also demonstrate that population-level signals reflecting the dynamics of motor tasks and of interactions with objects in the environment are available in caudal M1. This task-dynamics signal could greatly enhance the performance capabilities of neuroprosthetic controllers.
Collapse
Affiliation(s)
- Lauren E Sergio
- Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
24
|
Shapiro MB, Gottlieb GL, Corcos DM. EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time. J Neurophysiol 2004; 91:2135-47. [PMID: 14724262 DOI: 10.1152/jn.00966.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When moving an object, the motor system estimates the dynamic properties of the object and then controls the movement using a combination of predictive feedforward control and proprioceptive feedback. In this study, we examined how the feedforward and proprioceptive feedback processes depend on the expected movement task. Subjects made fast elbow flexion movements from an initial position to a target. The experimental protocol included movements made over a short and a long distance against an expected light or heavy inertial load. In each task in a few randomly chosen trials, a motor applied an unexpected viscous load that produced a velocity error, defined as the difference between the expected and unexpected velocities, and electromyographic (EMG) responses. The EMG responses appeared not earlier than 170-250 ms from the agonist EMG onset. Our main finding is that the onset of the EMG responses was correlated with the expected time of peak velocity, which increased for longer distances and larger loads. An analysis of the latency of the EMG responses with respect to the velocity error suggested that the EMG responses were due to segmental reflexes. We conclude that segmental reflex gains are centrally modulated with the time course dependent on the expected movement task. According to this view, the control of fast point-to-point movement is feedforward from the agonist EMG onset until the expected time of peak velocity after which the segmental reflex feedback is briefly facilitated.
Collapse
Affiliation(s)
- Mark B Shapiro
- School of Kinesiology, University of Illinois, Chicago, Illinois 60608, USA.
| | | | | |
Collapse
|
25
|
Ghafouri M, Archambault PS, Adamovich SV, Feldman AG. Pointing movements may be produced in different frames of reference depending on the task demand. Brain Res 2002; 929:117-28. [PMID: 11852038 DOI: 10.1016/s0006-8993(01)03332-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Movements are likely guided by the nervous system in task-specific spatial frames of reference (FRs). We tested this hypothesis by analyzing fast arm pointing movements involving the trunk made to targets located within the reach of the arm. In the first experiment, subjects pointed to a motionless target and, in the second experiment, to a target moving synchronously with the trunk. Vision of the arm and targets was prevented before movement onset. Each experiment started after three to five training trials. In randomly selected trials of both experiments, an electromagnet device unexpectedly prevented the trunk motion. When the trunk was arrested, the hand trajectory and velocity profile remained invariant in an FR associated with the experimental room in the first or in an FR moving with the trunk in the second experiment. Substantial changes in the arm interjoint coordination in response to the trunk arrest were observed in the first but not in the second experiment. The results demonstrate the ability of the nervous system to rapidly adapt behavior at the joint level to transform motor performance from a spatial FR associated with the environment to one associated with the body. A theoretical framework is suggested in which FRs are considered as pre-existing neurophysiological structures permitting switching between different FRs and guiding multiple joints and muscles without redundancy problems.
Collapse
Affiliation(s)
- Mohammad Ghafouri
- Neurological Science Research Centre, Department of Physiology, University of Montreal and Research Centre, Rehabilitation Institute of Montreal, Montreal, Quebec, Canada H3S 2J4
| | | | | | | |
Collapse
|
26
|
Levin MF. Sensorimotor deficits in patients with central nervous system lesions: Explanations based on the λ model of motor control. Hum Mov Sci 2000. [DOI: 10.1016/s0167-9457(00)00004-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Lestienne FG, Thullier F, Archambault P, Levin MF, Feldman AG. Multi-muscle control of head movements in monkeys: the referent configuration hypothesis. Neurosci Lett 2000; 283:65-8. [PMID: 10729635 DOI: 10.1016/s0304-3940(00)00923-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is suggested that the nervous system may specify a referent configuration (R) of the body determined by the set of the threshold joint angles at which all skeletal muscles may be silent. At the same time, electromyographic (EMG) activity and forces are generated to resist deflections of the body from this configuration. The R configuration may thus be considered an internal geometric image with which the actual body configuration (Q) is compared. Thereby the difference between the R and Q is a major factor determining the recruitment and gradation of the activity of each skeletal muscle. Control systems may produce movements by changing the R configuration according to task demands. The referent hypothesis predicts that when the R and Q configurations match each other, a global minimum in the EMG activity of all muscles involved should occur, an event most likely observed in movements with reversal in direction. To test the validity of the R hypothesis for head movements, three-dimensional kinematics and EMG activity of 14 functionally diverse neck muscles were analysed in monkeys during head rotations to and from fruit targets placed beyond the oculomotor range. Despite the functional and anatomical diversity of the neck muscles, the activity of all muscles was minimised at a reversal point of the movement trajectory, as predicted by the R hypothesis. This study thus illustrates the notion that a change in the internal geometric image of a biomechanical system may underlie movement production.
Collapse
Affiliation(s)
- F G Lestienne
- Centre de Recherche en Activités Physique et Sportives, UPRES EA 2131, UFR STAPS, Université de Caen, Bd. du Maréchal Juin, 14032, Caen, France.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Triphasic electromyographic (EMG) patterns have been described as characteristic of rapid, discrete, uniplanar, goal-directed movements. This experiment examined the effects of Response Type (experimenter- vs. subject-determined), Hand (preferred vs. nonpreferred), and Practice (early vs. late) on performance accuracy, and specific temporal EMG and kinematic measures during a dart throw. EMG was recorded from triceps (main agonist), brachioradialis, and biceps (main antagonist). The number of trials in which a triphasic EMG occurred varied systematically across conditions. The experimenter-determined, early practice condition resulted in greatest frequency (92%) of trials displaying a triphasic EMG and least accurate performance. In contrast, the lowest frequency (79%) of triphasic EMG and most accurate performance occurred in the subject-determined, late practice condition. The association among 14 temporal EMG, and kinematic measures for each trial of the dart throw was analyzed with multivariate factorial ANOVA. Four clusters of variables emerged: initial phase, braking phase, terminal phase, and movement speed and duration. Variables contributing to the initial-phase cluster were most strongly associated within the experimenter-determined, early practice condition, and the strength of association was directly related to diminished performance accuracy. Paradoxically, best performance accuracy (subject-determined, late practice) was identified with a weaker association among variables representing the initial phase.
Collapse
Affiliation(s)
- S Morrison
- School of Physiotherapy and Exercise Science, Griffith University, Gold Coast Campus, Queensland 9276, Australia
| | | |
Collapse
|
29
|
Feldman AG, Levin MF, Mitnitski AM, Archambault P. 1998 ISEK Congress Keynote Lecture: Multi-muscle control in human movements. International Society of Electrophysiology and Kinesiology. J Electromyogr Kinesiol 1998; 8:383-90. [PMID: 9840893 DOI: 10.1016/s1050-6411(98)00019-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
It has been suggested that the coordination of the activity of multiple muscles results from the comparison of the actual configuration of the body with a referent configuration specified by the nervous system so that the recruitment and gradation of the activity of each skeletal muscle depend on the difference between these two configurations. Active movements may be produced by the modification of the referent configuration. The hypothesis predicts the existence of a global minimum in electromyographic (EMG) activity of multiple muscles during movements involving reversals in direction. This prediction was tested in five subjects by analysing movements resembling the act of reaching for an object placed beyond one's reach from a sitting position. In such movements, initially sitting subjects raise their body to a semi-standing position and then return to sitting. Consistent with the hypothesis is the observation of a global minimum in the surface EMG activity of 16 muscles of the arm, trunk and leg at a specific phase of the movement. When the minimum occurred, EMG activity of each muscle did not exceed 2-7% of its maximal activity during the movement. As predicted, global EMG minima occurred at the phase corresponding to the reversal in movement direction, that is, during the transition from raising to lowering of the body. The global EMG minimum may represent the point at which temporal matching occurs between the actual and the referent body configurations. This study implies a specific link between motor behavior and the geometric shape of the body modified by the brain according to the desired action.
Collapse
Affiliation(s)
- A G Feldman
- Research Centre, Rehabilitation Institute of Montreal, University of Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
30
|
Feldman AG, Ostry DJ, Levin MF, Gribble PL, Mitnitski AB. Recent tests of the equilibrium-point hypothesis (lambda model). Motor Control 1998; 2:189-205. [PMID: 9644289 DOI: 10.1123/mcj.2.3.189] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lambda model of the equilibrium-point hypothesis (Feldman & Levin, 1995) is an approach to motor control which, like physics, is based on a logical system coordinating empirical data. The model has gone through an interesting period. On one hand, several nontrivial predictions of the model have been successfully verified in recent studies. In addition, the explanatory and predictive capacity of the model has been enhanced by its extension to multimuscle and multijoint systems. On the other hand, claims have recently appeared suggesting that the model should be abandoned. The present paper focuses on these claims and concludes that they are unfounded. Much of the experimental data that have been used to reject the model are actually consistent with it.
Collapse
Affiliation(s)
- A G Feldman
- Centre de Recherche, Institut de réadaptation, Université de Montréal, Montréal, PQ, Canada H3S 2J4
| | | | | | | | | |
Collapse
|
31
|
St-Onge N, Adamovich SV, Feldman AG. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling. Neuroscience 1997; 79:295-316. [PMID: 9178885 DOI: 10.1016/s0306-4522(97)00071-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using a non-linear dynamic model based on the lambda version of the equilibrium-point hypothesis, we investigated the shape and duration of the control patterns underlying discrete elbow movements. The model incorporates neural control variables, time-, position- and velocity-dependent intrinsic muscle and reflex properties. Two control variables (R and C) specify a positional frame of reference for activation of flexor and extensor motoneurons. The variable R (reciprocal command) specifies the referent joint angle (R) at which the transition of net flexor to extensor active torque or vice versa can be observed during changes in the actual joint angle elicited by an external force. The variable C (coactivation command) surrounds the transition angle by an angular range in which flexor and extensor muscles may be simultaneously active (if C > 0) or silent (if C < or = 0). An additional, time-dimensional control variable (mu command) influences the dependency of the threshold of the stretch reflex on movement velocity. This control variable is responsible for the reflex damping. Changes in the R command result in shifts in the equilibrium state of the system, a dynamical process leading to electromyographic modifications and movement production. Commands C and mu provide movement stability and effective energy dissipation preventing oscillations at the end of movement. A comparison of empirical and model data was carried out. A monotonic ramp-shaped pattern of the R command can account for the empirical kinematic and electromyographic patterns of the fastest elbow flexion movements made with or without additional inertia, as well as of self-paced movements. The rate of the shifts used in simulation was different for the three types of movements but independent of movement distance (20-80 degrees). This implies that, for a given type of movement, the distance is encoded by the duration of shift in the equilibrium state. The model also reproduces the kinematic and electromyographic patterns of the fastest uncorrected movements opposed in random trials by a high load (80-90% of the maximal) generated by position feedback to a torque motor. The following perturbation effects were simulated: a substantial decrease in the arm displacement (from 60-70 degrees to 5-15 degrees) and movement duration (to about 100 ms) so that these movements ended near the peak velocity of those which were not perturbed; a prolongation of the first agonist electromyographic burst as long as the load was applied; the suppression of the antagonist burst during the dynamic and static phases of movements: the reappearance of the antagonist burst in response to unloading accompanied by a short-latency suppression of agonist activity. These kinematic and electromyographic features of both perturbed and non-perturbed movements were reproduced by using the same control patterns which elicited a monotonic shift in the equilibrium state of the system ending before the peak velocity of non-perturbed movements. Our results suggest that the neural control processes underlying the fastest unopposed changes in the arm position are completed long before the end of the movement and phasic electromyographic activity. Neither the timing nor the amplitude of electromyographic bursts are planned but rather they represent the long-lasting dynamic response of central, reflex and mechanical components of the system to a monotonic, short-duration shift in the system's equilibrium state.
Collapse
Affiliation(s)
- N St-Onge
- Department of Physiology, University of Montreal, Quebec, Canada
| | | | | |
Collapse
|