1
|
Zhen D, Liu J, Zhang XD, Song Z. Kynurenic Acid Acts as a Signaling Molecule Regulating Energy Expenditure and Is Closely Associated With Metabolic Diseases. Front Endocrinol (Lausanne) 2022; 13:847611. [PMID: 35282457 PMCID: PMC8908966 DOI: 10.3389/fendo.2022.847611] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Kynurenic acid (KYNA) is an important bio-active product of tryptophan metabolism. In addition to its well-known neuroprotective effects on mental health disorders, it has been proposed as a bio-marker for such metabolic diseases as atherosclerosis and diabetes. Emerging evidence suggests that KYNA acts as a signaling molecule controlling the networks involved in the balance of energy store and expenditure through GPR35 and AMPK signaling pathway. KYNA plays an important role in the pathogenesis and development of several endocrine and metabolic diseases. Exercise training promotes KYNA production in skeletal muscles and increases thermogenesis in the long term and limits weight gain, insulin resistance and inflammation. Additionally, KYNA is also present in breast milk and may act as an anti-obesity agent in infants. Although we are far from fully understanding the role of KYNA in our body, administration of KYNA, enzyme inhibitors or metabolites may serve as a potential therapeutic strategy for treating metabolic diseases. The present review provides a perspective on the current knowledge regarding the biological effects of KYNA in metabolic diseases and perinatal nutrition.
Collapse
Affiliation(s)
- Delong Zhen
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zehua Song
- Translational Research Institute, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, China
- *Correspondence: Zehua Song,
| |
Collapse
|
2
|
Zádori D, Veres G, Szalárdy L, Klivényi P, Vécsei L. Alzheimer's Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines. J Alzheimers Dis 2019; 62:523-547. [PMID: 29480191 DOI: 10.3233/jad-170929] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathomechanism of Alzheimer's disease (AD) certainly involves mitochondrial disturbances, glutamate excitotoxicity, and neuroinflammation. The three main aspects of mitochondrial dysfunction in AD, i.e., the defects in dynamics, altered bioenergetics, and the deficient transport, act synergistically. In addition, glutamatergic neurotransmission is affected in several ways. The balance between synaptic and extrasynaptic glutamatergic transmission is shifted toward the extrasynaptic site contributing to glutamate excitotoxicity, a phenomenon augmented by increased glutamate release and decreased glutamate uptake. Neuroinflammation in AD is predominantly linked to central players of the innate immune system, with central nervous system (CNS)-resident microglia, astroglia, and perivascular macrophages having been implicated at the cellular level. Several abnormalities have been described regarding the activation of certain steps of the kynurenine (KYN) pathway of tryptophan metabolism in AD. First of all, the activation of indolamine 2,3-dioxygenase, the first and rate-limiting step of the pathway, is well-demonstrated. 3-Hydroxy-L-KYN and its metabolite, 3-hydroxy-anthranilic acid have pro-oxidant, antioxidant, and potent immunomodulatory features, giving relevance to their alterations in AD. Another metabolite, quinolinic acid, has been demonstrated to be neurotoxic, promoting glutamate excitotoxicity, reactive oxygen species production, lipid peroxidation, and microglial neuroinflammation, and its abundant presence in AD pathologies has been demonstrated. Finally, the neuroprotective metabolite, kynurenic acid, has been associated with antagonistic effects at glutamate receptors, free radical scavenging, and immunomodulation, giving rise to potential therapeutic implications. This review presents the multiple connections of KYN pathway-related alterations to three main domains of AD pathomechanism, such as mitochondrial dysfunction, excitotoxicity, and neuroinflammation, implicating possible therapeutic options.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
3
|
Sugimoto J, Tanaka M, Sugiyama K, Ito Y, Aizawa H, Soma M, Shimizu T, Mitani A, Tanaka K. Region-specific deletions of the glutamate transporter GLT1 differentially affect seizure activity and neurodegeneration in mice. Glia 2017; 66:777-788. [PMID: 29214672 DOI: 10.1002/glia.23281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/06/2022]
Abstract
Glial glutamate transporter GLT1 plays a key role in the maintenance of extracellular glutamate homeostasis. Recent human genetic studies have suggested that de novo mutations in GLT1 (EAAT2) cause early-onset epilepsy with multiple seizure types. Consistent with these findings, global GLT1 null mice show lethal spontaneous seizures. The consequences of GLT1 dysfunction vary between different brain regions, suggesting that the role of GLT1 dysfunction in epilepsy may also vary with brain regions. In this study, we generated region-specific GLT1 knockout mice by crossing floxed-GLT1 mice with mice that express the Cre recombinase in a particular domain of the ventricular zone. Selective deletion of GLT1 in the diencephalon, brainstem and spinal cord is sufficient to reproduce the phenotypes (excess mortality, decreased body weight, and lethal spontaneous seizure) of the global GLT1 null mice. By contrast, dorsal forebrain-specific GLT1 knockout mice showed nonlethal complex seizures including myoclonic jerks, hyperkinetic running, spasm and clonic convulsion via the activation of NMDA receptors during a limited period from P12 to P14 and selective neuronal death in cortical layer II/III and the hippocampus. Thus, GLT1 dysfunction in the dorsal forebrain is involved in the pathogenesis of infantile epilepsy and GLT1 in the diencephalon, brainstem and spinal cord may play a critical role in preventing seizure-induced sudden death.
Collapse
Affiliation(s)
- Junya Sugimoto
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Moeko Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kaori Sugiyama
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yukiko Ito
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Aizawa
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Miho Soma
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomoko Shimizu
- Laboratory of Physiology, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Akira Mitani
- Laboratory of Physiology, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Center for Brain Integration Research (CBIR), TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
4
|
Kazumata K, Tha KK, Narita H, Ito YM, Shichinohe H, Ito M, Uchino H, Abumiya T. Characteristics of Diffusional Kurtosis in Chronic Ischemia of Adult Moyamoya Disease: Comparing Diffusional Kurtosis and Diffusion Tensor Imaging. AJNR Am J Neuroradiol 2016; 37:1432-9. [PMID: 27012294 DOI: 10.3174/ajnr.a4728] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/07/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Detecting microstructural changes due to chronic ischemia potentially enables early identification of patients at risk of cognitive impairment. In this study, diffusional kurtosis imaging and diffusion tensor imaging were used to investigate whether the former provides additional information regarding microstructural changes in the gray and white matter of adult patients with Moyamoya disease. MATERIALS AND METHODS MR imaging (diffusional kurtosis imaging and DTI) was performed in 23 adult patients with Moyamoya disease and 23 age-matched controls. Three parameters were extracted from diffusional kurtosis imaging (mean kurtosis, axial kurtosis, and radial kurtosis), and 4, from DTI (fractional anisotropy, radial diffusivity, mean diffusivity, and axial diffusivity). Voxelwise analysis for these parameters was performed in the normal-appearing brain parenchyma. The association of these parameters with neuropsychological performance was also evaluated. RESULTS Voxelwise analysis revealed the greatest differences in fractional anisotropy, followed, in order, by radial diffusivity, mean diffusivity, and mean kurtosis. In patients, diffusional kurtosis imaging parameters were decreased in the dorsal deep white matter such as the corona radiata and superior longitudinal fasciculus (P < .01), including areas without DTI abnormality. Superior longitudinal fasciculus fiber-crossing areas showed weak correlations between diffusional kurtosis imaging and DTI parameters compared with tissues with a single-fiber direction (eg, the corpus callosum). Diffusional kurtosis imaging parameters were associated with general intelligence and frontal lobe performance. CONCLUSIONS Although DTI revealed extensive white matter changes, diffusional kurtosis imaging additionally demonstrated microstructural changes in ischemia-prone deep white matter with abundant fiber crossings. Thus, diffusional kurtosis imaging may be a useful adjunct for detecting subtle chronic ischemic injuries.
Collapse
Affiliation(s)
- K Kazumata
- From the Departments of Neurosurgery (K.K., H.S., M.I., H.U., T.A.)
| | - K K Tha
- Radiobiology and Medical Engineering (K.K.T.)
| | | | - Y M Ito
- Biostatistics (Y.M.I.), Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Shichinohe
- From the Departments of Neurosurgery (K.K., H.S., M.I., H.U., T.A.)
| | - M Ito
- From the Departments of Neurosurgery (K.K., H.S., M.I., H.U., T.A.)
| | - H Uchino
- From the Departments of Neurosurgery (K.K., H.S., M.I., H.U., T.A.)
| | - T Abumiya
- From the Departments of Neurosurgery (K.K., H.S., M.I., H.U., T.A.)
| |
Collapse
|
5
|
Gniel HM, Martin RL. Changes in membrane potential and the intracellular calcium concentration during CSD and OGD in layer V and layer II/III mouse cortical neurons. J Neurophysiol 2010; 104:3203-12. [PMID: 20810684 DOI: 10.1152/jn.00922.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cortical spreading depression (CSD) is an episode of electrical silence following intense neuronal activity that propagates across the cortex at ∼3-6 mm/min and is associated with transient neuronal depolarization. CSD is benign in normally perfused brain tissue, but there is evidence suggesting that repetitive CSD contributes to infarct growth following focal ischemia. Studies to date have assumed that the cellular responses to CSD are uniform across neuronal types because there are no data to the contrary. In this study, we investigated the effect of CSD on membrane potential and the intracellular calcium concentration ([Ca(2+)](i)) of mouse layer V and layer II/III pyramidal neurons in brain slices. To place the data in context, we made similar measurements during anoxic depolarization induced by oxygen and glucose deprivation (OGD). The [Ca(2+)](i) was quantified using the low-affinity ratiometric indicator Fura-4F. During both CSD- and OGD-induced depolarization, the membrane potential approached 0 mV in all neurons. In layer V pyramids OGD resulted in an increase in [Ca(2+)](i) to a maximum of 3.69 ± 0.73 (SD) μM (n = 12), significantly greater than the increase to 1.81 ± 0.70 μM in CSD (n = 34; P < 0.0001). Membrane potential and [Ca(2+)](i) returned to nearly basal levels following CSD but not OGD. Layer II/III neurons responded to CSD with a greater peak increase in [Ca(2+)](i) than layer V neurons (2.88 ± 0.6 μM; n = 9; P < 0.01). We conclude there is a laminar difference in the response of pyramidal neurons to CSD; possible explanations are discussed.
Collapse
Affiliation(s)
- Helen M Gniel
- School of Biochemistry and Molecular Biology, The Australian National Univ., Canberra, Australia.
| | | |
Collapse
|
6
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
7
|
Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 2008; 11:450-6. [PMID: 18311136 DOI: 10.1038/nn2060] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 01/30/2008] [Indexed: 11/09/2022]
Abstract
A defining feature of glial cells has been their inability to generate action potentials. We show here that there are two distinct types of morphologically identical oligodendrocyte precursor glial cells (OPCs) in situ in rat CNS white matter. One type expresses voltage-gated sodium and potassium channels, generates action potentials when depolarized and senses its environment by receiving excitatory and inhibitory synaptic input from axons. The other type lacks action potentials and synaptic input. We found that when OPCs suffered glutamate-mediated damage, as occurs in cerebral palsy, stroke and spinal cord injury, the action potential-generating OPCs were preferentially damaged, as they expressed more glutamate receptors, and received increased spontaneous glutamatergic synaptic input in ischemia. These data challenge the idea that only neurons generate action potentials in the CNS and imply that the development of therapies for demyelinating disorders will require defining which OPC type can carry out remyelination.
Collapse
|
8
|
Kim DS, Kwak SE, Kim JE, Won MH, Kang TC. The co-treatments of vigabatrin and P2X receptor antagonists protect ischemic neuronal cell death in the gerbil hippocampus. Brain Res 2006; 1120:151-60. [PMID: 16979598 DOI: 10.1016/j.brainres.2006.08.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 08/12/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
During transient global ischemia, the excessive accumulation of intracellular Ca2+ induced by several episodes triggers delayed neuronal death within the vulnerable CA1 region of the hippocampus after ischemia-reperfusion insults. Although P2X receptors provide an additional source of Ca2+ entry, little data are available that these receptors could modulate the performance of the ischemic neuronal death. Therefore, we investigated the roles of the P2X receptor in the ischemic neuronal damage associated with various sequelae of transient ischemia, and the effects of their antagonist on the ischemic insults. As the results, ischemic insults increased P2X receptor expression in the gerbil hippocampus. Neither vigabatrin (VGB) nor P2X receptor antagonists (suramin, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid) protected against the delayed neuronal death in the CA1 region of the hippocampus after ischemia. However, the co-treatments of VGB and P2X receptor antagonists effectively prevent ischemia-induced neurodegeneration. Therefore, these findings suggest that blockade of the P2X receptor accompanied by activation of GABAergic inhibition may play an important role in the neuroprotection against ischemic insults.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | | | | | |
Collapse
|
9
|
Riley C, Hutter-Paier B, Windisch M, Doppler E, Moessler H, Wronski R. A peptide preparation protects cells in organotypic brain slices against cell death after glutamate intoxication. J Neural Transm (Vienna) 2005; 113:103-10. [PMID: 15843866 DOI: 10.1007/s00702-005-0302-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2005] [Accepted: 03/12/2005] [Indexed: 01/20/2023]
Abstract
Cerebrolysin has been shown to have neurotrophic and neuroprotective potential similar to NGF or BDNF. In the present study organotypic brain slices were utilized to determine the neuroprotective effects of Cerebrolysin, in a glutamate lesion paradigm mimicking a key event in ischemia. The study focused on the effects of Cerebrolysin on both necrotic and apoptotic cell death. Two specific DNA intercalating dyes were used to distinguish the type of cell death. The drug effect was evaluated both microscopically and quantitatively before, 24 hours after and then again 8 days after the lesion. Cerebrolysin was added either before and after the lesion or after the lesion only. The most pronounced effect was seen with the drug added both prior to and after the glutamate lesioning. A treatment after the lesion only also counteracted necrosis and apoptosis. The results render the drug relevant for treating acute as well as chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- C Riley
- JSW-Research, Institute of Experimental Pharmacology, Graz, Austria
| | | | | | | | | | | |
Collapse
|
10
|
Ikeda M, Toyoda H, Yamada J, Okabe A, Sato K, Hotta Y, Fukuda A. Differential development of cation-chloride cotransporters and Cl- homeostasis contributes to differential GABAergic actions between developing rat visual cortex and dorsal lateral geniculate nucleus. Brain Res 2003; 984:149-59. [PMID: 12932849 DOI: 10.1016/s0006-8993(03)03126-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A recent study suggested that gamma-aminobutyric acid (GABA) plays differential roles in activity-dependent plasticity between the visual cortex (VC) and the dorsal lateral geniculate nucleus (dLGN). In the present study, to investigate differential GABAergic functions in postnatal visual system development, the development of [Cl(-)](i), cation-Cl(-) cotransporter expression, and the [Ca(2+)](i) responses evoked by GABA were compared between VC and dLGN during the early stages of development. Using rat brain slices from postnatal days (P) 0-17, GABA-evoked [Ca(2+)](i) responses and resting [Cl(-)](i) were measured by means of optical imaging of Ca(2+) and Cl(-), respectively. Changes in the expression of cation-Cl(-) cotransporters (viz. the outwardly-directed K(+)-Cl(-) cotransporter, KCC2, and the inwardly-directed Na(+),K(+)-2Cl(-) cotransporter, NKCC1) were examined in VC and dLGN by in situ hybridization. At birth, the excitatory actions of GABA were powerful in VC, but missing in dLGN (as indicated by neuronal [Ca(2+)](i) transients), and the resting [Cl(-)](i) was significantly higher in VC than in dLGN. Signals for KCC2 mRNA expression were significantly higher in dLGN than in VC at P0. This suggests that extrusion of Cl(-) from neurons is stronger in dLGN than in VC at P0, so that a GABAergic excitatory effect was not observed in dLGN because of more negative equilibrium potential for Cl(-). The present study indicates clear differences in the molecular and physiological bases of Cl(-) homeostasis and GABA actions between the developing VC and dLGN. Such differential GABAergic actions may underlie the distinct mechanisms involved in VC and dLGN development within the visual system.
Collapse
Affiliation(s)
- Masahiko Ikeda
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Farkas I, Takahashi M, Fukuda A, Yamamoto N, Akatsu H, Baranyi L, Tateyama H, Yamamoto T, Okada N, Okada H. Complement C5a receptor-mediated signaling may be involved in neurodegeneration in Alzheimer's disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5764-71. [PMID: 12759460 DOI: 10.4049/jimmunol.170.11.5764] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In our earlier results, we demonstrated that cells expressing the complement C5aR are vulnerable since abnormal activation of C5aR caused apoptosis of these cells. In this study, we demonstrate that activation of C5aR by antisense homology box (AHB) peptides synthesized in multiple antigenic peptide form and representing putative interaction sites of the C5a/C5aR evoked calcium influx in TGW neuroblastoma cells. Dose-dependent inhibition of the response was found when the cells were pretreated with C5a, suggesting that C5aR was involved in this process. In addition, pretreatment with monomeric forms of the AHB peptides resulted in attenuation of the calcium signals, supporting the idea of the role of C5aR in this process. Cells of a neuron-rich primary culture and pyramidal cells of rat brain slices also responded to the AHB peptide activation with an increase in the intracellular calcium level, showing that calcium metabolism might be affected in these cells. TUNEL staining demonstrated that C5aR-mediated apoptosis could be induced both in cells of the primary culture as well as in cortical pyramidal neurons of the rat brain. In addition, we investigated expression of C5aR in the hippocampal and cortical neurons of human brains of healthy and demented patients using two anti-human C5aR Abs. Pyramidal cells of the hippocampus and cortex and granular cells of the hippocampus were immunopositive on staining. Although staining was also positive in the vascular dementia brain, it disappeared in the brain with Alzheimer's disease. These results provide further support that C5aR may be involved in neurodegeneration.
Collapse
Affiliation(s)
- Imre Farkas
- Department of Molecular Biology, Nagoya City University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fukuda A, Tanaka M, Yamada Y, Muramatsu K, Shimano Y, Nishino H. Simultaneous optical imaging of intracellular Cl- in neurons in different layers of rat neocortical slices: advantages and limitations. Neurosci Res 1998; 32:363-71. [PMID: 9950064 DOI: 10.1016/s0168-0102(98)00099-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Simultaneous recording of changes in intracellular Cl- concentration ([Cl-]i) in individual neurons situated in different layers (e.g. II/III-VI) of neocortical slices was found to be feasible by means of optical fluorescence measurements using 6-methoxy-N-ethylquinolinium iodide (MEQ). Gamma-aminobutyric acid (GABA) caused a measurable increase in [Cl-]i in adult neocortical neurons, but a decrease in immature neurons. Developmental changes in the function of the Cl- pump and cation-Cl- co-transporters were evaluated using inhibitors such as furosemide (FURO), ethacrynic acid (ETA), and bumetanide (BMT). However, it was found that these inhibitors absorb and/or emit light of the wavelength that is used for the optical imaging of MEQ. In addition, quenching of MEQ fluorescence by Cl- and leakage of loaded MEQ was significantly enhanced at a higher temperature, which will limit experimentation at > 30 degrees C. Estimation of [Cl-]i in individual neurons in slices was made possible by calibrating intracellular MEQ fluorescence signals at known Cl- concentrations ([Cl-]) in the presence of tributyltin, a Cl(-)-OH- antiporter, nigericin, a K+-H+ antiporter, and KSCN. This enables comparison of [Cl-]i between neurons in different slices. Thus, optical imaging of [Cl-]i in brain slices can provide valuable spatial information about [Cl-]i dynamics and homeostasis, although it should be emphasized that the technique does have some limitations.
Collapse
Affiliation(s)
- A Fukuda
- Department of Physiology, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Fukuda A, Muramatsu K, Okabe A, Shimano Y, Hida H, Fujimoto I, Nishino H. Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl- gradient in neonatal rat neocortex. J Neurophysiol 1998; 79:439-46. [PMID: 9425212 DOI: 10.1152/jn.1998.79.1.439] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied the effects of gamma-aminobutyric acid (GABA) and of reducing the Cl- gradient on the [Ca2+]i in pyramidal neurons of rat somatosensory cortex. The Cl- gradient was reduced either with furosemide or by oxygen-glucose deprivation. Immature slices taken at postnatal day (P)7-14 were labeled with fura-2, and [Ca2+]i was monitored in identified pyramidal cells in layer II/III as the ratio of fluorescence intensities (RF340/F380). The magnitude of the [Ca2+]i increases induced by oxygen-glucose deprivation was significantly reduced (by 44%) by bicuculline (10 microM), a GABAA receptor antagonist. Under normal conditions, GABA generally did not raise [Ca2+]i, although in some neurons a small and transient [Ca2+]i increase was observed. These transient [Ca2+]i increases were blocked by Ni2+ (1 mM), a blocker of voltage-dependent Ca2+ channels (VDCCs). Continuous perfusion with GABA did not cause a sustained elevation of [Ca2+]i but bicuculline caused [Ca2+]i oscillations. After inhibition of Cl- extrusion with furosemide (1.5 mM), GABA induced a large [Ca2+]i increase consisting of an initial peak followed by a sustained phase. Both the initial and the sustained phases were eliminated by bicuculline (10 microM). The initial but not the sustained phase was abolished by Ni2+. In the presence of Ni2+, the remaining sustained response was inhibited by the addition of 2-amino-5-phosphonopentanoic acid (AP5, 20 microM), a selective N-methyl-D-aspartate (NMDA) receptor antagonist. Thus the initial peak and the sustained phase of the GABA-evoked [Ca2+]i increase were mediated by Ca2+ influx through VDCCs and NMDA receptor channels, respectively, and both phases were initiated via the GABAA receptor. These results indicate that, in neocortical pyramidal neurons, a reduction in the Cl- gradient converts the GABAA receptor-mediated action from nothing or virtually nothing to a large and sustained accumulation of cellular Ca2+. This accumulation is the result of Ca2+ influx mainly through the NMDA receptor channel. Thus GABA, normally an inhibitory transmitter, may play an aggravating role in excitotoxicity if a shift in the Cl- equilibrium potential occurs, as reported previously, during cerebral ischemia.
Collapse
Affiliation(s)
- A Fukuda
- Department of Physiology, Nagoya City University Medical School, Nagoya, Aichi 467, Japan
| | | | | | | | | | | | | |
Collapse
|