1
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
2
|
He LL, Zhang QF, Wang LC, Dai JX, Wang CH, Zheng LH, Zhou Z. Muscarinic inhibition of nicotinic transmission in rat sympathetic neurons and adrenal chromaffin cells. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0188. [PMID: 26009767 DOI: 10.1098/rstb.2014.0188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Little is known about the interactions between nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs). Here we report that methacholine (MCh), a selective agonist of mAChRs, inhibited up to 80% of nicotine-induced nAChR currents in sympathetic superior cervical ganglion neurons and adrenal chromaffin cells. The muscarine-induced inhibition (MiI) substantially reduced ACh-induced membrane currents through nAChRs and quantal neurotransmitter release. The MiI was time- and temperature-dependent. The slow recovery of nAChR current after washout of MCh, as well as the high value of Q10 (3.2), suggested, instead of a direct open-channel blockade, an intracellular metabotropic process. The effects of GTP-γ-S, GDP-β-S and pertussis toxin suggested that MiI was mediated by G-protein signalling. Inhibitors of protein kinase C (bisindolymaleimide-Bis), protein kinase A (H89) and PIP2 depletion attenuated the MiI, indicating that a second messenger pathway is involved in this process. Taken together, these data suggest that mAChRs negatively modulated nAChRs via a G-protein-mediated second messenger pathway. The time dependence suggests that MiI may provide a novel mechanism for post-synaptic adaptation in all cells/neurons and synapses expressing both types of AChRs.
Collapse
Affiliation(s)
- Lin-Ling He
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Quan-Feng Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Lie-Cheng Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jing-Xia Dai
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Chang-He Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Liang-Hong Zheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhuan Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Zhang C, Wang Z, Dong J, Pan R, Qiu H, Zhang J, Zhang P, Zheng J, Yu W. Bilirubin modulates acetylcholine receptors in rat superior cervical ganglionic neurons in a bidirectional manner. Sci Rep 2014; 4:7475. [PMID: 25503810 PMCID: PMC4265787 DOI: 10.1038/srep07475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Autonomic dysfunction as a partial contributing factor to cardiovascular instability in jaundiced patients is often associated with increased serum bilirubin levels. Whether increased serum bilirubin levels could directly inhibit sympathetic ganglion transmission by blocking neuronal nicotinic acetylcholine receptors (nAChRs) remains to be elucidated. Conventional patch-clamp recordings were used to study the effect of bilirubin on nAChRs currents from enzymatically dissociated rat superior cervical ganglia (SCG) neurons. The results showed that low concnetrations (0.5 and 2 μM) of bilirubin enhanced the peak ACh-evoked currents, while high concentrations (3 to 5.5 µM) of bilirubin suppressed the currents with an IC50 of 4 ± 0.5 μM. In addition, bilirubin decreased the extent of desensitization of nAChRs in a concentration-dependent manner. This inhibitory effect of bilirubin on nAChRs channel currents was non-competitive and voltage independent. Bilirubin partly improved the inhibitory effect of forskolin on ACh-induced currents without affecting the action of H-89. These data suggest that the dual effects of enhancement and suppression of bilirubin on nAChR function may be ascribed to the action mechanism of positive allosteric modulation and direct blockade. Thus, suppression of sympathetic ganglionic transmission through postganglionic nAChRs inhibition may partially contribute to the adverse cardiovascular effects in jaundiced patients.
Collapse
Affiliation(s)
- Chengmi Zhang
- 1] Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China [2] Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhenmeng Wang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Jing Dong
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ruirui Pan
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Haibo Qiu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Jinmin Zhang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Peng Zhang
- Department of Clinical Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Competitive Inhibition of the Nondepolarizing Muscle Relaxant Rocuronium on Nicotinic Acetylcholine Receptor Channels in the Rat Superior Cervical Ganglia. J Cardiovasc Pharmacol 2014; 63:428-33. [DOI: 10.1097/fjc.0000000000000063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Lechner SG, Boehm S. Regulation of neuronal ion channels via P2Y receptors. Purinergic Signal 2011; 1:31-41. [PMID: 18404398 PMCID: PMC2096562 DOI: 10.1007/s11302-004-4746-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/11/2004] [Accepted: 10/12/2004] [Indexed: 11/25/2022] Open
Abstract
Within the last 15 years, at least 8 different G protein-coupled P2Y receptors have been characterized. These mediate slow metabotropic effects of nucleotides in neurons as well as non-neural cells, as opposed to the fast ionotropic effects which are mediated by P2X receptors. One class of effector systems regulated by various G protein-coupled receptors are voltage-gated and ligand-gated ion channels. This review summarizes the current knowledge about the modulation of such neuronal ion channels via P2Y receptors. The regulated proteins include voltage-gated Ca2+ and K+ channels, as well as N-methyl-d-aspartate, vanilloid, and P2X receptors, and the regulating entities include most of the known P2Y receptor subtypes. The functional consequences of the modulation of ion channels by nucleotides acting at pre- or postsynaptic P2Y receptors are changes in the strength of synaptic transmission. Accordingly, ATP and related nucleotides may act not only as fast transmitters (via P2X receptors) in the nervous system, but also as neuromodulators (via P2Y receptors). Hence, nucleotides are as universal transmitters as, for instance, acetylcholine, glutamate, or γ-aminobutyric acid.
Collapse
Affiliation(s)
- Stefan G Lechner
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
6
|
Jewell ML, Breyer RM, Currie KPM. Regulation of calcium channels and exocytosis in mouse adrenal chromaffin cells by prostaglandin EP3 receptors. Mol Pharmacol 2011; 79:987-96. [PMID: 21383044 PMCID: PMC3102550 DOI: 10.1124/mol.110.068569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/07/2011] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin (PG) E(2) controls numerous physiological functions through a family of cognate G protein-coupled receptors (EP1-EP4). Targeting specific EP receptors might be therapeutically useful and reduce side effects associated with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid synthesis. Systemic immune challenge and inflammatory cytokines have been shown to increase expression of the synthetic enzymes for PGE(2) in the adrenal gland. Catecholamines and other hormones, released from adrenal chromaffin cells in response to Ca(2+) influx through voltage-gated Ca(2+) channels, play central roles in homeostatic function and the coordinated stress response. However, long-term elevation of circulating catecholamines contributes to the pathogenesis of hypertension and heart failure. Here, we investigated the EP receptor(s) and cellular mechanisms by which PGE(2) might modulate chromaffin cell function. PGE(2) did not alter resting intracellular [Ca(2+)] or the peak amplitude of nicotinic acetylcholine receptor currents, but it did inhibit Ca(V)2 voltage-gated Ca(2+) channel currents (I(Ca)). This inhibition was voltage-dependent and mediated by pertussis toxin-sensitive G proteins, consistent with a direct Gβγ subunit-mediated mechanism common to other G(i/o)-coupled receptors. mRNA for all four EP receptors was detected, but using selective pharmacological tools and EP receptor knockout mice, we demonstrated that EP3 receptors mediate the inhibition of I(Ca). Finally, changes in membrane capacitance showed that Ca(2+)-dependent exocytosis was reduced in parallel with I(Ca). To our knowledge, this is the first study of EP receptor signaling in mouse chromaffin cells and identifies a molecular mechanism for paracrine regulation of neuroendocrine function by PGE(2).
Collapse
Affiliation(s)
- Mark L Jewell
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232-2520, USA
| | | | | |
Collapse
|
7
|
Grove CL, Szabo TM, McIntosh JM, Do SC, Waldeck RF, Faber DS. Fast synaptic transmission in the goldfish CNS mediated by multiple nicotinic receptors. J Physiol 2010; 589:575-95. [PMID: 21115642 DOI: 10.1113/jphysiol.2010.197608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Usually nicotinic receptors in the central nervous system only influence the strength of a signal between neurons. At a few critical connections, for instance some of those involved in the flight response, nicotinic receptors not only modulate the signal, they actually determine whether a signal is conveyed or not. We show at one of the few such connections accessible for study, up to three different nicotinic receptor subtypes mediate the signal. The subtypes appear to be clustered in separate locations. Depending on the number and combination of the subtypes present the signal can range from short to long duration and from low to high amplitude. This provides a critical connection with a built-in plasticity and may enable it to adapt to a changing environment.
Collapse
Affiliation(s)
- Charlotte L Grove
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Meves H. The action of prostaglandins on ion channels. Curr Neuropharmacol 2010; 4:41-57. [PMID: 18615137 DOI: 10.2174/157015906775203048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/03/2005] [Accepted: 10/31/2005] [Indexed: 11/22/2022] Open
Abstract
Prostaglandins, in particular PGE(2) and prostacyclin PGI(2) have diverse biological effects. Most importantly, they are involved in inflammation and pain. Prostaglandins in nano- and micromolar concentrations sensitize nerve cells, i.e. make them more sensitive to electrical or chemical stimuli. Sensitization arises from the effect of prostaglandins on ion channels and occurs both at the peripheral terminal of nociceptors at the site of tissue injury (peripheral sensitization) and at the synapses in the spinal cord (central sensitization). The first step is the binding of prostaglandins to receptors in the cell membrane, mainly EP and IP receptors. The receptors couple via G proteins to enzymes such as adenylate cyclase and phospholipase C (PLC). Activation of adenylate cyclase leads to increase of cAMP and subsequent activation of protein kinase A (PKA) or PKA-independent effects of cAMP, e.g. mediated by Epac (=exchange protein activated by cAMP). Activation of PLC causes increase of inositol phosphates and increase of cytosolic calcium. This article summarizes the effects of PGE(2), PGE(1), PGI2 and its stable analogues on non-selective cation channels and sodium, potassium, calcium and chloride channels. It describes the mechanism responsible for the facilitatory or inhibitory prostaglandin effects on ion channels. Understanding these mechanisms is essential for the development of useful new analgesics.
Collapse
Affiliation(s)
- Hans Meves
- Physiologisches Institut, Universität des Saarlandes, D-66421 Homburg-Saar, Germany.
| |
Collapse
|
9
|
Butt C, Alptekin A, Shippenberg T, Oz M. Endogenous cannabinoid anandamide inhibits nicotinic acetylcholine receptor function in mouse thalamic synaptosomes. J Neurochem 2008; 105:1235-43. [PMID: 18194436 DOI: 10.1111/j.1471-4159.2008.05225.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of the endogenous cannabinoid anandamide [arachidonylethanolamide (AEA)] on the function of nicotinic acetylcholine receptor (nAChR) were investigated using the 86Rb+ efflux assay in thalamic synaptosomes. AEA reversibly inhibited 86Rb+ efflux induced by 300 microM ACh with an IC50 value of 0.9 +/- 2 microM. Pre-treatment with the cannabinoid (CB1) receptor antagonist SR141716A (1 microM), the CB2 receptor antagonist SR144528 (1 microM), or pertussis toxin (0.2 mg/mL) did not alter the inhibitory effects of AEA, suggesting that known CB receptors are not involved in AEA inhibition of nAChRs. AEA inhibition of 86Rb+ efflux was not reversed by increasing acetylcholine (ACh) concentrations. In radioligand binding studies, the specific binding of [3H]-nicotine was not altered in the presence of AEA, indicating that AEA inhibits the function of nAChR in a non-competitive manner. Neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor, indomethacin, (5 microM) affected AEA inhibition of nAChRs, suggesting that the effect of AEA is not mediated by its metabolic products. Importantly, the extent of AEA inhibition of 86Rb+ efflux was significantly attenuated by the absence of 1% fatty acid free bovine serum albumin pre-treatment, supporting previous findings that fatty acid-like compounds modulate the activity of nAChRs. Collectively, the results indicate that AEA inhibits the function of nAChRs in thalamic synaptosomes via a CB-independent mechanism and that the background activity of these receptors is affected by fatty acids and AEA.
Collapse
Affiliation(s)
- Christopher Butt
- Neuroscience Discovery, Martek Biosciences, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
10
|
Kubista H, Boehm S. Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 2006; 112:213-42. [PMID: 16730801 DOI: 10.1016/j.pharmthera.2006.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The release of noradrenaline from nerve terminals is modulated by a variety of presynaptic receptors. These receptors belong to one of the following three receptor superfamilies: transmitter-gated ion channels, G protein-coupled receptors (GPCR), and membrane receptors with intracellular enzymatic activities. For representatives of each of these three superfamilies, receptor activation has been reported to cause either an enhancement or a reduction of noradrenaline release. As these receptor classes display greatly diverging structures and functions, a multitude of different molecular mechanisms are involved in the regulation of noradrenaline release via presynaptic receptors. This review gives a short overview of the presynaptic receptors on noradrenergic nerve terminals and summarizes the events involved in vesicle exocytosis in order to finally delineate the most important signaling cascades that mediate the modulation via presynaptic receptors. In addition, the interactions between the various presynaptic receptors are described and the underlying molecular mechanisms are elucidated. Together, these presynaptic signaling mechanisms form a sophisticated network that precisely adapts the amount of noradrenaline being released to a given situation.
Collapse
Affiliation(s)
- Helmut Kubista
- Institute of Pharmacology, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090 Vienna, Austria
| | | |
Collapse
|
11
|
Oz M, Jackson SN, Woods AS, Morales M, Zhang L. Additive effects of endogenous cannabinoid anandamide and ethanol on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes. J Pharmacol Exp Ther 2005; 313:1272-80. [PMID: 15687372 DOI: 10.1124/jpet.104.081315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interaction between the effects of the endogenous cannabinoid receptor agonist anandamide and ethanol on the function of homomeric alpha(7)-nicotinic acetylcholine (nACh) receptors expressed in Xenopus oocytes were investigated using the two-electrode voltage-clamp technique. Anandamide and ethanol reversibly inhibited currents evoked with 100 microM acetylcholine in a concentration-dependent manner. Coapplication of anandamide and ethanol caused a significantly greater inhibition of alpha(7)-nACh receptor function than anandamide or ethanol alone. The IC(50) value of 238 +/- 34 nM for anandamide inhibition decreased significantly to 104 +/- 23 nM in the presence of 30 mM ethanol. The inhibition of alpha(7)-mediated currents by coapplication of anandamide and ethanol was not altered by phenylmethylsulfonyl fluoride, an inhibitor of anandamide hydrolyzing enzyme, or N-(4-hydroxyphenyl)-arachidonylamide, an anandamide transport inhibitor. Analysis of oocytes by matrix-assisted laser desorption/ionization technique indicated that ethanol treatment did not alter the lipid profile of oocytes, and there is negligible, if any, anandamide present in these cells. Results of studies with chimeric alpha(7)-nACh-5-HT(3) receptors comprised of the amino-terminal domain of the alpha(7)-nACh receptor and the transmembrane and carboxyl-terminal domains of 5-HT(3) receptors suggest that although ethanol inhibition of the alpha(7)-nACh receptor is likely to involve the N-terminal region of the receptor, the site of action for anandamide is located in the transmembrane and carboxyl-terminal domains of the receptors. These data indicate that endocannabinoids and ethanol potentiate each other's inhibitory effects on alpha(7)-nACh receptor function through distinct regions of the receptor.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse/Intramural Research Program, Cellular Neurobiology Branch, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Oz M, Zhang L, Ravindran A, Morales M, Lupica CR. Differential effects of endogenous and synthetic cannabinoids on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes. J Pharmacol Exp Ther 2004; 310:1152-60. [PMID: 15102930 DOI: 10.1124/jpet.104.067751] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of endogenous and synthetic cannabinoid receptor agonists, including 2-arachidonoylglycerol (2-AG), R-methanandamide, WIN55,212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenylcarbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], and CP 55,940 [1alpha,2beta-(R)-5alpha]-(-)-5-(1,1-dimethyl)-2-[5-hydroxy-2-(3-hydroxypropyl) cyclohexyl-phenol], and the psychoactive constituent of marijuana, Delta9-tetrahydrocannabinol (Delta9-THC), on the function of homomeric alpha7-nicotinic acetylcholine (nACh) receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp technique. The endogenous cannabinoid receptor ligands 2-AG and the metabolically stable analog of anandamide (arachidonylethanolamide), R-methanandamide, reversibly inhibited currents evoked with ACh (100 microM) in a concentration-dependent manner (IC50 values of 168 and 183 nM, respectively). In contrast, the synthetic cannabinoid receptor agonists CP 55,940, WIN55,212-2, and the phytochemical Delta9-THC did not alter alpha7-nACh receptor function. The inhibition of alpha7-mediated currents by 2-AG was found to be non-competitive and voltage-independent. Additional experiments using endocannabinoid metabolites suggested that arachidonic acid, but not ethanolamine or glycerol, could also inhibit the alpha7-nACh receptor function. Whereas the effects of arachidonic acid were also noncompetitive and voltage-independent, its potency was much lower than 2-AG and anandamide. Results of studies with chimeric alpha7-nACh-5-hydroxytryptamine (5-HT)3 receptors comprised of the amino-terminal domain of the alpha7-nACh receptor and the transmembrane and carboxyl-terminal domains of 5-HT3 receptors indicated that the site of interaction of the endocannabinoids with the alpha7-nAChR was not located on the N-terminal region of the receptor. These data indicate that cannabinoid receptor ligands that are produced in situ potently inhibit alpha7-nACh receptor function, whereas the synthetic cannabinoid ligands, and Delta9-THC, are without effect, or are relatively ineffective at inhibiting these receptors.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse/Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Dr., Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
14
|
Andoh T, Itoh H, Higashi T, Saito Y, Ishiwa D, Kamiya Y, Yamada Y. PKC-independent inhibition of neuronal nicotinic acetylcholine receptors by diacylglycerol. Brain Res 2004; 1013:125-33. [PMID: 15196975 DOI: 10.1016/j.brainres.2004.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2004] [Indexed: 11/19/2022]
Abstract
Diacylglycerol modulates cell functions primarily through activation of protein kinase C (PKC). In a previous study, however, we found that a diacylglycerol analogue, 1-oleoyl-2-acetylglycerol (OAG), accelerated desensitization of neuronal nicotinic acetylcholine receptors (nAchRs) independently of PKC activation in PC12 cells. In the present study, we investigated whether other analogues and endogenous diacylglycerol exert similar effects on neuronal nAchRs and characterized the modulation by diacylglycerol. We measured the nicotine-induced whole-cell current in the absence and presence of diacylglycerol analogues in PC12 cells. We also investigated the effects of a blockade of metabolic pathways of diacylglycerol by inhibiting diacylglycerol lipase and kinase. We found that all four diacylglycerol analogues studied promoted desensitization and depressed the nondesensitized component of the nicotine-induced current. These effects seemed independent of PKC activation because they were not antagonized by the PKC inhibitors staurosporine or bisindolylmaleimide I; one analogue that lacks the PKC-stimulating action was also effective. The effects of diacylglycerol analogues were not antagonized by high doses of nicotine and were independent of the membrane potential. Similar modulatory effects were observed by treatment with RHC80267, a blocker of diacylglycerol lipase, and R59949, an inhibitor of diacylglycerol kinase, in the presence of staurosporine. These results suggest that diacylglycerol, both exogenously applied and endogenously produced, modulates neuronal nAchRs independently of PKC activation in PC12 cells; further, these effects seemed consistent with a noncompetitive and voltage-independent block. They raised the possibility that PKC-independent inhibition of neuronal nAchRs by diacylglycerol may be a novel modulatory process.
Collapse
Affiliation(s)
- Tomio Andoh
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Lang PM, Burgstahler R, Sippel W, Irnich D, Schlotter-Weigel B, Grafe P. Characterization of neuronal nicotinic acetylcholine receptors in the membrane of unmyelinated human C-fiber axons by in vitro studies. J Neurophysiol 2003; 90:3295-303. [PMID: 12878715 DOI: 10.1152/jn.00512.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of acetylcholine to peripheral nerve terminals in the skin is a widely used test in studies of human small-fiber functions. However, a detailed pharmacological profile and the subunit composition of nicotinic acetylcholine receptors in human C-fiber axons are not known. In the present study, we recorded acetylcholine-induced changes of the excitability and of the intracellular Ca2+ concentration in C-fiber axons of isolated human nerve segments. In addition, using immunohistochemistry, an antibody of a subtype of nicotinic acetylcholine receptor was tested. Acetylcholine and agonists reduced the current necessary for the generation of action potentials in C fibers by <or=30%. This increase in axonal excitability was accompanied by a rise in the free intracellular Ca2+ concentration. The following rank order of potency for agonists was found: epibatidine >> 5-Iodo-A-85380 > 1,1-dimethyl-4-phenylpiperazinium iodide > nicotine > cytisine > acetylcholine; choline had no effect. The epibatidine-induced increase in axonal excitability was blocked by mecamylamine and, less efficiently, by methyllycacontine and dihydro-beta-erythroidine. Many C-fiber axons were labeled by an antibody that recognizes the alpha5 subunit of nicotinic acetylcholine receptors. In summary, electrophysiological and immunohistochemical data indicate the functional expression of nicotinic acetylcholine receptors composed of alpha3, alpha5, and beta4 but not of alpha4/beta2 or of alpha7 subunits in the axonal membrane of unmyelinated human C fibers. In addition, the observations suggest that the axonal membrane of C fibers in isolated segments of human sural nerve can be used as a model for presumed cholinergic chemosensitivity of axonal terminals.
Collapse
Affiliation(s)
- P M Lang
- Departments of Physiology and Anesthesiology and Friedrich-Baur-Institute, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Oz M, Ravindran A, Diaz-Ruiz O, Zhang L, Morales M. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. J Pharmacol Exp Ther 2003; 306:1003-10. [PMID: 12766252 DOI: 10.1124/jpet.103.049981] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of 229.7 +/- 20.4 nM. The effect of anandamide was neither dependent on the membrane potential nor meditated by endogenous Ca2+ dependent Cl- channels since it was unaffected by intracellularly injected BAPTA and perfusion with Ca2+-free bathing solution containing 2 mM Ba2+. Anandamide decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on nicotinic acetylcholine (nACh) alpha7 receptors. This effect was not mediated by CB1 or CB2 receptors, as neither the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) nor CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethyl-bicyclo-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR 144528) reduced the inhibition by anandamide. In addition, inhibition of nicotinic responses by anandamide was not sensitive to either pertussis toxin treatment or to the membrane permeable cAMP analog 8-Br-cAMP (0.2 mM). Inhibitors of enzymes involved in anandamide metabolism including phenylmethylsulfonyl fluoride, superoxide dismutase, and indomethacin, or the anandamide transport inhibitor AM404 did not prevent anandamide inhibition of nicotinic responses, suggesting that anandamide itself acted on nicotinic receptors. In conclusion, these results demonstrate that the endogenous cannabinoid anandamide inhibits the function of nACh alpha7 receptors expressed in Xenopus oocytes in a cannabinoid receptor-independent and noncompetitive manner.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse/National Institute of Health, Department of Health and Human Services, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
17
|
Du C, Role LW. Differential modulation of nicotinic acetylcholine receptor subtypes and synaptic transmission in chick sympathetic ganglia by PGE(2). J Neurophysiol 2001; 85:2498-508. [PMID: 11387396 DOI: 10.1152/jn.2001.85.6.2498] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The diversity of neuronal nicotinic acetylcholine receptors (nAChRs) is likely an important factor in the modulation of synaptic transmission by acetylcholine and nicotine. We have tested whether postsynaptic nAChRs are modulated in a subtype-specific manner by prostaglandin E(2) (PGE(2)), a regulator of neuronal excitability in both the central and peripheral nervous systems, and examined the effects of PGE(2) on nicotinic transmission. Somatodendritic nAChRs in chick lumbar sympathetic ganglia include four nAChR subtypes distinguished on the basis of conductance and kinetic profile. Nanomolar PGE(2) applied to the extrapatch membrane differentially regulates opening probability (Po), frequency and the opening duration of each nAChR channel subtype in cell-attached patches. PGE(2) decreases the Po of the predominant nAChR subtype (36 pS) and significantly increases Po and open duration of the 23 pS subtype. The 23 pS subtype is gated by the alpha 7-selective agonist choline, and choline-gated currents are inhibited by alpha-bungarotoxin. To examine whether PGE(2) modulates nAChRs at synaptic sites, we studied the effects of PGE(2) on amplitude and decay of synaptic currents in visceral motoneuron-sympathetic neuron co-cultures. PGE(2) significantly decreases the amplitude of miniature excitatory postsynaptic currents (mEPSCs), consistent with the predominant inhibition by PGE(2) of all but the 23 pS subtype. The time constant of mEPSCs at PGE(2)-treated synapses is prolonged, which is also consistent with an increased contribution of the longer open duration of the 23 pS nAChR subtype with PGE(2) treatment. To examine the presynaptic effect of PGE(2), nanomolar nicotine was used. Nicotine induces facilitation of synaptic transmission by increasing mEPSC frequency, an action thought to involve presynaptic, alpha 7-containing nAChRs. In the presence of PGE(2), nicotine-induced synaptic facilitation persists. Thus the net effect of PGE(2) is to alter the profile of nAChRs contributing to synaptic transmission from larger conductance, briefer opening channels to smaller conductance, longer opening events. This subtype-specific modulation of nAChRs by PGE(2) may provide a mechanism for selective activation and suppression of synaptic pathways mediated by different nAChR subtype(s) at both pre- and postsynaptic sites.
Collapse
Affiliation(s)
- C Du
- Department of Anatomy and Cell Biology in the Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
18
|
Garrido R, Malecki A, Hennig B, Toborek M. Nicotine attenuates arachidonic acid-induced neurotoxicity in cultured spinal cord neurons. Brain Res 2000; 861:59-68. [PMID: 10751565 DOI: 10.1016/s0006-8993(00)01977-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Arachidonic acid release from cellular membranes due to spinal cord trauma may be one of the principal destructive events that can lead to progressive injury to spinal cord tissue. Exposure to arachidonic acid can compromise neuronal survival and viability. Because nicotine is known to be a neuroprotective agent, we propose that it can prevent arachidonic acid-induced neurotoxicity. To study this hypothesis, effects of nicotine on mitochondrial function, cellular energy content and apoptotic cell death were measured in cultured spinal cord neurons treated with arachidonic acid. Nicotine attenuated arachidonic acid-induced compromised cell viability and cellular ATP levels in spinal cord neurons. Nicotine exerted these protective effects when used at the concentration of 10 microM and only after a 2-h pre-treatment before a co-exposure to arachidonic acid. Antagonists of nicotinic receptors, such as alpha-bungarotoxin or mecamylamine, only partially reversed these neuroprotective effects of nicotine. In addition, nicotine prevented arachidonic acid-induced activation of caspase-3 activity and apoptotic cell death. These results indicate that nicotine pre-treatment can exert a protective effect against arachidonic acid-induced injury to spinal cord neurons.
Collapse
Affiliation(s)
- R Garrido
- Department of Surgery, Division of Neurosurgery, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
19
|
Abstract
The potent behavioral and cognitive effects of nicotine highlight the physiological importance of nicotinic acetylcholine receptors (nAChRs). These receptors are part of the superfamily of neurotransmitter-gated ion channels that are responsible for rapid intercellular communication. Molecular cloning of the protein subunits that make up these receptors has led to greater understanding of the pharmacology and physiology of nAChRs. This review outlines our current understanding of the molecular constituents of these receptors and some of the recent studies of the structural determinants of receptors function.
Collapse
Affiliation(s)
- D S McGehee
- Department of Anesthesia and Critical Care, University of Chicago, Illinois 60637, USA
| |
Collapse
|