1
|
Nichols TR. Neuromechanical Circuits of the Spinal Motor Apparatus. Compr Physiol 2024; 14:5789-5838. [PMID: 39699088 DOI: 10.1002/cphy.c240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances. These pathways include both monosynaptic and polysynaptic components. Autogenic, monosynaptic pathways serve to control the spring-like properties of muscles preserving the nonlinear relationship between stiffness and force. Intermuscular monosynaptic pathways compensate for inertial disparities between the inertial properties of limb segments and help to control inertial coupling between joints and axes of rotation. Reciprocal inhibition controls joint stiffness in conjunction with feedforward cocontraction commands. Excitatory force feedback becomes operational during locomotion and increases muscular stiffness to accommodate the higher inertial loads. Inhibitory force feedback is widely distributed among muscles. It is integrated with excitatory pathways from muscle spindles and Golgi tendon organs to determine limb stiffness and interjoint coordination during interactions with the environment. The intermuscular distribution of force feedback is variable and serves to modulate limb stiffness to meet the physical demands of different motor tasks. © 2024 American Physiological Society. Compr Physiol 14:5789-5838, 2024.
Collapse
Affiliation(s)
- T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Harnie J, Al Arab R, Mari S, Yassine S, Eddaoui O, Jéhannin P, Audet J, Lecomte C, Iorio-Morin C, Prilutsky BI, Rybak IA, Frigon A. Forelimb movements contribute to hindlimb cutaneous reflexes during locomotion in cats. J Neurophysiol 2024; 131:997-1013. [PMID: 38691528 PMCID: PMC11381123 DOI: 10.1152/jn.00104.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion. We compared cutaneous reflexes evoked in six ipsilateral and four contralateral hindlimb muscles. Results showed similar occurrence and phase-dependent modulation of short-latency inhibitory and excitatory responses during quadrupedal and hindlimb-only locomotion in intact cats. However, the depth of modulation was reduced in the ipsilateral semitendinosus during hindlimb-only locomotion. Additionally, longer-latency responses occurred less frequently in extensor muscles bilaterally during hindlimb-only locomotion, whereas short-latency inhibitory and longer-latency excitatory responses occurred more frequently in the ipsilateral and contralateral sartorius anterior, respectively. After spinal transection, short-latency inhibitory and excitatory responses were similar to both intact conditions, whereas mid- or longer-latency excitatory responses were reduced or abolished. Our results in intact cats and the comparison with spinal-transected cats suggest that the absence of forelimb movements suppresses inputs from supraspinal structures and/or cervical cord that normally contribute to longer-latency reflex responses in hindlimb extensor muscles.NEW & NOTEWORTHY During quadrupedal locomotion, the coordination of forelimb and hindlimb movements involves central circuits and somatosensory feedback. To demonstrate how forelimb movement affects hindlimb cutaneous reflexes during locomotion, we stimulated the superficial peroneal nerve in intact cats during quadrupedal and hindlimb-only locomotion as well as in spinal-transected cats during hindlimb-only locomotion. We show that forelimb movement influences the modulation of hindlimb cutaneous reflexes, particularly the occurrence of long-latency reflex responses.
Collapse
Affiliation(s)
- Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Pierre Jéhannin
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Charly Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Zill SN, Dallmann CJ, Zyhowski W, Chaudhry H, Gebehart C, Szczecinski NS. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects. J Neurophysiol 2024; 131:198-215. [PMID: 38166479 PMCID: PMC11286306 DOI: 10.1152/jn.00414.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/04/2024] Open
Abstract
Force feedback could be valuable in adapting walking to diverse terrains, but the effects of changes in substrate inclination on discharges of sensory receptors that encode forces have rarely been examined. In insects, force feedback is provided by campaniform sensilla, mechanoreceptors that monitor forces as cuticular strains. We neurographically recorded responses of stick insect tibial campaniform sensilla to "naturalistic" forces (joint torques) that occur at the hind leg femur-tibia (FT) joint in uphill, downhill, and level walking. The FT joint torques, obtained in a previous study that used inverse dynamics to analyze data from freely moving stick insects, are quite variable during level walking (including changes in sign) but are larger in magnitude and more consistent when traversing sloped surfaces. Similar to vertebrates, insects used predominantly extension torque in propulsion on uphill slopes and flexion torques to brake forward motion when going downhill. Sensory discharges to joint torques reflected the torque direction but, unexpectedly, often occurred as multiple bursts that encoded the rate of change of positive forces (dF/dt) even when force levels were high. All discharges also showed hysteresis (history dependence), as firing substantially decreased or ceased during transient force decrements. These findings have been tested in simulation in a mathematical model of the sensilla (Szczecinski NS, Dallmann CJ, Quinn RD, Zill SN. Bioinspir Biomim 16: 065001, 2021) that accurately reproduced the biological data. Our results suggest the hypothesis that sensory feedback from the femoro-tibial joint indicating force dynamics (dF/dt) can be used to counter the instability in traversing sloped surfaces in animals and, potentially, in walking machines.NEW & NOTEWORTHY Discharges of sensory receptors (campaniform sensilla) in the hind legs of stick insects can differentially signal forces that occur in walking uphill versus walking downhill. Unexpectedly, sensory firing most closely reflects the rate of change of force (dF/dt) even when the force levels are high. These signals have been replicated in a mathematical model of the receptors and could be used to stabilize leg movements both in the animal and in a walking robot.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Chris J Dallmann
- Department of Neurobiology and Genetics, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - William Zyhowski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| | - Hibba Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Corinna Gebehart
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
4
|
Arias AA, Azizi E. Modulation of limb mechanics in alligators moving across varying grades. J Exp Biol 2023; 226:jeb246025. [PMID: 37930362 DOI: 10.1242/jeb.246025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Graded substrates require legged animals to modulate their limb mechanics to meet locomotor demands. Previous work has elucidated strategies used by cursorial animals with upright limb posture, but it remains unclear how sprawling species such as alligators transition between grades. We measured individual limb forces and 3D kinematics as alligators walked steadily across level, 15 deg incline and 15 deg decline conditions. We compared our results with the literature to determine how limb posture alters strategies for managing the energetic variation that accompanies shifts in grade. We found that juvenile alligators maintain spatiotemporal characteristics of gait and locomotor speed while selectively modulating craniocaudal impulses (relative to level) when transitioning between grades. Alligators seem to accomplish this using a variety of kinematic strategies, but consistently sprawl both limb pairs outside of the parasagittal plane during decline walking. This latter result suggests alligators and other sprawling species may use movements outside of the parasagittal plane as an axis of variation to modulate limb mechanics when transitioning between graded substrates. We conclude that limb mechanics during graded locomotion are fairly predictable across quadrupedal species, regardless of body plan and limb posture, with hindlimbs playing a more propulsive role and forelimbs functioning to dissipate energy. Future work will elucidate how shifts in muscle properties or function underlie such shifts in limb kinematics.
Collapse
Affiliation(s)
- Adrien A Arias
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Harnie J, Audet J, Mari S, Lecomte CG, Merlet AN, Genois G, Rybak IA, Prilutsky BI, Frigon A. State- and Condition-Dependent Modulation of the Hindlimb Locomotor Pattern in Intact and Spinal Cats Across Speeds. Front Syst Neurosci 2022; 16:814028. [PMID: 35221937 PMCID: PMC8863752 DOI: 10.3389/fnsys.2022.814028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Locomotion after complete spinal cord injury (spinal transection) in animal models is usually evaluated in a hindlimb-only condition with the forelimbs suspended or placed on a stationary platform and compared with quadrupedal locomotion in the intact state. However, because of the quadrupedal nature of movement in these animals, the forelimbs play an important role in modulating the hindlimb pattern. This raises the question: whether changes in the hindlimb pattern after spinal transection are due to the state of the system (intact versus spinal) or because the locomotion is hindlimb-only. We collected kinematic and electromyographic data during locomotion at seven treadmill speeds before and after spinal transection in nine adult cats during quadrupedal and hindlimb-only locomotion in the intact state and hindlimb-only locomotion in the spinal state. We attribute some changes in the hindlimb pattern to the spinal state, such as convergence in stance and swing durations at high speed, improper coordination of ankle and hip joints, a switch in the timing of knee flexor and hip flexor bursts, modulation of burst durations with speed, and incidence of bi-phasic bursts in some muscles. Alternatively, some changes relate to the hindlimb-only nature of the locomotion, such as paw placement relative to the hip at contact, magnitude of knee and ankle yield, burst durations of some muscles and their timing. Overall, we show greater similarity in spatiotemporal and EMG variables between the two hindlimb-only conditions, suggesting that the more appropriate pre-spinal control is hindlimb-only rather than quadrupedal locomotion.
Collapse
Affiliation(s)
- Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
- *Correspondence: Alain Frigon,
| |
Collapse
|
6
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Wöhrl T, Richter A, Guo S, Reinhardt L, Nowotny M, Blickhan R. Comparative analysis of a geometric and an adhesive righting strategy against toppling in inclined hexapedal locomotion. J Exp Biol 2021; 224:271172. [PMID: 34342358 DOI: 10.1242/jeb.242677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
Animals are known to exhibit different walking behaviors in hilly habitats. For instance, cats, rats, squirrels, tree frogs, desert iguana, stick insects and desert ants were observed to lower their body height when traversing slopes, whereas mound-dwelling iguanas and wood ants tend to maintain constant walking kinematics regardless of the slope. This paper aims to understand and classify these distinct behaviors into two different strategies against toppling for climbing animals by looking into two factors: (i) the torque of the center of gravity (CoG) with respect to the critical tipping axis, and (ii) the torque of the legs, which has the potential to counterbalance the CoG torque. Our comparative locomotion analysis on level locomotion and inclined locomotion exhibited that primarily only one of the proposed two strategies was chosen for each of our sample species, despite the fact that a combined strategy could have reduced the animal's risk of toppling over even more. We found that Cataglyphis desert ants (species Cataglyphis fortis) maintained their upright posture primarily through the adjustment of their CoG torque (geometric strategy), and Formica wood ants (species Formica rufa), controlled their posture primarily by exerting leg torques (adhesive strategy). We further provide hints that the geometric strategy employed by Cataglyphis could increase the risk of slipping on slopes as the leg-impulse substrate angle of Cataglyphis hindlegs was lower than that of Formica hindlegs. In contrast, the adhesion strategy employed by Formica front legs not only decreased the risk of toppling but also explained the steeper leg-impulse substrate angle of Formica hindlegs which should relate to more bending of the tarsal structures and therefore to more microscopic contact points, potentially reducing the risk of hindleg slipping.
Collapse
Affiliation(s)
- Toni Wöhrl
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany.,Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Adrian Richter
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | - Shihui Guo
- School of Informatics, Xiamen University, Xiamen, 361005 Fujian Province, China
| | - Lars Reinhardt
- Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | | |
Collapse
|
8
|
Klishko AN, Akyildiz A, Mehta-Desai R, Prilutsky BI. Common and distinct muscle synergies during level and slope locomotion in the cat. J Neurophysiol 2021; 126:493-515. [PMID: 34191619 DOI: 10.1152/jn.00310.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although it is well established that the motor control system is modular, the organization of muscle synergies during locomotion and their change with ground slope are not completely understood. For example, typical reciprocal flexor-extensor muscle synergies of level walking in cats break down in downslope: one-joint hip extensors are silent throughout the stride cycle, whereas hindlimb flexors demonstrate an additional stance phase-related electromyogram (EMG) burst (Smith JL, Carlson-Kuhta P, Trank TV. J Neurophysiol 79: 1702-1716, 1998). Here, we investigated muscle synergies during level, upslope (27°), and downslope (-27°) walking in adult cats to examine common and distinct features of modular organization of locomotor EMG activity. Cluster analysis of EMG burst onset-offset times of 12 hindlimb muscles revealed five flexor and extensor burst groups that were generally shared across slopes. Stance-related bursts of flexor muscles in downslope were placed in a burst group from level and upslope walking formed by the rectus femoris. Walking upslope changed swing/stance phase durations of level walking but not the cycle duration. Five muscle synergies computed using non-negative matrix factorization accounted for at least 95% of variance in EMG patterns in each slope. Five synergies were shared between level and upslope walking, whereas only three of those were shared with downslope synergies; these synergies were active during the swing phase and phase transitions. Two stance-related synergies of downslope walking were distinct; they comprised a mixture of flexors and extensors. We suggest that the modular organization of muscle activity during level and slope walking results from interactions between motion-related sensory feedback, CPG, and supraspinal inputs.NEW & NOTEWORTHY We demonstrated that the atypical EMG activities during cat downslope walking, silent one-joint hip extensors and stance-related EMG bursts in flexors, have many features shared with activities of level and upslope walking. Majority of EMG burst groups and muscle synergies were shared among these slopes, and upslope modulated the swing/stance phase duration but not cycle duration. Thus, synergistic EMG activities in all slopes might result from a shared CPG receiving somatosensory and supraspinal inputs.
Collapse
Affiliation(s)
- Alexander N Klishko
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Adil Akyildiz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Ricky Mehta-Desai
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
9
|
Rat Locomotion Detection Based on Brain Functional Directed Connectivity from Implanted Electroencephalography Signals. Brain Sci 2021; 11:brainsci11030345. [PMID: 33803159 PMCID: PMC7998315 DOI: 10.3390/brainsci11030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Previous findings have suggested that the cortex involved in walking control in freely locomotion rats. Moreover, the spectral characteristics of cortical activity showed significant differences in different walking conditions. However, whether brain connectivity presents a significant difference during rats walking under different behavior conditions has yet to be verified. Similarly, whether brain connectivity can be used in locomotion detection remains unknown. To address those concerns, we recorded locomotion and implanted electroencephalography signals in freely moving rats performing two kinds of task conditions (upslope and downslope walking). The Granger causality method was used to determine brain functional directed connectivity in rats during these processes. Machine learning algorithms were then used to categorize the two walking states, based on functional directed connectivity. We found significant differences in brain functional directed connectivity varied between upslope and downslope walking. Moreover, locomotion detection based on brain connectivity achieved the highest accuracy (91.45%), sensitivity (90.93%), specificity (91.3%), and F1-score (91.43%). Specifically, the classification results indicated that connectivity features in the high gamma band contained the most discriminative information with respect to locomotion detection in rats, with the support vector machine classifier exhibiting the most efficient performance. Our study not only suggests that brain functional directed connectivity in rats showed significant differences in various behavioral contexts but also proposed a method for classifying the locomotion states of rat walking, based on brain functional directed connectivity. These findings elucidate the characteristics of neural information interaction between various cortical areas in freely walking rats.
Collapse
|
10
|
Nichols TR, Burkholder TJ. The System of Locomotion: The Distributive Regulation of Limb Mechanics by Spinal Circuits During Locomotion. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
11
|
Li B, Liu S, Hu D, Li G, Tang R, Song D, Lang Y, He J. Electrocortical activity in freely walking rats varies with environmental conditions. Brain Res 2020; 1751:147188. [PMID: 33137325 DOI: 10.1016/j.brainres.2020.147188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
Longstanding theories in the field of neurophysiology have held that walking in rats is an unconscious, rhythmic locomotion that does not require cortical involvement. However, recent studies have suggested that the extent of cortical involvement during walking actually varies depending on the environmental conditions. To determine the impact of environmental conditions on cortical engagement in freely walking rats, we recorded limb kinematics and signals from implanted electroencephalography arrays in rats performing a series of natural behaviors. We found that rat gaits were significantly different across various locomotion terrains (e.g. walking on an upslope vs. downslope). Further, rat forelimbs and hindlimbs showed similar patterns of motion. The results also suggested that rat cortical engagement during walking varied across environmental conditions. Specifically, α band power significantly increased during 30° downslope walking in the posterior parietal, left secondary motor, and left somatosensory clusters. Additionally, during 30° upslope walking, the β band power was greater in the left primary motor and left and right secondary motor sources. Further, rats walking on up- or downslopes of varying steepness were found to have different cortical activities. Compared with 10° downslope walking, α band power was greater during 30° downslope locomotion in the left primary motor and somatosensory sources. These findings support the hypothesis that cortical contribution during walking in rats is influenced by environmental conditions, underlining the importance of goal-directed behaviors for motor function rehabilitation and neuro-prosthetic control in brain-machine interfaces.
Collapse
Affiliation(s)
- Bo Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sican Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dingyin Hu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Guanghui Li
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Rongyu Tang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yiran Lang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China.
| | - Jiping He
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
12
|
Masschelein E, D'Hulst G, Zvick J, Hinte L, Soro-Arnaiz I, Gorski T, von Meyenn F, Bar-Nur O, De Bock K. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet Muscle 2020; 10:21. [PMID: 32646489 PMCID: PMC7346400 DOI: 10.1186/s13395-020-00237-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Satellite cells (SCs) are required for muscle repair following injury and are involved in muscle remodeling upon muscular contractions. Exercise stimulates SC accumulation and myonuclear accretion. To what extent exercise training at different mechanical loads drive SC contribution to myonuclei however is unknown. RESULTS By performing SC fate tracing experiments, we show that 8 weeks of voluntary wheel running increased SC contribution to myofibers in mouse plantar flexor muscles in a load-dependent, but fiber type-independent manner. Increased SC fusion however was not exclusively linked to muscle hypertrophy as wheel running without external load substantially increased SC fusion in the absence of fiber hypertrophy. Due to nuclear propagation, nuclear fluorescent fate tracing mouse models were inadequate to quantify SC contribution to myonuclei. Ultimately, by performing fate tracing at the DNA level, we show that SC contribution mirrors myonuclear accretion during exercise. CONCLUSIONS Collectively, mechanical load during exercise independently promotes SC contribution to existing myofibers. Also, due to propagation of nuclear fluorescent reporter proteins, our data warrant caution for the use of existing reporter mouse models for the quantitative evaluation of satellite cell contribution to myonuclei.
Collapse
Affiliation(s)
- Evi Masschelein
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Gommaar D'Hulst
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Joel Zvick
- Department Health Sciences and Technology, Laboratory of Regenerative and Movement Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Laura Hinte
- Department Health Sciences and Technology, Laboratory of Nutrition and Metabolic Epigenetics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Inés Soro-Arnaiz
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tatiane Gorski
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Department Health Sciences and Technology, Laboratory of Nutrition and Metabolic Epigenetics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ori Bar-Nur
- Department Health Sciences and Technology, Laboratory of Regenerative and Movement Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Katrien De Bock
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Miró F, Galisteo AM, Garrido-Castro JL, Vivo J. Surface Electromyography of the Longissimus and Gluteus Medius Muscles in Greyhounds Walking and Trotting on Ground Flat, Up, and Downhill. Animals (Basel) 2020; 10:ani10060968. [PMID: 32503131 PMCID: PMC7341192 DOI: 10.3390/ani10060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In the field of canine physical rehabilitation and sports medicine, knowledge of muscle function in the therapeutic exercises prescribed is needed by physical therapists and veterinary surgeons. The longissimus dorsi and gluteus medius muscles are of great interest due to their role in locomotion related to frequent canine diseases. The muscle activity of these two muscles was studied in five Greyhound dogs performing slow, controlled leash walking and trotting on ground exercises uphill and downhill, commonly prescribed as therapeutic exercises. Results showed that for the same incline, the muscle activity of longissimus muscle was higher at the trot than at the walk. It was also shown that incline and decline affected the muscle activity of the longissimus and gluteus medius muscles of dogs walking or trotting on the ground. Walking and trotting up and downhill added separate therapeutic value to flat motion. The results of the present study might contribute to a better understanding of the function of longissimus and gluteus medius muscles in dogs, this being especially useful for the field of canine rehabilitation. Abstract In the field of canine rehabilitation, knowledge of muscle function in the therapeutic exercises prescribed is needed by physical therapists and veterinary surgeons. To gain insight into the function of longissimus dorsi (LD) and gluteus medius (GM) muscles in dogs, five Greyhounds performing leash walking and trotting on the ground flat, up (+7%), and downhill (−7%) were studied by surface electromyography, and the mean and maximum activity was compared. For the same incline, the surface electromyography (sEMG) of LD was higher (p < 0.05) at the trot than at the walk. In LD muscle, trotting uphill showed significantly higher maximum activity than any other exercise. A change of +7% incline or −7% decline affected (increased or decreased, respectively) the mean sEMG of the LD and GM muscles of dogs walking or trotting on the ground. When combined, the influence of gait and incline on electromyographic activity was analyzed, and walking at certain inclines showed no difference with trotting at certain inclines. Walking and trotting up and downhill added separate therapeutic value to flat motion. The results of the present study might contribute to a better understanding of the function of LD and GM muscles in dogs, this being especially useful for the field of canine rehabilitation.
Collapse
Affiliation(s)
- Francisco Miró
- Department Comparative Anatomy and Pathology, University of Córdoba, 14071 Córdoba, Spain; (A.M.G.); (J.V.)
- Animal Physical Therapy Service, Veterinary Teaching Hospital, Campus Universitario de Rabanales, Ctra. de Madrid Km.396, 14071 Córdoba, Spain
- Correspondence: ; Tel.: +34-957218143
| | - Alfonso M. Galisteo
- Department Comparative Anatomy and Pathology, University of Córdoba, 14071 Córdoba, Spain; (A.M.G.); (J.V.)
| | | | - Joaquín Vivo
- Department Comparative Anatomy and Pathology, University of Córdoba, 14071 Córdoba, Spain; (A.M.G.); (J.V.)
| |
Collapse
|
14
|
Akay T. Sensory Feedback Control of Locomotor Pattern Generation in Cats and Mice. Neuroscience 2020; 450:161-167. [PMID: 32422335 DOI: 10.1016/j.neuroscience.2020.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Traditionally, research aimed at the understanding of the sensory control of terrestrial mammalian locomotion has focused on cats as the animal model. But advances in molecular genetics and new methods to record movement in small animals have moved mice into the forefront of locomotor research. In this review article, I will first give an overview of what is known about sensory feedback control of locomotion, mainly emerged from experiments performed on cats. This overview will not be an exhaustive overview, but will rather aim to give a broad picture of what has been learned about the sensory control of locomotion using cats as the animal model. I will then give a brief summary of how the mouse is adding to these insights.
Collapse
Affiliation(s)
- Turgay Akay
- Dalhousie University, Dept. of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Halifax, NS, Canada.
| |
Collapse
|
15
|
Higgin D, Krupka A, Maghsoudi OH, Klishko AN, Nichols TR, Lyle MA, Prilutsky BI, Lemay MA. Adaptation to slope in locomotor-trained spinal cats with intact and self-reinnervated lateral gastrocnemius and soleus muscles. J Neurophysiol 2020; 123:70-89. [PMID: 31693435 PMCID: PMC6985865 DOI: 10.1152/jn.00018.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor training providing motion-dependent somatosensory feedback to spinal locomotor networks restores treadmill weight-bearing stepping on flat surfaces in spinal cats. In this study, we examined if locomotor ability on flat surfaces transfers to sloped surfaces and the contribution of length-dependent sensory feedback from lateral gastrocnemius (LG) and soleus (Sol) to locomotor recovery after spinal transection and locomotor training. We compared kinematics and muscle activity at different slopes (±10° and ±25°) in spinalized cats (n = 8) trained to walk on a flat treadmill. Half of those animals had their right hindlimb LG/Sol nerve cut and reattached before spinal transection and locomotor training, a procedure called muscle self-reinnervation that leads to elimination of autogenic monosynaptic length feedback in spinally intact animals. All spinal animals trained on a flat surface were able to walk on slopes with minimal differences in walking kinematics and muscle activity between animals with/without LG/Sol self-reinnervation. We found minimal changes in kinematics and muscle activity at lower slopes (±10°), indicating that walking patterns obtained on flat surfaces are robust enough to accommodate low slopes. Contrary to results in spinal intact animals, force responses to muscle stretch largely returned in both SELF-REINNERVATED muscles for the trained spinalized animals. Overall, our results indicate that the locomotor patterns acquired with training on a level surface transfer to walking on low slopes and that spinalization may allow the recovery of autogenic monosynaptic length feedback following muscle self-reinnervation.NEW & NOTEWORTHY Spinal locomotor networks locomotor trained on a flat surface can adapt the locomotor output to slope walking, up to ±25° of slope, even with total absence of supraspinal CONTROL. Autogenic length feedback (stretch reflex) shows signs of recovery in spinalized animals, contrary to results in spinally intact animals.
Collapse
Affiliation(s)
- Dwight Higgin
- Department of Biological Sciences, University of Delaware, Wilmington, Delaware
| | - Alexander Krupka
- Department of Natural Science, DeSales University, Center Valley, Pennsylvania
| | | | - Alexander N Klishko
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Mark A Lyle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Michel A Lemay
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Vemula MG, Deliagina TG, Zelenin PV. Kinematics of forward and backward locomotion performed in different environmental conditions. J Neurophysiol 2019; 122:2142-2155. [PMID: 31596639 DOI: 10.1152/jn.00239.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice are frequently used in analyses of the locomotor system. Although forward locomotion (FWL) in intact mice has been studied previously, backward locomotion (BWL) in mice has never been analyzed. The aim of the present study was to compare kinematics of FWL and BWL performed in different environmental conditions (i.e., in a tunnel, on a treadmill, and on an air-ball). In all setups, the average speed and step amplitude during BWL were significantly reduced compared with FWL. The cycle duration varied greatly during both FWL and BWL. The average swing duration during BWL was twice shorter than during FWL on each setup. Mice exhibited different interlimb coordinations (trot and walk with lateral or diagonal sequence) during BWL but only one gait (walk with lateral sequence) during FWL. Location of the rostro-caudal paw trajectory in relation to the hip projection to the surface (HP) depended on hip height. With low hip height, the trajectory was displaced either rostrally (anterior steps) or caudally (posterior steps) to HP. With high hip height, HP was near the middle of the trajectory (middle steps). During FWL, all three forms of steps were observed in the tunnel and predominantly anterior and posterior steps on the treadmill and air-ball, respectively. During BWL, only anterior steps were observed. Intralimb coordination depended on the form of stepping. Limb joints were coordinated to keep the hip at approximately constant height during stance and to have the smallest functional limb length during swing when the limb passed under the hip.NEW & NOTEWORTHY Mice are extensively used for the analysis of the locomotor system. This study is the first examination of the kinematics of forward and backward locomotor movements in different environmental conditions in mice. Obtained results represent a benchmark for studies based on manipulations of activity of specific populations of neurons to reveal their roles in control of specific aspects of locomotion.
Collapse
Affiliation(s)
| | | | - Pavel V Zelenin
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Dewolf AH, Ivanenko YP, Zelik KE, Lacquaniti F, Willems PA. Differential activation of lumbar and sacral motor pools during walking at different speeds and slopes. J Neurophysiol 2019; 122:872-887. [PMID: 31291150 DOI: 10.1152/jn.00167.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Organization of spinal motor output has become of interest for investigating differential activation of lumbar and sacral motor pools during locomotor tasks. Motor pools are associated with functional grouping of motoneurons of the lower limb muscles. Here we examined how the spatiotemporal organization of lumbar and sacral motor pool activity during walking is orchestrated with slope of terrain and speed of progression. Ten subjects walked on an instrumented treadmill at different slopes and imposed speeds. Kinetics, kinematics, and electromyography of 16 lower limb muscles were recorded. The spinal locomotor output was assessed by decomposing the coordinated muscle activation profiles into a small set of common factors and by mapping them onto the rostrocaudal location of the motoneuron pools. Our results show that lumbar and sacral motor pool activity depend on slope and speed. Compared with level walking, sacral motor pools decrease their activity at negative slopes and increase at positive slopes, whereas lumbar motor pools increase their engagement when both positive and negative slope increase. These findings are consistent with a differential involvement of the lumbar and the sacral motor pools in relation to changes in positive and negative center of body mass mechanical power production due to slope and speed.NEW & NOTEWORTHY In this study, the spatiotemporal maps of motoneuron activity in the spinal cord were assessed during walking at different slopes and speeds. We found differential involvement of lumbar and sacral motor pools in relation to changes in positive and negative center of body mass power production due to slope and speed. The results are consistent with recent findings about the specialization of neuronal networks located at different segments of the spinal cord for performing specific locomotor tasks.
Collapse
Affiliation(s)
- A H Dewolf
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Y P Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - K E Zelik
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, Tennessee
| | - F Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - P A Willems
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Dallmann CJ, Dürr V, Schmitz J. Motor control of an insect leg during level and incline walking. ACTA ACUST UNITED AC 2019; 222:222/7/jeb188748. [PMID: 30944163 DOI: 10.1242/jeb.188748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
During walking, the leg motor system must continually adjust to changes in mechanical conditions, such as the inclination of the ground. To understand the underlying control, it is important to know how changes in leg muscle activity relate to leg kinematics (movements) and leg dynamics (forces, torques). Here, we studied these parameters in hindlegs of stick insects (Carausius morosus) during level and uphill/downhill (±45 deg) walking, using a combination of electromyography, 3D motion capture and ground reaction force measurements. We find that some kinematic parameters including leg joint angles and body height vary across walking conditions. However, kinematics vary little compared with dynamics: horizontal leg forces and torques at the thorax-coxa joint (leg protraction/retraction) and femur-tibia joint (leg flexion/extension) tend to be stronger during uphill walking and are reversed in sign during downhill walking. At the thorax-coxa joint, the different mechanical demands are met by adjustments in the timing and magnitude of antagonistic muscle activity. Adjustments occur primarily in the first half of stance after the touch-down of the leg. When insects transition from level to incline walking, the characteristic adjustments in muscle activity occur with the first step of the leg on the incline, but not in anticipation. Together, these findings indicate that stick insects adjust leg muscle activity on a step-by-step basis so as to maintain a similar kinematic pattern under different mechanical demands. The underlying control might rely primarily on feedback from leg proprioceptors signaling leg position and movement.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| |
Collapse
|
19
|
Desrochers E, Harnie J, Doelman A, Hurteau MF, Frigon A. Spinal control of muscle synergies for adult mammalian locomotion. J Physiol 2018; 597:333-350. [PMID: 30334575 DOI: 10.1113/jp277018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS The control of locomotion is thought to be generated by activating groups of muscles that perform similar actions, which are termed muscle synergies. Here, we investigated if muscle synergies are controlled at the level of the spinal cord. We did this by comparing muscle activity in the legs of cats during stepping on a treadmill before and after a complete spinal transection that abolishes commands from the brain. We show that muscle synergies were maintained following spinal transection, validating the concept that muscle synergies for locomotion are primarily controlled by circuits of neurons within the spinal cord. ABSTRACT Locomotion is thought to involve the sequential activation of functional modules or muscle synergies. Here, we tested the hypothesis that muscle synergies for locomotion are organized within the spinal cord. We recorded bursts of muscle activity in the same cats (n = 7) before and after spinal transection during tied-belt locomotion at three speeds and split-belt locomotion at three left-right speed differences. We identified seven muscles synergies before (intact state) and after (spinal state) spinal transection. The muscles comprising the different synergies were the same in the intact and spinal states as well as at different speeds or left-right speed differences. However, there were some significant shifts in the onsets and offsets of certain synergies as a function of state, speed and left-right speed differences. The most notable difference between the intact and spinal states was a change in the timing between the knee flexor and hip flexor muscle synergies. In the intact state, the knee flexor synergy preceded the hip flexor synergy, whereas in the spinal state both synergies occurred concurrently. Afferent inputs also appear important for the expression of some muscle synergies, specifically those involving biphasic patterns of muscle activity. We propose that muscle synergies for locomotion are primarily organized within the spinal cord, although their full expression and proper timing requires inputs from supraspinal structures and/or limb afferents.
Collapse
Affiliation(s)
- Etienne Desrochers
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Adam Doelman
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Marie-France Hurteau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| |
Collapse
|
20
|
Nichols TR. Distributed force feedback in the spinal cord and the regulation of limb mechanics. J Neurophysiol 2018; 119:1186-1200. [PMID: 29212914 PMCID: PMC5899305 DOI: 10.1152/jn.00216.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023] Open
Abstract
This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.
Collapse
Affiliation(s)
- T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
21
|
Escalona M, Delivet-Mongrain H, Kundu A, Gossard JP, Rossignol S. Ladder Treadmill: A Method to Assess Locomotion in Cats with an Intact or Lesioned Spinal Cord. J Neurosci 2017; 37:5429-5446. [PMID: 28473641 PMCID: PMC6596526 DOI: 10.1523/jneurosci.0038-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022] Open
Abstract
After lesions of the CNS, locomotor abilities of animals (mainly cats) are often assessed on a simple flat treadmill (FTM), which imposes little demands on supraspinal structures as is the case when walking on targets. Therefore, the aims of the present work were as follows: (1) to develop a treadmill allowing the assessment of locomotion of intact cats required to place the paws on the rungs of a moving ladder treadmill (LTM); (2) to assess the capability of cats after a unilateral spinal hemisection at T10 to cope with such a demanding locomotor task; and (3) to regularly train cats for 6 weeks on the LTM to determine whether such regular training improves locomotor recovery on the FTM. A significant improvement would indicate that LTM training maximizes the contribution of spinal locomotor circuits as well as remnant supraspinal inputs. Together, we used 9 cats (7 females, 2 males). Six were used to compare the EMG and kinematic locomotor characteristics during walking on the FTM and LTM. We found that the swing phase during LTM walking was slightly enhanced as well as some specific activity of knee flexor muscles. Fore-hindlimb coupling favored a more stable diagonal coupling. These 6 cats were then hemispinalized and trained for 6 weeks on the LTM, whereas the 3 other cats were hemispinalized and trained solely on the FTM to compare the two training regimens. Intensive LTM training after hemisection was found to change features of locomotion, such as the foot trajectory as well as diminished paw drag often observed after hemisection.SIGNIFICANCE STATEMENT This paper introduces a method (ladder treadmill [LTM]) to study the locomotor ability of cats with an intact spinal cord or after a unilateral hemisection to walk with a precise foot placement on the rungs fixed to an ordinary flat treadmill (FTM). Because cats are compared in various conditions (intact or hemisected at different time points) in the same enclosure on the FTM and the LTM, the changes in averaged locomotor characteristics must reflect the specificity of the task and the neurological states. Furthermore, the ladder treadmill permits to train cats repetitively for weeks and observe whether training regimens (FTM or LTM) can induce durable changes in the parameters of locomotion.
Collapse
Affiliation(s)
- Manuel Escalona
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Hugo Delivet-Mongrain
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Aritra Kundu
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Jean-Pierre Gossard
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
22
|
Pantall A, Hodson-Tole EF, Gregor RJ, Prilutsky BI. Increased intensity and reduced frequency of EMG signals from feline self-reinnervated ankle extensors during walking do not normalize excessive lengthening. J Neurophysiol 2016; 115:2406-20. [PMID: 26912591 PMCID: PMC4922462 DOI: 10.1152/jn.00565.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Kinematics of cat level walking recover after elimination of length-dependent sensory feedback from the major ankle extensor muscles induced by self-reinnervation. Little is known, however, about changes in locomotor myoelectric activity of self-reinnervated muscles. We examined the myoelectric activity of self-reinnervated muscles and intact synergists to determine the extent to which patterns of muscle activity change as almost normal walking is restored following muscle self-reinnervation. Nerves to soleus (SO) and lateral gastrocnemius (LG) of six adult cats were surgically transected and repaired. Intramuscular myoelectric signals of SO, LG, medial gastrocnemius (MG), and plantaris (PL), muscle fascicle length of SO and MG, and hindlimb mechanics were recorded during level and slope (±27°) walking before and after (10-12 wk postsurgery) self-reinnervation of LG and SO. Mean myoelectric signal intensity and frequency were determined using wavelet analysis. Following SO and LG self-reinnervation, mean myoelectric signal intensity increased and frequency decreased in most conditions for SO and LG as well as for intact synergist MG (P < 0.05). Greater elongation of SO muscle-tendon unit during downslope and unchanged magnitudes of ankle extensor moment during the stance phase in all walking conditions suggested a functional deficiency of ankle extensors after self-reinnervation. Possible effects of morphological reorganization of motor units of ankle extensors and altered sensory and central inputs on the changes in myoelectric activity of self-reinnervated SO and LG are discussed.
Collapse
Affiliation(s)
- Annette Pantall
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia
| | - Emma F Hodson-Tole
- Cognitive Motor Function Research Group, School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom; and
| | - Robert J Gregor
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Boris I Prilutsky
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia;
| |
Collapse
|
23
|
Birn-Jeffery AV, Higham TE. Geckos decouple fore- and hind limb kinematics in response to changes in incline. Front Zool 2016; 13:11. [PMID: 26941828 PMCID: PMC4776376 DOI: 10.1186/s12983-016-0144-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/25/2016] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Terrestrial animals regularly move up and down surfaces in their natural habitat, and the impacts of moving uphill on locomotion are commonly examined. However, if an animal goes up, it must go down. Many morphological features enhance locomotion on inclined surfaces, including adhesive systems among geckos. Despite this, it is not known whether the employment of the adhesive system results in altered locomotor kinematics due to the stereotyped motions that are necessary to engage and disengage the system. Using a generalist pad-bearing gecko, Chondrodactylus bibronii, we determined whether changes in slope impact body and limb kinematics. RESULTS Despite the change in demand, geckos did not change speed on any incline. This constant speed was achieved by adjusting stride frequency, step length and swing time. Hind limb, but not forelimb, kinematics were altered on steep downhill conditions, thus resulting in significant de-coupling of the limbs. CONCLUSIONS Unlike other animals on non-level conditions, the geckos in our study only minimally alter the movements of distal limb elements, which is likely due to the constraints associated with the need for rapid attachment and detachment of the adhesive system. This suggests that geckos may experience a trade-off between successful adhesion and the ability to respond dynamically to locomotor perturbations.
Collapse
Affiliation(s)
- Aleksandra V. Birn-Jeffery
- />Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
- />Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521 USA
| | - Timothy E. Higham
- />Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521 USA
| |
Collapse
|
24
|
Modeling the Organization of Spinal Cord Neural Circuits Controlling Two-Joint Muscles. NEUROMECHANICAL MODELING OF POSTURE AND LOCOMOTION 2016. [DOI: 10.1007/978-1-4939-3267-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Farrell BJ, Bulgakova MA, Sirota MG, Prilutsky BI, Beloozerova IN. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat. J Neurophysiol 2015; 114:2682-702. [PMID: 26354314 PMCID: PMC4644224 DOI: 10.1152/jn.00510.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/28/2015] [Indexed: 11/22/2022] Open
Abstract
How do cats manage to walk so graciously on top of narrow fences or windowsills high above the ground while apparently exerting little effort? In this study we investigated cat full-body mechanics and the activity of limb muscles and motor cortex during walking along a narrow 5-cm path on the ground. We tested the hypotheses that during narrow walking 1) lateral stability would be lower because of the decreased base-of-support area and 2) the motor cortex activity would increase stride-related modulation because of imposed demands on lateral stability and paw placement accuracy. We measured medio-lateral and rostro-caudal dynamic stability derived from the extrapolated center of mass position with respect to the boundaries of the support area. We found that cats were statically stable in the frontal plane during both unconstrained and narrow-path walking. During narrow-path walking, cats walked slightly slower with more adducted limbs, produced smaller lateral forces by hindlimbs, and had elevated muscle activities. Of 174 neurons recorded in cortical layer V, 87% of forelimb-related neurons (from 114) and 90% of hindlimb-related neurons (from 60) had activities during narrow-path walking distinct from unconstrained walking: more often they had a higher mean discharge rate, lower depth of stride-related modulation, and/or longer period of activation during the stride. These activity changes appeared to contribute to control of accurate paw placement in the medio-lateral direction, the width of the stride, rather than to lateral stability control, as the stability demands on narrow-path and unconstrained walking were similar.
Collapse
Affiliation(s)
- Brad J Farrell
- Barrow Neurological Institute, Phoenix, Arizona; and School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia
| | - Margarita A Bulgakova
- Barrow Neurological Institute, Phoenix, Arizona; and School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia
| | | | - Boris I Prilutsky
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia
| | | |
Collapse
|
26
|
Activation of the Shoulder Belt and Shoulder Muscles in Humans Providing Generation of “Two-Joint” Isometric Efforts. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Hesse B, Nyakatura JA, Fischer MS, Schmidt M. Adjustments of Limb Mechanics in Cotton-top Tamarins to Moderate and Steep Support Orientations: Significance for the Understanding of Early Primate Evolution. J MAMM EVOL 2014. [DOI: 10.1007/s10914-014-9283-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Birn-Jeffery AV, Higham TE. The Scaling of Uphill and Downhill Locomotion in Legged Animals. Integr Comp Biol 2014; 54:1159-72. [DOI: 10.1093/icb/icu015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Shapiro LJ, Young JW, VandeBerg JL. Body size and the small branch niche: Using marsupial ontogeny to model primate locomotor evolution. J Hum Evol 2014; 68:14-31. [DOI: 10.1016/j.jhevol.2013.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 10/07/2013] [Accepted: 12/10/2013] [Indexed: 11/15/2022]
|
30
|
Schmidt A. Locomotion in degus on terrestrial substrates varying in orientation - implications for biomechanical constraints and gait selection. ZOOLOGY 2014; 117:146-59. [PMID: 24439459 DOI: 10.1016/j.zool.2013.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/27/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Abstract
To gain new insights into running gaits on sloped terrestrial substrates, metric and selected kinematic parameters of the common degu (Octodon degus) were examined. Individuals were filmed at their maximum voluntary running speed using a high-speed camera placed laterally to the terrestrial substrate varying in orientations from -30° to +30°, at 10° increments. Degus used trotting, lateral-sequence (LS) and diagonal-sequence (DS) running gaits at all substrate orientations. Trotting was observed across the whole speed range whereas DS running gaits occurred at significantly higher speeds than LS running gaits. Metric and kinematic changes on sloped substrates in degus paralleled those noted for most other mammals. However, the timing of metric and kinematic locomotor adjustments differed significantly between individual degus. In addition, most of these adjustments took place at 10° rather than 30° inclines and declines, indicating significant biomechanical demands even on slightly sloped terrestrial substrates. The results of this study suggest that DS and LS running gaits may represent an advantage in small to medium-sized mammals for counteracting some level of locomotor instability. Finally, changes in locomotor parameters of the forelimbs rather than the hindlimbs seem to play an important role in gait selection in small to medium-sized mammals.
Collapse
Affiliation(s)
- André Schmidt
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 120 Life Science Building, Athens, OH 45701, USA.
| |
Collapse
|
31
|
The regulation of limb stiffness in the context of locomotor tasks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 826:41-54. [PMID: 25330884 PMCID: PMC9806734 DOI: 10.1007/978-1-4939-1338-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Locomotion on ramped surfaces requires modulation of both pattern generating circuits and limb stiffness. In order to meet the mechanical demands of locomotion under these conditions, muscular activation patterns must correspond to the appropriate functions, whether the muscles are serving as force generators or brakes. Limb stiffness is a critical mechanical property that determines how the body interacts with the environment, and is regulated by both intrinsic and neural mechanisms. We have recently investigated how pattern generation, stiffness and proprioceptive feedback are modulated in a task specific way using the decerebrate cat preparation. Our results confirm previous research using intact animals that during level and upslope walking, hip and ankle extensors are recruited for propulsion during stance. During downslope walking, hip extensors are inhibited and hip flexors are recruited during stance to provide the needed braking action. Our new data further show that endpoint stiffness of the limb is correspondingly reduced for walking down a slope, and that the reduction in stiffness is likely due to an increase in inhibitory force feedback. Our results further suggest that a body orientation signal derived from vestibular and neck proprioceptive information is responsible for the required muscular activation patterns as well as a reduction in limb stiffness. This increased compliance is consistent with the function of the distal limb to cushion the impact during the braking action of the antigravity musculature.
Collapse
|
32
|
Hansen CN, Linklater W, Santiago R, Fisher LC, Moran S, Buford JA, Michele Basso D. Characterization of recovered walking patterns and motor control after contusive spinal cord injury in rats. Brain Behav 2012; 2:541-52. [PMID: 23139900 PMCID: PMC3489807 DOI: 10.1002/brb3.71] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/25/2022] Open
Abstract
Currently, complete recovery is unattainable for most individuals with spinal cord injury (SCI). Instead, recovery is typically accompanied by persistent sensory and motor deficits. Restoration of preinjury function will likely depend on improving plasticity and integration of these impaired systems. Eccentric muscle actions require precise integration of sensorimotor signals and are predominant during the yield (E2) phase of locomotion. Motor neuron activation and control during eccentric contractions is impaired across a number of central nervous system (CNS) disorders, but remains unexamined after SCI. Therefore, we characterized locomotor recovery after contusive SCI using hindlimb (HL) kinematics and electromyographic (EMG) recordings with specific consideration of eccentric phases of treadmill (TM) walking. Deficits in E2 and a caudal shift of locomotor subphases persisted throughout the 3-week recovery period. EMG records showed notable deficits in the semitendinosus (ST) during yield. Unlike other HL muscles, recruitment of ST changed with recovery. At 7 days, the typical dual-burst pattern of ST was lost and the second burst (ST2) was indistinct. By 21 days, the dual-burst pattern returned, but latencies remained impaired. We show that ST2 burst duration is highly predictive of open field Basso, Beattie, Bresnahan (BBB) scores. Moreover, we found that simple changes in locomotor specificity which enhance eccentric actions result in new motor patterns after SCI. Our findings identify a caudal shift in stepping kinematics, irregularities in E2, and aberrant ST2 bursting as markers of incomplete recovery. These residual impairments may provide opportunities for targeted rehabilitation.
Collapse
Affiliation(s)
- Christopher N Hansen
- Neuroscience Graduate Studies Program, The Ohio State University Columbus, Ohio ; Center for Brain and Spinal Cord Repair (CBSCR), The Ohio State University Columbus, Ohio
| | | | | | | | | | | | | |
Collapse
|
33
|
Nudds RL, Codd JR. The metabolic cost of walking on gradients with a waddling gait. J Exp Biol 2012; 215:2579-85. [DOI: 10.1242/jeb.071522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Using open-flow respirometry and video footage (25 frames s–1), the energy expenditure and hindlimb kinematics of barnacle geese, Branta leucopsis, were measured whilst they were exercising on a treadmill at gradients of +7 and –7 deg, and on a level surface. In agreement with previous studies, ascending a gradient incurred metabolic costs higher than those experienced on level ground at comparable speeds. The geese, however, are the first species to show an increased duty factor when ascending a gradient. This increased duty factor was accompanied by a longer stance time, which was probably to enable the additional force required for ascending to be generated. Contrary to previous findings, the geese did not experience decreased metabolic costs when descending a gradient. For a given speed, the geese took relatively shorter and quicker strides when walking downhill. This ‘choppy’ stride and perhaps a lack of postural plasticity (an inability to adopt a more crouched posture) may negate any energy savings gained from gravity's assistance in moving the centre of mass downhill. Also contrary to previous studies, the incremental increase in metabolic cost with increasing speed was similar for each gradient, indicating that the efficiency of locomotion (mechanical work done/chemical energy consumed) is not constant across all walking speeds. The data here suggest that there are species-specific metabolic responses to locomotion on slopes, as well as the established kinematics differences. It is likely that a suite of factors, such as ecology, posture, gait, leggedness and foot morphology, will subtly affect an organism's ability to negotiate gradients.
Collapse
Affiliation(s)
- Robert L. Nudds
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan R. Codd
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
34
|
Normann RA, Dowden BR, Frankel MA, Wilder AM, Hiatt SD, Ledbetter NM, Warren DA, Clark GA. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation. J Neural Eng 2012; 9:026019. [PMID: 22414699 DOI: 10.1088/1741-2560/9/2/026019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.
Collapse
Affiliation(s)
- R A Normann
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Climbing in hexapods: a plain model for heavy slopes. J Theor Biol 2012; 293:82-6. [PMID: 22019507 DOI: 10.1016/j.jtbi.2011.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
Abstract
Usually, a climbing cockroach attaches with three legs to a substrate. According to a recent model study, pulling forces underneath the front leg are required at some critical slope angle in upward locomotion. This critical angle depends on the animal's anatomy and leg positioning. In this study, we asked especially how this critical angle can be biased by one parameter that may be controlled during climbing: the body height above the substrate. We found that the typical ratio between body height and length (0.2) adopted by cockroaches is slightly higher than the very ratio (0.15) at which the critical slope angle can be increased most strongly for a given decrease in body height. In other words, it is likely that a geometrical body design of cockroaches evolved, which enables a delicate reduction in body height perfectly suitable for preventing the danger of slipping or even falling over rearwards at steepening slopes (approaching the vertical). In that sense, our model predicts, not just for hexapods but rather for any three-point climber, that taking up a low ratio of body height to the distance between the foremost and the hindmost attachment point (very crouched posture) makes body height a good parameter for climbing control.
Collapse
|
36
|
Markin SN, Lemay MA, Prilutsky BI, Rybak IA. Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study. J Neurophysiol 2011; 107:2057-71. [PMID: 22190626 DOI: 10.1152/jn.00865.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We compared the activity profiles and synergies of spinal motoneurons recorded during fictive locomotion evoked in immobilized decerebrate cat preparations by midbrain stimulation to the activity profiles and synergies of the corresponding hindlimb muscles obtained during forward level walking in cats. The fictive locomotion data were collected in the Spinal Cord Research Centre, University of Manitoba, and provided by Dr. David McCrea; the real locomotion data were obtained in the laboratories of M. A. Lemay and B. I. Prilutsky. Scatterplot representation and minimum spanning tree clustering algorithm were used to identify the possible motoneuronal and muscle synergies operating during both fictive and real locomotion. We found a close similarity between the activity profiles and synergies of motoneurons innervating one-joint muscles during fictive locomotion and the profiles and synergies of the corresponding muscles during real locomotion. However, the activity patterns of proximal nerves controlling two-joint muscles, such as posterior biceps and semitendinosus (PBSt) and rectus femoris (RF), were not uniform in fictive locomotion preparations and differed from the activity profiles of the corresponding two-joint muscles recorded during forward level walking. Moreover, the activity profiles of these nerves and the corresponding muscles were unique and could not be included in the synergies identified in fictive and real locomotion. We suggest that afferent feedback is involved in the regulation of locomotion via motoneuronal synergies controlled by the spinal central pattern generator (CPG) but may also directly affect the activity of motoneuronal pools serving two-joint muscles (e.g., PBSt and RF). These findings provide important insights into the organization of the spinal CPG in mammals, the motoneuronal and muscle synergies engaged during locomotion, and their afferent control.
Collapse
Affiliation(s)
- Sergey N Markin
- Dept. of Neurobiology and Anatomy, Drexel Univ. College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
37
|
Gottschall JS, Nichols TR. Neuromuscular strategies for the transitions between level and hill surfaces during walking. Philos Trans R Soc Lond B Biol Sci 2011; 366:1565-79. [PMID: 21502127 DOI: 10.1098/rstb.2010.0355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite continual fluctuations in walking surface properties, humans and animals smoothly transition between terrains in their natural surroundings. Walking transitions have the potential to influence dynamic balance in both the anterior-posterior and medial-lateral directions, thereby increasing fall risk and decreasing mobility. The goal of the current manuscript is to provide a review of the literature that pertains to the topic of surface slope transitions between level and hill surfaces, as well as report the recent findings of two experiments that focus on the neuromuscular strategies of surface slope transitions. Our results indicate that in anticipation of a change in surface slope, neuromuscular patterns during level walking prior to a hill are significantly different from the patterns during level walking without the future change in surface. Typically, the changes in muscle activity were due to co-contraction of opposing muscle groups and these changes correspond to modifications in head pitch. In addition, further experiments revealed that the neck proprioceptors may be an initial source of feedback for upcoming surface slope transitions. Together, these results illustrate that in order to safely traverse varying surfaces, transitions strides are functionally distinct from either level walking or hill walking independently.
Collapse
Affiliation(s)
- Jinger S Gottschall
- Department of Kinesiology, The Pennsylvania State University, 029J Recreation Hall, University Park, PA 16802, USA.
| | | |
Collapse
|
38
|
Sabatier MJ, To BN, Nicolini J, English AW. Effect of slope and sciatic nerve injury on ankle muscle recruitment and hindlimb kinematics during walking in the rat. ACTA ACUST UNITED AC 2011; 214:1007-16. [PMID: 21346129 DOI: 10.1242/jeb.051508] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Slope-related differences in hindlimb movements and activation of the soleus and tibialis anterior muscles were studied during treadmill locomotion in intact rats and in rats 4 and 10 weeks following transection and surgical repair of the sciatic nerve. In intact rats, the tibialis anterior and soleus muscles were activated reciprocally at all slopes, and the overall intensity of activity in tibialis anterior and the mid-step activity in soleus increased with increasing slope. Based on the results of principal components analysis, the pattern of activation of soleus, but not of tibialis anterior, changed significantly with slope. Slope-related differences in hindlimb kinematics were found in intact rats, and these correlated well with the demands of walking up or down slopes. Following recovery from sciatic nerve injury, the soleus and tibialis anterior were co-activated throughout much of the step cycle and there was no difference in intensity or pattern of activation with slope for either muscle. Unlike intact rats, these animals walked with their feet flat on the treadmill belt through most of the stance phase. Even so, during downslope walking limb length and limb orientation throughout the step cycle were not significantly changed from values found in intact rats. This conservation of hindlimb kinematics was not observed during level or upslope walking. These findings are interpreted as evidence that the recovering animals adopt a novel locomotor strategy that involves stiffening of the ankle joint by antagonist co-activation and compensation at more proximal joints. Their movements are most suitable to the requirements of downslope walking but the recovering rats lack the ability to adapt to the demands of level or upslope walking.
Collapse
Affiliation(s)
- Manning J Sabatier
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
39
|
Lee DV. Effects of grade and mass distribution on the mechanics of trotting in dogs. ACTA ACUST UNITED AC 2011; 214:402-11. [PMID: 21228199 DOI: 10.1242/jeb.044487] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Quadrupedal running on grades requires balancing of pitch moments about the center of mass (COM) while supplying sufficient impulse to maintain a steady uphill or downhill velocity. Here, trotting mechanics on a 15 deg grade were characterized by the distribution of impulse between the limbs and the angle of resultant impulse at each limb. Anterior-posterior manipulation of COM position has previously been shown to influence limb mechanics during level trotting of dogs; hence, the combined effects of grade and COM manipulations were explored by adding 10% body mass at the COM, shoulder or pelvis. Whole body and individual limb ground reaction forces, as well as spatiotemporal step parameters, were measured during downhill and uphill trotting. Deviations from steady-speed locomotion were determined by the net impulse angle and accounted for in the statistical model. The limbs exerted only propulsive force during uphill trotting and, with the exception of slight hindlimb propulsion in late stance, only braking force during downhill trotting. Ratios of forelimb impulse to total impulse were computed for normal and shear components. Normal impulse ratios were more different from level values during uphill than downhill trotting, indicating that the limbs act more as levers on the incline. Differential limb function was evident in the extreme divergence of forelimb and hindlimb impulse angles, amplifying forelimb braking and hindlimb propulsive biases observed during level trotting. In both downhill and uphill trotting, added mass at the up-slope limb resulted in fore-hind distributions of normal impulse more similar to those of level trotting and more equal fore-hind distributions of shear impulse. The latter result suggests a functional trade-off in quadruped design: a COM closer to the hindlimbs would distribute downhill braking more equally, whereas a COM closer to the forelimbs would distribute uphill propulsion more equally. Because muscles exert less force when actively shortening than when lengthening, it would be advantageous for the forelimb and hindlimb muscles to share the propulsive burden more equally during uphill trotting. This functional advantage is consistent with the anterior COM position of most terrestrial quadrupeds.
Collapse
Affiliation(s)
- David V Lee
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Box 454004, Las Vegas, NV 89154-4004, USA.
| |
Collapse
|
40
|
Schilling N. Evolution of the axial system in craniates: morphology and function of the perivertebral musculature. Front Zool 2011; 8:4. [PMID: 21306656 PMCID: PMC3041741 DOI: 10.1186/1742-9994-8-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/10/2011] [Indexed: 11/25/2022] Open
Abstract
The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces. Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the body's center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular system.
Collapse
Affiliation(s)
- Nadja Schilling
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Germany.
| |
Collapse
|
41
|
Gait disturbances in dystrophic hamsters. J Biomed Biotechnol 2011; 2011:235354. [PMID: 21318074 PMCID: PMC3035808 DOI: 10.1155/2011/235354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/08/2010] [Indexed: 11/18/2022] Open
Abstract
The delta-sarcoglycan-deficient hamster is an excellent model to study muscular dystrophy. Gait disturbances, important clinically, have not been described in this animal model. We applied ventral plane videography (DigiGait) to analyze gait in BIO TO-2 dystrophic and BIO F1B control hamsters walking on a transparent treadmill belt. Stride length was ∼13% shorter (P < .05) in TO-2 hamsters at 9 months of age compared to F1B hamsters. Hindlimb propulsion duration, an indicator of muscle strength, was shorter in 9-month-old TO-2 (247 ± 8 ms) compared to F1B hamsters (272 ± 11 ms; P < .05). Braking duration, reflecting generation of ground reaction forces, was delayed in 9-month-old TO-2 (147 ± 6 ms) compared to F1B hamsters (126 ± 8 ms; P < .05). Hindpaw eversion, evidence of muscle weakness, was greater in 9-month-old TO-2 than in F1B hamsters (17.7 ± 1.2° versus 8.7 ± 1.6°; P < .05). Incline and decline walking aggravated gait disturbances in TO-2 hamsters at 3 months of age. Several gait deficits were apparent in TO-2 hamsters at 1 month of age. Quantitative gait analysis demonstrates that dystrophic TO-2 hamsters recapitulate functional aspects of human muscular dystrophy. Early detection of gait abnormalities in a convenient animal model may accelerate the development of therapies for muscular dystrophy.
Collapse
|
42
|
Bouyer LJ. Chapter 8--challenging the adaptive capacity of rhythmic movement control: from denervation to force field adaptation. PROGRESS IN BRAIN RESEARCH 2011; 188:119-34. [PMID: 21333806 DOI: 10.1016/b978-0-444-53825-3.00013-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neural control of walking involves voluntary descending drive, automatic rhythm and pattern-generating circuits, and sensory feedback to produce appropriate motor output. This control system has to be both robust and adaptable to remain appropriately calibrated to the changes in body size and in environmental demands that occur throughout life. In this chapter, current experimental models that are used to study the adaptive capacity of rhythmic movement control will be presented. Overall, while walking is a complex movement requiring extremely well-timed muscle activation sequences, and considering the presence of automatic rhythm generating circuits, its neural control nevertheless shows a large potential for adaptive modification. Regardless if the need for motor output modification is of internal (e.g., denervations) or external (e.g., changes in environment dynamics) origin, the system copes with the challenge rapidly and efficiently. Neural structures involved in adaptation are distributed, and even reduced preparations such as low spinal cats show extensive adaptive capacity. The degree of adaptive capacity is not unlimited, however. Functional flexors cannot be turned into extensors, and vice versa. In addition, recent evidence suggest that adaptive capacity may be dependent on the timing in the movement where adaptation is required (phase dependency), some phases being more amendable to change than others. Clearly, while important progress has been achieved using denervations and motor adaptation protocols, many questions remain to be answered regarding the mechanisms underlying adaptation and retention of adapted motor output, as well as regarding how sensory inputs are used to trigger adaptation. Recent advances in robotics, together with the design of simple, yet clever protocols such as catch trials are very promising tools to provide more answers.
Collapse
Affiliation(s)
- Laurent J Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Department of Rehabilitation, Université Laval, Quebec, Canada
| |
Collapse
|
43
|
MacFadden LN, Brown NAT. The Influence of Modeling Separate Neuromuscular Compartments on the Force and Moment Generating Capacities of Muscles of the Feline Hindlimb. J Biomech Eng 2010; 132:081003. [DOI: 10.1115/1.4001680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional electrical stimulation (FES) has the capacity to regenerate motion for individuals with spinal cord injuries. However, it is not straightforward to determine the stimulation parameters to generate a coordinated movement. Musculoskeletal models can provide a noninvasive simulation environment to estimate muscle force and activation timing sequences for a variety of tasks. Therefore, the purpose of this study was to develop a musculoskeletal model of the feline hindlimb for simulations to determine stimulation parameters for intrafascicular multielectrode stimulation (a method of FES). Additionally, we aimed to explore the differences in modeling neuromuscular compartments compared with representing these muscles as a single line of action. When comparing the modeled neuromuscular compartments of biceps femoris, sartorius, and semimembranosus to representations of these muscles as a single line of action, we observed that modeling the neuromuscular compartments of these three muscles generated different force and moment generating capacities when compared with single muscle representations. Differences as large as 4 N m (∼400% in biceps femoris) were computed between the summed moments of the neuromuscular compartments and the single muscle representations. Therefore, modeling neuromuscular compartments may be necessary to represent physiologically reasonable force and moment generating capacities of the feline hindlimb.
Collapse
Affiliation(s)
- Lisa N. MacFadden
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| | - Nicholas A. T. Brown
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112; Biomechanics and Performance Analysis, Australian Institute of Sport, Leverrier Street, Bruce ACT 2617, Canberra, Australia
| |
Collapse
|
44
|
Beloozerova IN, Farrell BJ, Sirota MG, Prilutsky BI. Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping. J Neurophysiol 2010; 103:2285-300. [PMID: 20164404 PMCID: PMC2853277 DOI: 10.1152/jn.00360.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 02/10/2010] [Indexed: 11/22/2022] Open
Abstract
What are the differences in mechanics, muscle, and motor cortex activity between accurate and nonaccurate movements? We addressed this question in relation to walking. We assessed full-body mechanics (229 variables), activity of 8 limb muscles, and activity of 63 neurons from the motor cortex forelimb representation during well-trained locomotion with different demands on the accuracy of paw placement in cats: during locomotion on a continuous surface and along horizontal ladders with crosspieces of different widths. We found that with increasing accuracy demands, cats assumed a more bent-forward posture (by lowering the center of mass, rotating the neck and head down, and by increasing flexion of the distal joints) and stepped on the support surface with less spatial variability. On the ladder, the wrist flexion moment was lower throughout stance, whereas ankle and knee extension moments were higher and hip moment was lower during early stance compared with unconstrained locomotion. The horizontal velocity time histories of paws were symmetric and smooth and did not differ among the tasks. Most of the other mechanical variables also did not depend on accuracy demands. Selected distal muscles slightly enhanced their activity with increasing accuracy demands. However, in a majority of motor cortex cells, discharge rate means, peaks, and depths of stride-related frequency modulation changed dramatically during accurate stepping as compared with simple walking. In addition, in 30% of neurons periods of stride-related elevation in firing became shorter and in 20-25% of neurons activity or depth of frequency modulation increased, albeit not linearly, with increasing accuracy demands. Considering the relatively small changes in locomotor mechanics and substantial changes in motor cortex activity with increasing accuracy demands, we conclude that during practiced accurate stepping the activity of motor cortex reflects other processes, likely those that involve integration of visual information with ongoing locomotion.
Collapse
Affiliation(s)
- Irina N Beloozerova
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | | | | | | |
Collapse
|
45
|
Chang YH, Auyang AG, Scholz JP, Nichols TR. Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury. ACTA ACUST UNITED AC 2010; 212:3511-21. [PMID: 19837893 DOI: 10.1242/jeb.033886] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.
Collapse
Affiliation(s)
- Young-Hui Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
46
|
Comparing inclined locomotion in a ground-living and a climbing ant species: sagittal plane kinematics. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:1011-20. [PMID: 19756648 DOI: 10.1007/s00359-009-0475-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
Formicine ants are able to detect slopes in the substrates they crawl on. It was assumed that hair fields between the main segments of the body and between the proximal leg segments contribute to graviception which triggers a change of posture in response to substrate slopes. The sagittal kinematics of two ant species were investigated and compared on different slopes. Cataglyphis fortis, a North African desert ant, is well known for its extraordinary sense of orientation in texturally almost uniform habitats, while Formica pratensis, a common central-European species, primarily uses landmarks and pheromone traces for orientation. A comparison of these two species reveals differences in postural adaptations during inclined locomotion. Only minor slope-dependent angular adjustments were observed. The largest is a 25 degrees head rotation for Cataglyphis, even if the slope is changed by 150 degrees, suggesting dramatic changes in the field of vision. The trunk's pitch adjustment towards the increasing slope is low in both species. On all slopes Cataglyphis achieves higher running speeds than Formica and displays greater slope-dependent variation in body height. This indicates different strategies for coping with changing slopes. These specific aspects have to be reflected in the ants' respective mode of slope perception.
Collapse
|
47
|
Maas H, Gregor RJ, Hodson-Tole EF, Farrell BJ, Prilutsky BI. Distinct muscle fascicle length changes in feline medial gastrocnemius and soleus muscles during slope walking. J Appl Physiol (1985) 2009; 106:1169-80. [PMID: 19164776 DOI: 10.1152/japplphysiol.01306.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
On the basis of differences in physiology, e.g., histochemical properties and spindle density, and the structural design of the cat soleus (SO) and medial gastrocnemius (MG) muscles, we hypothesized that 1) fascicle length changes during overground walking would be both muscle and slope dependent, which would have implications for the muscles' force output as well as sensory function, and that 2) muscle-tendon unit (MTU) and fascicle length changes would be different, in which case MTU length could not be used as an indicator of muscle spindle strain. To test these hypotheses, we quantified muscle fascicle length changes and compared them with length changes of the whole MTU in the SO and MG during overground walking at various slopes (0, +/- 25, +/- 50, +75, and +100%). The SO and MG were surgically instrumented with sonomicrometry crystals and fine-wire electromyogram electrodes to measure changes in muscle fascicle length and muscle activity, respectively. MTU lengths were calculated using recorded ankle and knee joint angles and a geometric model of the hindlimb. The resultant joint moments were calculated using inverse dynamics analysis to infer muscle loading. It was found that although MTU length and velocity profiles of the SO and MG appeared similar, length changes and velocities of muscle fascicles were substantially different between the two muscles. Fascicle length changes of both SO and MG were significantly affected by slope intensity acting eccentrically in downslope walking (-25 to -50%) and concentrically in upslope walking (+25 to +100%). The differences in MTU and fascicle behaviors in both the SO and MG muscles during slope walking were explained by the three distinct features of these muscles: 1) the number of joints spanned, 2) the pennation angle, and 3) the in-series elastic component. It was further suggested that the potential role of length feedback from muscle spindles is both task and muscle dependent.
Collapse
Affiliation(s)
- Huub Maas
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | | | | | | | | |
Collapse
|
48
|
Donelan JM, McVea DA, Pearson KG. Force Regulation of Ankle Extensor Muscle Activity in Freely Walking Cats. J Neurophysiol 2009; 101:360-71. [DOI: 10.1152/jn.90918.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To gain insight into the relative importance of force feedback to ongoing ankle extensor activity during walking in the conscious cat, we isolated the medial gastrocnemius muscle (MG) by denervating the other ankle extensors and measured the magnitude of its activity at different muscle lengths, velocities, and forces accomplished by having the animals walk up and down a sloped pegway. Mathematical models of proprioceptor dynamics predicted afferent activity and revealed that the changes in muscle activity under our experimental conditions were strongly correlated with Ib activity and not consistently associated with changes in Ia or group II activity. This allowed us to determine the gains within the force feedback pathway using a simple model of the neuromuscular system and the measured relationship between MG activity and force. Loop gain increased with muscle length due to the intrinsic force–length property of muscle. The gain of the pathway that converts muscle force to motoneuron depolarization was independent of length. To better test for a causal relationship between modulation of force feedback and changes in muscle activity, a second set of experiments was performed in which the MG muscle was perturbed during ground contact of the hind foot by dropping or lifting the peg underfoot. Collectively, these investigations support a causal role for force feedback and indicate that about 30% of the total muscle activity is due to force feedback during level walking. Force feedback's role increases during upslope walking and decreases during downslope walking, providing a simple mechanism for compensating for changes in terrain.
Collapse
|
49
|
Abstract
The importance of the in vivo dynamic nature of the circuitries within the spinal cord that generate locomotion is becoming increasingly evident. We examined the characteristics of hindlimb EMG activity evoked in response to epidural stimulation at the S1 spinal cord segment in complete midthoracic spinal cord-transected rats at different stages of postlesion recovery. A progressive and phase-dependent modulation of monosynaptic (middle) and long-latency (late) stimulation-evoked EMG responses was observed throughout the step cycle. During the first 3 weeks after injury, the amplitude of the middle response was potentiated during the EMG bursts, whereas after 4 weeks, both the middle and late responses were phase-dependently modulated. The middle- and late-response magnitudes were closely linked to the amplitude and duration of the EMG bursts during locomotion facilitated by epidural stimulation. The optimum stimulation frequency that maintained consistent activity of the long-latency responses ranged from 40 to 60 Hz, whereas the short-latency responses were consistent from 5 to 130 Hz. These data demonstrate that both middle and late evoked potentials within a motor pool are strictly gated during in vivo bipedal stepping as a function of the general excitability of the motor pool and, thus, as a function of the phase of the step cycle. These data demonstrate that spinal cord epidural stimulation can facilitate locomotion in a time-dependent manner after lesion. The long-latency responses to epidural stimulation are correlated with the recovery of weight-bearing bipedal locomotion and may reflect activation of interneuronal central pattern-generating circuits.
Collapse
|
50
|
Gottschall JS, Nichols TR. Head pitch affects muscle activity in the decerebrate cat hindlimb during walking. Exp Brain Res 2007; 182:131-5. [PMID: 17690872 PMCID: PMC3064865 DOI: 10.1007/s00221-007-1084-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 07/21/2007] [Indexed: 10/23/2022]
Abstract
Our purpose was to quantify the effects of head pitch on muscle activity patterns of the decerebrate cat hindlimb during walking. Five decerebrate cats walked at 0.7 m/s on a treadmill positioned level with the head pitch either parallel to the treadmill, 50% nose down or 50% nose up. We collected electromyography data from six hindlimb muscles. During level walking, after we manipulated head pitch, our results were surprisingly equivalent to the research on slope walking. For instance, muscle activity during level walking with a 50% head pitch nose down mimicked uphill walking. The muscle activity of the iliopsoas and semitendinosus significantly increased. Muscle activity during level walking with a 50% head pitch nose up mimicked downhill walking. Specifically, the biceps femoris and semimembranosus were inactive during the entire step. These alterations in muscle activity occurred within one step of altering head pitch but dissipated as level walking continued. In conclusion, the time course of muscle activity patterns due to modifications in head pitch is immediate and transitory.
Collapse
Affiliation(s)
- Jinger S Gottschall
- Department of Physiology, Emory University School of Medicine, Whitehead Research Building, Atlanta, GA 30322, USA.
| | | |
Collapse
|