1
|
Vornanen M. Feeling the heat: source–sink mismatch as a mechanism underlying the failure of thermal tolerance. J Exp Biol 2020; 223:223/16/jeb225680. [DOI: 10.1242/jeb.225680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
A mechanistic explanation for the tolerance limits of animals at high temperatures is still missing, but one potential target for thermal failure is the electrical signaling off cells and tissues. With this in mind, here I review the effects of high temperature on the electrical excitability of heart, muscle and nerves, and refine a hypothesis regarding high temperature-induced failure of electrical excitation and signal transfer [the temperature-dependent deterioration of electrical excitability (TDEE) hypothesis]. A central tenet of the hypothesis is temperature-dependent mismatch between the depolarizing ion current (i.e. source) of the signaling cell and the repolarizing ion current (i.e. sink) of the receiving cell, which prevents the generation of action potentials (APs) in the latter. A source–sink mismatch can develop in heart, muscles and nerves at high temperatures owing to opposite effects of temperature on source and sink currents. AP propagation is more likely to fail at the sites of structural discontinuities, including electrically coupled cells, synapses and branching points of nerves and muscle, which impose an increased demand of inward current. At these sites, temperature-induced source–sink mismatch can reduce AP frequency, resulting in low-pass filtering or a complete block of signal transmission. In principle, this hypothesis can explain a number of heat-induced effects, including reduced heart rate, reduced synaptic transmission between neurons and reduced impulse transfer from neurons to muscles. The hypothesis is equally valid for ectothermic and endothermic animals, and for both aquatic and terrestrial species. Importantly, the hypothesis is strictly mechanistic and lends itself to experimental falsification.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences , University of Eastern Finland, 80101 Joensuu, Finland
| |
Collapse
|
2
|
Morgan T, Zhang Y, Pace N, Cai H, Shen B, Wang J, Roppolo JR, de Groat WC, Tai C. Thermal block of mammalian unmyelinated C fibers by local cooling to 15-25°C after a brief heating at 45°C. J Neurophysiol 2020; 123:2173-2179. [PMID: 32374221 DOI: 10.1152/jn.00133.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the changes in cold block of unmyelinated C fibers in the tibial nerve by preconditioning with heating and to develop a safe method for thermal block of C-fiber conduction. In seven cats under α-chloralose anesthesia, C-fiber-evoked potentials elicited by electrical stimulation were recorded on the tibial nerve during block of axonal conduction induced by exposing a small segment (9 mm) of the nerve to cooling (from 35°C to ≤5°C) or heating (45°C). Before heating, partial, reproducible, and reversible cold block was first detected at a threshold cold block temperature of 15°C and complete cold block occurred at a temperature of ≤5°C. After the nerve was heated at 45°C for 5-35 min, the threshold cold block temperature significantly (P < 0.05) increased from 15°C to 25°C and the complete cold block temperature significantly (P < 0.05) increased from ≤5°C to 15°C on average. The increased cold block temperatures persisted for the duration of the experiments (30-100 min) while the amplitude of the C-fiber-evoked potential measured at 35°C recovered significantly (P < 0.05) to ~80% of control. This study discovered a novel thermal method to block mammalian C fibers at an elevated temperature (15-25°C), providing the opportunity to develop a thermal nerve block technology to suppress chronic pain of peripheral origin. The interaction between heating and cooling effects on C-fiber conduction indicates a possible interaction between different temperature-sensitive channels known to be present in the mammalian C fibers.NEW & NOTEWORTHY Our study discovered that the temperature range for producing a partial to complete cold block of mammalian C-fiber axons can be increased from 5-15°C to 15-25°C on average after a preheating at 45°C. This discovery raises many basic scientific questions about the influence of temperature on nerve conduction and block. It also raises the possibility of developing a novel implantable nerve block device to treat many chronic diseases including chronic pain.
Collapse
Affiliation(s)
- Tara Morgan
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yan Zhang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Transplantation Center, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, Peoples Republic of China
| | - Natalie Pace
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haotian Cai
- School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bing Shen
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Roppolo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Changfeng Tai
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Effect of heat stress and Hsp90 inhibition on T-type calcium currents and voltage-dependent potassium currents in leydig cells. J Therm Biol 2019; 84:1-7. [PMID: 31466741 DOI: 10.1016/j.jtherbio.2019.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022]
Abstract
Heat can trigger testicular damage and impair fertility. Leydig cells produce testosterone in response to stimulation by luteinizing hormone (LH), which induces Ca2+ entry and K+ efflux through ion channels in their plasma membrane. Considering that mechanisms coordinating the Leydig cell responses to hyperthermic stress remain unclear; the present study analyzed the effects of heat stress (HS, 43°C, 15 min) and inhibition of Hsp90 on T-type calcium currents and voltage-dependent potassium currents (VKC) in mice Leydig cells. Results show that HS reduced the VKC steady state currents at +80 mV (45.3%) and maximum conductance (71.5%), as well as increased the activation time constant (31.7%) and the voltage for which half the channels are open (30%). Hsp90 inhibition did not change the VKC currents. T-type calcium currents were not affected by HS or Hsp90 inhibition. In conclusion, HS can slow the activation, reduce the currents and voltage dependence of the VKC, suggesting a possible role of these currents in the response to hyperthermic stress in Leydig cells.
Collapse
|
4
|
Wyszkowska J, Shepherd S, Sharkh S, Jackson CW, Newland PL. Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts. Sci Rep 2016; 6:36413. [PMID: 27808167 PMCID: PMC5093409 DOI: 10.1038/srep36413] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/13/2016] [Indexed: 11/17/2022] Open
Abstract
Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) electromagnetic fields are particularly poorly understood especially at high field strengths as they are rarely encountered at ground level. Flying insects, however, can approach close to high field strength transmission lines prompting the question as to how these high levels of exposure affect behaviour and physiology. Here we utilise the accessible nervous system of the locust to ask how exposure to high levels of ELF EMF impact at multiple levels. We show that exposure to ELF EMFs above 4 mT leads to reduced walking. Moreover, intracellular recordings from an identified motor neuron, the fast extensor tibiae motor neuron, show increased spike latency and a broadening of its spike in exposed animals. In addition, hind leg kick force, produced by stimulating the extensor tibiae muscle, was reduced following exposure, while stress-protein levels (Hsp70) increased. Together these results suggest that ELF EMF exposure has the capacity to cause dramatic effects from behaviour to physiology and protein expression, and this study lays the foundation to explore the ecological significance of these effects in other flying insects.
Collapse
Affiliation(s)
- Joanna Wyszkowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | | | - Suleiman Sharkh
- Engineering Sciences, University of Southampton, Southampton, UK
| | | | - Philip L Newland
- Centre for Biological Sciences, University of Southampton, Southampton
| |
Collapse
|
5
|
Cross KP, Robertson RM. Ionic mechanisms maintaining action potential conduction velocity at high firing frequencies in an unmyelinated axon. Physiol Rep 2016; 4:4/10/e12814. [PMID: 27225630 PMCID: PMC4886175 DOI: 10.14814/phy2.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/24/2022] Open
Abstract
The descending contralateral movement detector (DCMD) is a high‐performance interneuron in locusts with an axon capable of transmitting action potentials (AP) at more than 500 Hz. We investigated biophysical mechanisms for fidelity of high‐frequency transmission in this axon. We measured conduction velocities (CVs) at room temperature during exposure to 10 mmol/L cadmium, a calcium current antagonist, and found significant reduction in CV with reduction at frequencies >200 Hz of ~10%. Higher temperatures induced greater CV reductions during exposure to cadmium across all frequencies of ~20–30%. Intracellular recordings during 15 min of exposure to cadmium or nickel, also a calcium current antagonist, revealed an increase in the magnitude of the afterhyperpolarization potential (AHP) and the time to recover to baseline after the AHP (Medians for Control: −19.8%; Nickel: 167.2%; Cadmium: 387.2%), that could be due to a T‐type calcium current. However, the removal of extracellular calcium did not mimic divalent cation exposure suggesting calcium currents are not the cause of the AHP increase. Computational modeling showed that the effects of the divalent cations could be modeled with a persistent sodium current which could be blocked by high concentrations of divalent cations. Persistent sodium current shortened the AHP duration in our models and increased CV for high‐frequency APs. We suggest that faithful, high‐frequency axonal conduction in the DCMD is enabled by a mechanism that shortens the AHP duration like a persistent or resurgent sodium current.
Collapse
Affiliation(s)
- Kevin P Cross
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - R Meldrum Robertson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Karunanithi S, Brown IR. Heat shock response and homeostatic plasticity. Front Cell Neurosci 2015; 9:68. [PMID: 25814928 PMCID: PMC4357293 DOI: 10.3389/fncel.2015.00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/17/2015] [Indexed: 11/13/2022] Open
Abstract
Heat shock response and homeostatic plasticity are mechanisms that afford functional stability to cells in the face of stress. Each mechanism has been investigated independently, but the link between the two has not been extensively explored. We explore this link. The heat shock response enables cells to adapt to stresses such as high temperature, metabolic stress and reduced oxygen levels. This mechanism results from the production of heat shock proteins (HSPs) which maintain normal cellular functions by counteracting the misfolding of cellular proteins. Homeostatic plasticity enables neurons and their target cells to maintain their activity levels around their respective set points in the face of stress or disturbances. This mechanism results from the recruitment of adaptations at synaptic inputs, or at voltage-gated ion channels. In this perspective, we argue that heat shock triggers homeostatic plasticity through the production of HSPs. We also suggest that homeostatic plasticity is a form of neuroprotection.
Collapse
Affiliation(s)
- Shanker Karunanithi
- School of Medical Science, Griffith University QLD, Australia ; Menzies Health Institute of Queensland, Griffith University QLD, Australia
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough Toronto, ON, Canada
| |
Collapse
|
7
|
Hou N, Armstrong GAB, Chakraborty-Chatterjee M, Sokolowski MB, Robertson RM. Na+-K+-ATPase trafficking induced by heat shock pretreatment correlates with increased resistance to anoxia in locusts. J Neurophysiol 2014; 112:814-23. [PMID: 24848469 PMCID: PMC4122745 DOI: 10.1152/jn.00201.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/17/2014] [Indexed: 01/02/2023] Open
Abstract
The sensitivity of insect nervous systems to anoxia can be modulated genetically and pharmacologically, but the cellular mechanisms responsible are poorly understood. We examined the effect of a heat shock pretreatment (HS) on the sensitivity of the locust (Locusta migratoria) nervous system to anoxia induced by water immersion. Prior HS made locusts more resistant to anoxia by increasing the time taken to enter a coma and by reducing the time taken to recover the ability to stand. Anoxic comas were accompanied by surges of extracellular potassium ions in the neuropile of the metathoracic ganglion, and HS reduced the time taken for clearance of excess extracellular potassium ions. This could not be attributed to a decrease in the activity of protein kinase G, which was increased by HS. In homogenates of the metathoracic ganglion, HS had only a mild effect on the activity of Na(+)-K(+)-ATPase. However, we demonstrated that HS caused a threefold increase in the immunofluorescent localization of the α-subunit of Na(+)-K(+)-ATPase in metathoracic neuronal plasma membranes relative to background labeling of the nucleus. We conclude that HS induced trafficking of Na(+)-K(+)-ATPase into neuronal plasma membranes and suggest that this was at least partially responsible for the increased resistance to anoxia and the increased rate of recovery of neural function after a disturbance of K(+) homeostasis.
Collapse
Affiliation(s)
- Nicholas Hou
- Department of Biology, Queen's University, Kingston, Ontario, Canada; and
| | - Gary A B Armstrong
- Department of Biology, Queen's University, Kingston, Ontario, Canada; and
| | | | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
8
|
Roemschied FA, Eberhard MJ, Schleimer JH, Ronacher B, Schreiber S. Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron. eLife 2014; 3:e02078. [PMID: 24843016 PMCID: PMC4012639 DOI: 10.7554/elife.02078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/03/2014] [Indexed: 02/02/2023] Open
Abstract
Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel.DOI: http://dx.doi.org/10.7554/eLife.02078.001.
Collapse
Affiliation(s)
- Frederic A Roemschied
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Monika Jb Eberhard
- Behavioral Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan-Hendrik Schleimer
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Bernhard Ronacher
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany Behavioral Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Schreiber
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
9
|
Milton SL, Dawson-Scully K. Alleviating brain stress: what alternative animal models have revealed about therapeutic targets for hypoxia and anoxia. FUTURE NEUROLOGY 2013; 8:287-301. [PMID: 25264428 DOI: 10.2217/fnl.13.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While the mammalian brain is highly dependent on oxygen, and can withstand only a few minutes without air, there are both vertebrate and invertebrate examples of anoxia tolerance. One example is the freshwater turtle, which can withstand days without oxygen, thus providing a vertebrate model with which to examine the physiology of anoxia tolerance without the pathology seen in mammalian ischemia/reperfusion studies. Insect models such as Drosophila melanogaster have additional advantages, such as short lifespans, low cost and well-described genetics. These models of anoxia tolerance share two common themes that enable survival without oxygen: entrance into a state of deep hypometabolism, and the suppression of cellular injury during anoxia and upon restoration of oxygen. The study of such models of anoxia tolerance, adapted through millions of years of evolution, may thus suggest protective pathways that could serve as therapeutic targets for diseases characterized by oxygen deprivation and ischemic/reperfusion injuries.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
10
|
Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet 2012; 3:222. [PMID: 23112806 PMCID: PMC3481051 DOI: 10.3389/fgene.2012.00222] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/05/2012] [Indexed: 12/15/2022] Open
Abstract
Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.
Collapse
Affiliation(s)
- Konstantinos Kagias
- Biotech Research and Innovation Centre, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
11
|
Temperature and neuronal circuit function: compensation, tuning and tolerance. Curr Opin Neurobiol 2012; 22:724-34. [DOI: 10.1016/j.conb.2012.01.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 01/24/2023]
|
12
|
Teskey ML, Lukowiak KS, Riaz H, Dalesman S, Lukowiak K. What's hot: the enhancing effects of thermal stress on long-term memory formation in Lymnaea stagnalis. J Exp Biol 2012; 215:4322-9. [DOI: 10.1242/jeb.075960] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Summary
The pond snail, Lymnaea stagnalis, naturally inhabits slow flowing, shallow and stagnant environments in the northern temperate zone. Consequently, it will experience wide temperature fluctuations dependent on prevailing weather conditions. We hypothesize that periods of warming act as a thermal stressor to alter memory formation. Snails were exposed to an acute 1h period of 30°C pond water and we determined how memory formation following operant conditioning of aerial respiration was affected. In snails used here (the Dutch strain), a single 0.5h training session (TS) results in intermediate-term (3h) but not long-term memory (LTM). Applying the thermal stressor during training caused memory enhancement (i.e. LTM lasting 24 h). However, the breathing rate also increased in warm water, which might explain the enhanced memory. Therefore, we applied the thermal stressor (1h at 30°C) up to 4h before or 1h after training. This did not alter baseline breathing rate during the period when snails would experience training. However, the thermal stressor weather experienced prior to or following the single TS, resulted in an enhanced memory that persisted up to 48h (i.e. LTM). We conclude that memory enhancement is due to the stress associated with the thermal stimulus.
Collapse
|
13
|
Miller NA, Stillman JH. Neural thermal performance in porcelain crabs, genus Petrolisthes. Physiol Biochem Zool 2011; 85:29-39. [PMID: 22237287 DOI: 10.1086/663633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Neurons are highly temperature sensitive. Temperature-induced nerve failure may play an important role in determining organismal thermal tolerance limits and distribution patterns. To expand our understanding of the role of neuronal thermal performance in setting thermal limits, we compared the thermal performance of neurons from five porcelain crab (genus Petrolisthes) congeners that differ in thermal habitat. In experiment 1, neuronal performance of sensory neurons was determined by extracellular recording of spontaneous action potentials during thermal ramps. Arrhenius break temperatures of action potential generation were used to calculate maximum critical temperature (CT(max)) and minimum critical temperature (CT(min)) for neuronal performance. CT(max) and CT(min) were related to habitat temperature across the five species and were found to respond to acclimation temperature. In experiment 2, we assessed the performance of neurons from Petrolisthes cinctipes acclimated at 8°, 18°, and 25°C when placed at 30°C (near the whole-organism CT(max) of this species) and demonstrated that neural performance near whole-organism CT(max) increases with increasing acclimation temperature. In experiment 3, we compared the thermal limits of sensory afferents and pacemaker efferents and found that they were correlated, although pacemaker efferents tended to have a higher CT(max) and reduced plasticity. Our final analysis, which was of transcriptomic data in cardiac tissue, leads us to hypothesize that nerve membrane K(+) conductance may underlie variation in nerve thermal tolerance.
Collapse
Affiliation(s)
- Nathan A Miller
- Romberg Tiburon Center, San Francisco State University, 3150 Paradise Drive, Tiburon, California 94920, USA
| | | |
Collapse
|
14
|
Dawson-Scully K, Bukvic D, Chakaborty-Chatterjee M, Ferreira R, Milton SL, Sokolowski MB. Controlling anoxic tolerance in adult Drosophila via the cGMP-PKG pathway. ACTA ACUST UNITED AC 2010; 213:2410-6. [PMID: 20581270 DOI: 10.1242/jeb.041319] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study we identify a cGMP-dependent protein kinase (PKG) cascade as a biochemical pathway critical for controlling low-oxygen tolerance in the adult fruit fly, Drosophila melanogaster. Even though adult Drosophila can survive in 0% oxygen (anoxia) environments for hours, air with less than 2% oxygen rapidly induces locomotory failure resulting in an anoxic coma. We use natural genetic variation and an induced mutation in the foraging (for) gene, which encodes a Drosophila PKG, to demonstrate that the onset of anoxic coma is correlated with PKG activity. Flies that have lower PKG activity demonstrate a significant increase in time to the onset of anoxic coma. Further, in vivo pharmacological manipulations reveal that reducing either PKG or protein phosphatase 2A (PP2A) activity increases tolerance of behavior to acute hypoxic conditions. Alternatively, PKG activation and phosphodiesterase (PDE5/6) inhibition significantly reduce the time to the onset of anoxic coma. By manipulating these targets in paired combinations, we characterized a specific PKG cascade, with upstream and downstream components. Further, using genetic variants of PKG expression/activity subjected to chronic anoxia over 6 h, approximately 50% of animals with higher PKG activity survive, while only approximately 25% of those with lower PKG activity survive after a 24 h recovery. Therefore, in this report we describe the PKG pathway and the differential protection of function vs survival in a critically low oxygen environment.
Collapse
Affiliation(s)
- K Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Rodgers CI, Armstrong GAB, Robertson RM. Coma in response to environmental stress in the locust: a model for cortical spreading depression. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:980-990. [PMID: 20361971 DOI: 10.1016/j.jinsphys.2010.03.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 05/29/2023]
Abstract
Spreading depression (SD) is an interesting and important phenomenon due to its role in mammalian pathologies such as migraine, seizures, and stroke. Until recently investigations of the mechanisms involved in SD have mostly utilized mammalian cortical tissue, however we have discovered that SD-like events occur in the CNS of an invertebrate model, Locusta migratoria. Locusts enter comas in response to stress during which neural and muscular systems shut down until the stress is removed, and this is believed to be an adaptive strategy to survive extreme environmental conditions. During stress-induced comas SD-like events occur in the locust metathoracic ganglion (MTG) that closely resemble cortical SD (CSD) in many respects, including mechanism of induction, extracellular potassium ion changes, and propagation in areas equivalent to mammalian grey matter. In this review we describe the generation of comas and the associated SD-like events in the locust, provide a description of the similarities to CSD, and show how they can be manipulated both by stress preconditioning and pharmacologically. We also suggest that locust SD-like events are adaptive by conserving energy and preventing cellular damage, and we provide a model for the mechanism of SD onset and recovery in the locust nervous system.
Collapse
Affiliation(s)
- Corinne I Rodgers
- Department of Biology, Queen's University, Biosciences Complex, Kingston, Ontario, Canada.
| | | | | |
Collapse
|
16
|
Armstrong GAB, López-Guerrero JJ, Dawson-Scully K, Peña F, Robertson RM. Inhibition of protein kinase G activity protects neonatal mouse respiratory network from hyperthermic and hypoxic stress. Brain Res 2009; 1311:64-72. [PMID: 19945442 DOI: 10.1016/j.brainres.2009.11.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022]
Abstract
In spite of considerable research attention focused on clarifying the mechanisms by which the mammalian respiratory rhythm is generated, little attention has been given to examining how this neuronal circuit can be protected from heat stress. Hyperthermia has a profound effect on neuronal circuits including the circuit that generates breathing in mammals. As temperature of the brainstem increases, respiratory frequency concomitantly rises. If temperature continues to increase respiratory arrest (apnea) and death can occur. Previous research has implicated protein kinase G (PKG) activity in regulating neuronal thermosensitivity of neuronal circuits in invertebrates. Here we examine if pharmacological manipulation of PKG activity in a brainstem slice preparation could alter the thermosensitivity of the fictive neonatal mouse respiratory rhythm. We report a striking effect following alteration of PKG activity in the brainstem such that slices treated with the PKG inhibitor KT5823 recovered fictive respiratory rhythm generation significantly faster than control slices and slices treated with a PKG activator (8-Br-cGMP). Furthermore, slices treated with 8-Br-cGMP arrested fictive respiration at a significantly lower temperature than all other treatment groups. In a separate set of experiments we examined if altered PKG activity could regulate the response of slices to hypoxia by altering the protective switch to fictive gasping. Slices treated with 8-Br-cGMP did not switch to the fictive gasp-like pattern following exposure to hypoxia whereas slices treated with KT5823 did display fictive gasping. We propose that PKG activity inversely regulates the amount of stress the neonatal mammalian respiratory rhythm can endure.
Collapse
Affiliation(s)
- Gary A B Armstrong
- Department of Biology, Queen's University, Biosciences Complex, Kingston ON, Canada.
| | | | | | | | | |
Collapse
|
17
|
Abstract
The importance of cGMP-dependent protein kinase (PKG) to the modulation of behavioural phenotypes has become increasingly clear in recent decades. The effects of PKG on behaviour have been studied in diverse taxa from perspectives as varied as ethology, evolution, genetics and neuropharmacology. The genetic variation of the Drosophila melanogaster gene, foraging (for), has provided a fertile model for examining natural variation in a single major gene influencing behaviour. Concurrent studies in other invertebrates and mammals suggest that PKG is an important signalling molecule with varied influences on behaviour and a large degree of pleiotropy and plasticity. Comparing these cross-taxa effects suggests that there are several potentially overlapping behavioural modalities in which PKG signalling acts to influence behaviours which include feeding, learning, stress and biological rhythms. More in-depth comparative analyses across taxa of the similarities and differences of the influence of PKG on behaviour may provide powerful mechanistic explications of the evolution of behaviour.
Collapse
|
18
|
Rodgers CI, Armstrong GAB, Shoemaker KL, LaBrie JD, Moyes CD, Robertson RM. Stress preconditioning of spreading depression in the locust CNS. PLoS One 2007; 2:e1366. [PMID: 18159249 PMCID: PMC2137934 DOI: 10.1371/journal.pone.0001366] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 12/05/2007] [Indexed: 11/23/2022] Open
Abstract
Cortical spreading depression (CSD) is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG) of locusts. Using K(+) -sensitive microelectrodes, we measured extracellular K(+) concentration ([K(+)](o)) in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K(+) in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na(+)/K(+) ATPase impairment, K(+) injection) was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45 degrees C) and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K(+) that was not linked to changes in ATP levels or total Na(+)/K(+) ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin.
Collapse
Affiliation(s)
- Corinne I Rodgers
- Department of Biology, Queen's University, Biosciences Complex, Kingston, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Dawson-Scully K, Armstrong GA, Kent C, Robertson RM, Sokolowski MB. Natural variation in the thermotolerance of neural function and behavior due to a cGMP-dependent protein kinase. PLoS One 2007; 2:e773. [PMID: 17712421 PMCID: PMC1945089 DOI: 10.1371/journal.pone.0000773] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 07/24/2007] [Indexed: 11/18/2022] Open
Abstract
Although it is acknowledged that genetic variation contributes to individual differences in thermotolerance, the specific genes and pathways involved and how they are modulated by the environment remain poorly understood. We link natural variation in the thermotolerance of neural function and behavior in Drosophila melanogaster to the foraging gene (for, which encodes a cGMP-dependent protein kinase (PKG)) as well as to its downstream target, protein phosphatase 2A (PP2A). Genetic and pharmacological manipulations revealed that reduced PKG (or PP2A) activity caused increased thermotolerance of synaptic transmission at the larval neuromuscular junction. Like synaptic transmission, feeding movements were preserved at higher temperatures in larvae with lower PKG levels. In a comparative assay, pharmacological manipulations altering thermotolerance in a central circuit of Locusta migratoria demonstrated conservation of this neuroprotective pathway. In this circuit, either the inhibition of PKG or PP2A induced robust thermotolerance of neural function. We suggest that PKG and therefore the polymorphism associated with the allelic variation in for may provide populations with natural variation in heat stress tolerance. for's function in behavior is conserved across most organisms, including ants, bees, nematodes, and mammals. PKG's role in thermotolerance may also apply to these and other species. Natural variation in thermotolerance arising from genes involved in the PKG pathway could impact the evolution of thermotolerance in natural populations.
Collapse
Affiliation(s)
- Ken Dawson-Scully
- University of Toronto, Department of Biology, Mississauga, Ontario, Canada
| | | | - Clement Kent
- University of Toronto, Department of Biology, Mississauga, Ontario, Canada
| | | | - Marla B. Sokolowski
- University of Toronto, Department of Biology, Mississauga, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Garlick KM, Robertson RM. Cytoskeletal stability and heat shock-mediated thermoprotection of central pattern generation in Locusta migratoria. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:344-8. [PMID: 17368062 DOI: 10.1016/j.cbpa.2006.10.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Prior exposure to extreme temperatures can induce thermoprotection in migratory locusts, which is important for survival in their natural environment. An important motor activity that needs to be protected is ventilation. The mechanism underlying heat shock is not fully understood, and our goal was to test the idea that cytoskeletal stability is critical for such thermoprotection. Cytoskeletal stabilizers (concanavalin A) and destabilizers (colchicine) were bath-applied in semi-intact locust preparations in both control (C) and pre-treated heat-shocked (3 h, 45 degrees C) animals. We measured parameters of the ventilatory motor pattern during maintained high temperature (43 degrees C) and recorded the times taken for motor pattern generation to fail and then recover on returning to room temperature. We found that concanavalin A mimicked the effects of a prior heat stress in control animals by increasing time to failure and decreasing time to recovery of motor pattern generation. However, colchicine destroyed protection in heat-shocked animals by decreasing time to failure and increasing time to recovery. Our findings confirm that the cytoskeleton has a mechanistic role in preserving neural function at high temperatures, possibly through stabilizing ion channels and other integral membrane proteins (e.g. Na(+)/K(+) ATPase) and their interactions with heat shock proteins.
Collapse
|
21
|
Armstrong GAB, Shoemaker KL, Money TGA, Robertson RM. Octopamine mediates thermal preconditioning of the locust ventilatory central pattern generator via a cAMP/protein kinase A signaling pathway. J Neurosci 2006; 26:12118-26. [PMID: 17122036 PMCID: PMC6675444 DOI: 10.1523/jneurosci.3347-06.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the role of biogenic amines in generating thermoprotection of the ventilatory motor pattern circuitry in Locusta migratoria. Levels of octopamine (OA) and dopamine (DA) in the metathoracic ganglion decreased during heat stress. We measured the thermosensitivity of central pattern generation in response to a ramped increase of temperature in semi-intact preparations. OA, DA, and tyramine (TA) were either bath applied or injected into the locust hemocoel 4-8 h before testing. Neither TA nor DA modified the thermotolerance of ventilatory motor pattern generation. However, OA treatment by bath applications (10(-4) M OA) or by injections into the hemocoel (2 microg/10 microl OA) mimicked heat shock preconditioning and improved the thermotolerance of the motor pattern by increasing the failure temperature and by decreasing the time taken to recover operation after a return to room temperature. Heat shock-induced thermoprotection was eradicated in locusts preinjected with epinastine (Oct betaR antagonist). Neuropil injections of the cAMP agonist and protein kinase A (PKA) activator, Sp-cAMPs, both conferred thermoprotection in control locusts and rescued thermoprotection in epinastine-treated HS locusts. Similar injections of the PKA inhibitor Rp-cAMPs blocked the thermoprotective effect of bath-applied OA. Octopamine-mediated thermoprotection was also abolished with neuropil injections of cycloheximide or actinomycin D, indicating a requirement for transcription and translation. We conclude that OA has a crucial role in triggering protein synthesis-dependent physiological adaptations to protect CNS function during heat stress by activating a cAMP/PKA pathway.
Collapse
Affiliation(s)
- Gary A B Armstrong
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | |
Collapse
|
22
|
Rodgers CI, Shoemaker KL, Robertson RM. Photoperiod-induced plasticity of thermosensitivity and acquired thermotolerance inLocusta migratoria. J Exp Biol 2006; 209:4690-700. [PMID: 17114402 DOI: 10.1242/jeb.02563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe mechanisms by which different life histories affect neural circuits are largely unknown. We show that the thermosensitivity and thermotolerance of neural circuit operation are affected in a complex dynamic fashion by photoperiod, prior heat experience and the sex of the animal. We compared thermosensitivity and thermotolerance of ventilatory motor pattern generation in locusts reared under two photoperiods (12:12 and 16:8; i.e. 12 h:12 h and 16 h:8 h L:D, respectively) before and after heat shock pre-treatment (HS: 3 h, 45°C) in order to determine the effect of daylength on properties of neural function. We monitored central pattern generator (CPG) output electromyographically from muscle 161 in the second abdominal segment during ramped increases in temperature and also measured the time taken for the circuit to fail at high temperatures and the time taken to recover on return to room temperature. There were effects of photoperiod, heat pre-treatment and the sex of the animal on ventilatory rate, time-to-failure and time-to-recovery. The ventilatory motor pattern of 16:8 and 12:12 locusts responded differently to increasing and maintained high temperature stress in both control and heat shocked locusts. We found that 12:12 locusts were generally more robust than 16:8 locusts: they lived longer, they showed greater tolerance to high temperatures, and they recovered more quickly from temperature-induced circuit failure. A faster ventilatory rate in 12:12 animals at high temperatures may have accelerated evaporative cooling to mediate improved temperature tolerance.
Collapse
Affiliation(s)
- Corinne I Rodgers
- Department of Biology, Queen's University, Biosciences Complex, Kingston, ON, K7L 3N6, Canada.
| | | | | |
Collapse
|
23
|
Chown SL, Terblanche JS. Physiological Diversity in Insects: Ecological and Evolutionary Contexts. ADVANCES IN INSECT PHYSIOLOGY 2006; 33:50-152. [PMID: 19212462 PMCID: PMC2638997 DOI: 10.1016/s0065-2806(06)33002-0] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Steven L Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | | |
Collapse
|
24
|
Armstrong GA, Meldrum Robertson R. A role for octopamine in coordinating thermoprotection of an insect nervous system. J Therm Biol 2006. [DOI: 10.1016/j.jtherbio.2005.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Badyaev AV. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proc Biol Sci 2005; 272:877-86. [PMID: 16024341 PMCID: PMC1564094 DOI: 10.1098/rspb.2004.3045] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.
Collapse
|
26
|
|
27
|
Newman AEM, Foerster M, Shoemaker KL, Robertson RM. Stress-induced thermotolerance of ventilatory motor pattern generation in the locust, Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:1039-1047. [PMID: 14568582 DOI: 10.1016/j.jinsphys.2003.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ventilation is a crucial motor activity that provides organisms with an adequate circulation of respiratory gases. For animals that exist in harsh environments, an important goal is to protect ventilation under extreme conditions. Heat shock, anoxia, and cold shock are environmental stresses that have previously been shown to trigger protective responses. We used the locust to examine stress-induced thermotolerance by monitoring the ability of the central nervous system to generate ventilatory motor patterns during a subsequent heat exposure. Preparations from pre-stressed animals had an increased incidence of motor pattern recovery following heat-induced failure, however, prior stress did not alter the characteristics of the ventilatory motor pattern. During constant heat exposure at sub-lethal temperatures, we observed a protective effect of heat shock pre-treatment. Serotonin application had similar effects on motor patterns when compared to prior heat shock. These studies are consistent with previous studies that indicate prior exposure to extreme temperatures and hypoxia can protect neural operation against high temperature stress. They further suggest that the protective mechanism is a time-dependent process best revealed during prolonged exposure to extreme temperatures and is mediated by a neuromodulator such as serotonin.
Collapse
Affiliation(s)
- Amy E M Newman
- Department of Biology, Queen's University, Biosciences Complex, Ontario, Kingston, Canada K7L 3N6.
| | | | | | | |
Collapse
|
28
|
Wu BS, Lee JK, Thompson KM, Walker VK, Moyes CD, Robertson RM. Anoxia induces thermotolerance in the locust flight system. J Exp Biol 2002; 205:815-27. [PMID: 11914390 DOI: 10.1242/jeb.205.6.815] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYHeat shock and anoxia are environmental stresses that are known to trigger similar cellular responses. In this study, we used the locust to examine stress cross-tolerance by investigating the consequences of a prior anoxic stress on the effects of a subsequent high-temperature stress. Anoxic stress and heat shock induced thermotolerance by increasing the ability of intact locusts to survive normally lethal temperatures. To determine whether induced thermotolerance observed in the intact animal was correlated with electrophysiological changes, we measured whole-cell K+ currents and action potentials from locust neurons. K+ currents recorded from thoracic neuron somata were reduced after anoxic stress and decreased with increases in temperature. Prior anoxic stress and heat shock increased the upper temperature limit for generation of an action potential during a subsequent heat stress. Although anoxia induced thermotolerance in the locust flight system, a prior heat shock did not protect locusts from a subsequent anoxic stress. To determine whether changes in bioenergetic status were implicated in whole-animal cross-tolerance, phosphagen levels and rates of mitochondrial respiration were assayed. Heat shock alone had no effect on bioenergetic status. Prior heat shock allowed rapid recovery after normally lethal heat stress but afforded no protection after a subsequent anoxic stress. Heat shock also afforded no protection against disruption of bioenergetic status after a subsequent exercise stress. These metabolite studies are consistent with the electrophysiological data that demonstrate that a prior exposure to anoxia can have protective effects against high-temperature stress but that heat shock does not induce tolerance to anoxia.
Collapse
Affiliation(s)
- B S Wu
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
29
|
Wu BS, Walker VK, Robertson RM. Heat shock-induced thermoprotection of action potentials in the locust flight system. JOURNAL OF NEUROBIOLOGY 2001; 49:188-99. [PMID: 11745657 DOI: 10.1002/neu.1074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is increasing evidence that heat shock (HS) has long-term effects on electrophysiological properties of neurons and synapses. Prior HS protects neural circuitry from a subsequent heat stress but little is known about the mechanisms that mediate this plasticity and induce thermotolerance. Exposure of Locusta migratoria to HS conditions of 45 degrees C for 3 h results in thermotolerance to hitherto lethal temperatures. Locust flight motor patterns were recorded during tethered flight at room temperature, before and after HS. In addition, intracellular action potentials (APs) were recorded from control and HS motoneurons in a semi-intact preparation during a heat stress. HS did not alter the timing of representative depressor or elevator muscle activity, nor did it affect the ability of the locust to generate a steering motor pattern in response to a stimulus. However, HS did increase the duration of APs recorded from neuropil segments of depressor motoneurons. Increases in AP duration were associated with protection of AP generation against failure at subsequent elevated temperatures. Failure of AP generation at high temperatures was preceded by a concomitant burst of APs and depolarization of the membrane. The protective effects of HS were mimicked by pharmacological blockade of I(K+) with tetraethylammonium (TEA). Taken together, these findings are consistent with a hypothesis that HS protects neuronal survival and function via K+ channel modulation.
Collapse
Affiliation(s)
- B S Wu
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
30
|
Barclay JW, Robertson RM. Enhancement of short-term synaptic plasticity by prior environmental stress. J Neurophysiol 2001; 85:1332-5. [PMID: 11248003 DOI: 10.1152/jn.2001.85.3.1332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
All chemical synapses can rapidly up- or downregulate the strength of their connections to reshape the postsynaptic signal, thereby stressing the informational importance of specific neural pathways. It is also true that an organism's environment can exert a powerful influence on all aspects of neural circuitry. We investigated the effect of a prior high-temperature stress on the short-term plasticity of a neuromuscular synapse in the hindleg tibial extensor muscle of Locusta migratoria. We found that the prior stress acted to precondition the synapse by increasing the upper temperature limit for synaptic transmission during a subsequent stressful exposure. As well, preexposure to a stressful high-temperature environment increased short-term facilitation of excitatory junction potentials concurrent with a decrease in excitatory junction potential amplitude and a reduction in its temporal parameters. We conclude that a stressful environment can modify synaptic physiological properties resulting in an enhancement of short-term plasticity of the synapse.
Collapse
Affiliation(s)
- J W Barclay
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
31
|
Bustami HP, Hustert R. Typical ventilatory pattern of the intact locust is produced by the isolated CNS. JOURNAL OF INSECT PHYSIOLOGY 2000; 46:1285-1293. [PMID: 10844147 DOI: 10.1016/s0022-1910(00)00050-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ventilatory rhythms of locusts are generated in the central nervous system (CNS). The primary oscillator or central pattern generator (CPG) is located in the metathoracic ganglion. We studied the different patterns of ventilation by recording long-term efferent discharges from the isolated metathoracic ganglion.Two different basic patterns occur: continuous ventilation and discontinuous ventilation. These patterns can be found in the isolated nerve cord as well as in intact animals. In intact animals sensory feedback usually elicits high frequency continuous ventilation as is the case in most physiological experiments. Many studies of ventilation-associated interneurones were performed under what we call stressed conditions i.e. with strong sensory feedback. Under these conditions many interneurones may be recruited which probably do not belong to the basic CPG. In isolated nerve cords of locusts we recognised the two basic types of ventilation. This provides an experimental approach to the origin of rhythmogenesis in ventilation. We can now examine single interneurones under less stressed or even discontinuous ventilatory conditions in the isolated CNS.We suggest the dominance of intrinsic rhythmogenesis of ventilation in the metathoracic ganglion of locusts.
Collapse
Affiliation(s)
- HP Bustami
- Institut für Zoologie und Anthropologie der Universität Göttingen, Berliner Str. 28, 37073, Göttingen, Germany
| | | |
Collapse
|
32
|
Barclay JW, Robertson RM. Heat-shock-induced thermoprotection of hindleg motor control in the locust. J Exp Biol 2000; 203:941-50. [PMID: 10667978 DOI: 10.1242/jeb.203.5.941] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional neuromuscular connections are critical for appropriate behavioural responses, but can be negatively affected by increases in temperature. We investigated the effects of heat shock on the thermosensitivity of a neuromuscular pathway to the hindleg tibial extensor muscle of Locusta migratoria. We found that exposure to heat shock induced thermoprotection of both neuromuscular transmission and extensor muscle contraction by (i) increasing the upper temperature limit for failure, (ii) improving recovery following heat-induced failure and (iii) stabilizing excitatory junction potential amplitude and duration and extensor muscle contraction force at high temperatures. Furthermore, the heat-shock-induced thermoprotection of extensor muscle contraction was not attributable to a protective effect on intrinsic components of muscle contraction. Finally, the use of jumping as a locomotor strategy to avoid capture, a behavioural response dependent upon functionally competent neuromuscular connections at the hindleg tibial extensor muscle, became less sensitive to temperature following heat shock. We conclude that the natural stress response of the locust stabilizes neuromuscular signalling during temperature stress, and that this can underlie a thermoprotection of muscle contraction force and thus alter the thermosensitivity of an escape behaviour critical for survival.
Collapse
Affiliation(s)
- J W Barclay
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | |
Collapse
|