1
|
Mohammadi E, Shamsizadeh A, Salari E, Fatemi I, Allahtavakoli M, Roohbakhsh A. Effect of TPMPA (GABACreceptor antagonist) on neuronal response properties in rat barrel cortex. Somatosens Mot Res 2017; 34:108-115. [DOI: 10.1080/08990220.2017.1317240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elham Mohammadi
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Salari
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Sokolov AY, Lyubashina OA, Amelin AV, Panteleev SS. The role of gamma-aminobutyric acid in migraine pathogenesis. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Kim NH, Cha SK, Kong ID. Excitatory GABAA receptor in autonomic pelvic ganglion neurons innervating bladder. Biochem Biophys Res Commun 2014; 447:205-9. [PMID: 24704426 DOI: 10.1016/j.bbrc.2014.03.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 11/26/2022]
Abstract
Major pelvic ganglia (MPG) are relay centers for autonomic reflexes such as micturition and penile erection. MPG innervate the urogenital system, including bladder. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and may also play an important role in some peripheral autonomic ganglia, including MPG. However, the electrophysiological properties and function of GABAA receptor in MPG neurons innervating bladder remain unknown. This study examined the electrophysiological properties and functional roles of GABAA receptors in bladder-innervating neurons identified by retrograde Dil tracing. Neurons innervating bladder showed previously established parasympathetic properties, including small membrane capacitance, lack of T-type Ca(2+) channel expression, and tyrosine-hydroxylase immunoreactivity. GABAA receptors were functionally expressed in bladder innervating neurons, but GABAC receptors were not. GABA elicited strong depolarization followed by increase of intracellular Ca(2+) in neurons innervating bladder, supporting the hypothesis GABA may play an important role in bladder function. These results provide useful information about the autonomic function of bladder in physiological and pathological conditions.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Basic Nursing Science, College of Nursing, Keimyung University, Daegu, Republic of Korea
| | - Seung-Kuy Cha
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - In Deok Kong
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
4
|
Ikeda H, Kotani A, Lee J, Koshikawa N, Cools A. GABAA receptors in the mediodorsal thalamus play a crucial role in rat shell-specific acetylcholine-mediated, but not dopamine-mediated, turning behaviour. Neuroscience 2009; 159:1200-7. [DOI: 10.1016/j.neuroscience.2009.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/13/2009] [Accepted: 02/07/2009] [Indexed: 11/25/2022]
|
5
|
Li S, Zhang Y, Liu H, Yan Y, Li Y. Identification and expression of GABACreceptor in rat testis and spermatozoa. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00453.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Reis GML, Duarte IDG. Involvement of chloride channel coupled GABA(C) receptors in the peripheral antinociceptive effect induced by GABA(C) receptor agonist cis-4-aminocrotonic acid. Life Sci 2007; 80:1268-73. [PMID: 17316706 DOI: 10.1016/j.lfs.2006.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/22/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
We investigated the effect of chloride and potassium channel blockers on the antinociception induced by GABA(C) receptor agonist CACA (cis-4-aminocrotonic acid) using the paw pressure test, in which pain sensitivity was increased by an intraplantar injection (2 microg) of prostaglandin E(2) (PGE(2)). CACA administered locally into the right hindpaw (25, 50 and 100 microg/paw) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. The GABA(C) receptor antagonist (1,2,5,6 tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA; 5, 10 and 20 microg/paw) antagonized, in a dose-dependent manner, the peripheral antinociception induced by CACA (100 microg), suggesting a specific effect. This effect was reversed by the chloride channel coupled receptor blocker picrotoxin (0.8 microg/paw). Glibenclamide (160 microg) and tolbutamide (320 microg), blockers of ATP-sensitive potassium channels, charybdotoxin (2 microg), a large-conductance potassium channel blocker, dequalinium (50 microg), a small-conductance potassium channel blocker, and cesium (500 microg), a non-specific potassium channel blocker did not modify the peripheral antinociception induced by CACA. This study provides evidence that activation of GABA(C) receptors in the periphery induces antinociception, that this effect results from the activation of chloride channel coupled GABA(C) receptors and that potassium channels appear not to be involved.
Collapse
Affiliation(s)
- Gláucia Maria Lopes Reis
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, Belo Horizonte, Brazil
| | | |
Collapse
|
7
|
Park JC, Song DY, Lee JS, Kong ID, Jeong SW, Lee BH, Kang HS, Cho BP. Expression of GABAA receptor β2/3 subunits in the rat major pelvic ganglion. Neurosci Lett 2006; 403:35-9. [PMID: 16716506 DOI: 10.1016/j.neulet.2006.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/07/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Several pharmacological and physiological studies have suggested that GABA(A) receptors (GABA(A) Rs) may exist in the rat major pelvic ganglion (MPG), a large coalescent pelvic ganglion that contains both sympathetic and parasympathetic components which innervates pelvic organs. However, the presence of GABA(A) R in the MPG has never been demonstrated directly by morphological studies. In the present study, we used immunohistochemistry to demonstrate the existence of GABA(A) R beta2/3 subunits for the first time in the rat MPG. We also analyzed the neurochemical properties of MPG neurons expressing GABA(A) R beta2/3 subunits. GABA(A) R beta2/3-immunoreactive (-IR) neurons occupied 27.4+/-7.0% of the whole neuronal population, and many of these (77.6%) were co-localized with tyrosine hydroxylase (TH). Likewise, most (86.5%) of TH-IR neurons were GABA(A) R beta2/3-positive. GABA(A) R beta2/3 subunits were also expressed in a few VIP- or NOS-IR neurons, the cholinergic or non-adrenergic, non-cholinergic (NANC) neurons. These results suggest that GABA(A) Rs are involved in the modulation of most sympathetic, noradrenergic neurons and also a subset of VIP and NOS neurons of the rat MPG.
Collapse
Affiliation(s)
- Jung Cheol Park
- Department of Anatomy, Institute of Basic Medical Science and Industry-Academic Cooperation Foundation, Yonsei University Wonju College of Medicine, 162, Ilsan-dong, Gangwon-do 220-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fischer H, Harper AA, Anderson CR, Adams DJ. Developmental changes in expression of GABAA receptor-channels in rat intrinsic cardiac ganglion neurones. J Physiol 2005; 564:465-74. [PMID: 15731187 PMCID: PMC1464452 DOI: 10.1113/jphysiol.2005.084012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The effects of gamma-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at -60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABA(A) receptor agonists muscimol and taurine, and inhibited by the GABA(A) receptor antagonists, bicuculline and picrotoxin. The GABA(A0) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABA(A) receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at -100 mV was approximately 20 times higher for intracardiac neurones obtained from neonatal rats (P2-5) compared with adult rats (P45-49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system.
Collapse
Affiliation(s)
- Harald Fischer
- School of Biomedical Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | |
Collapse
|
9
|
Milligan CJ, Buckley NJ, Garret M, Deuchars J, Deuchars SA. Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons. J Neurosci 2004; 24:7241-50. [PMID: 15317850 PMCID: PMC6729776 DOI: 10.1523/jneurosci.1979-04.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 06/28/2004] [Accepted: 06/28/2004] [Indexed: 11/21/2022] Open
Abstract
Fast inhibition in the nervous system is commonly mediated by GABA(A) receptors comprised of 2alpha/2beta/1gamma subunits. In contrast, GABA(C) receptors containing only rho subunits (rho1-rho3) have been predominantly detected in the retina. However, here using reverse transcription-PCR and in situ hybridization we show that mRNA encoding the rho1 subunit is highly expressed in brainstem neurons. Immunohistochemistry localized the rho1 subunit to neurons at light and electron microscopic levels, where it was detected at synaptic junctions. Application of the GABA(C) receptor agonist cis-4-aminocrotonic acid (100-800 microM) requires the rho1 subunit to elicit responses, which surprisingly are blocked independently by antagonists to GABA(A) (bicuculline, 10 microM) and GABA(C) [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA); 40-160 microM] receptors. Responses to GABA(C) agonists were also enhanced by the GABA(A) receptor modulator pentobarbitone (300 microM). Spontaneous and evoked IPSPs were reduced in amplitude but never abolished by TPMPA, but were completely blocked by bicuculline. We therefore tested the hypothesis that GABA(A) and GABA(C) subunits formed a heteromeric receptor. Immunohistochemistry indicated that rho1 and alpha1 subunits were colocalized at light and electron microscopic levels. Electrophysiology revealed that responses to GABA(C) receptor agonists were enhanced by the GABA(A) receptor modulator zolpidem (500 nm), which acts on the alpha1 subunit when the gamma2 subunit is also present. Finally, coimmunoprecipitation indicated that the rho1 subunit formed complexes that also containedalpha1 and gamma2 subunits. Taken together these separate lines of evidence suggest that the effects of GABA in central neurons can be mediated by heteromeric complexes of GABA(A) and GABA(C) receptor subunits.
Collapse
Affiliation(s)
- Carol J Milligan
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Kanjhan R, Osborne PB, Ouyang M, Keast JR. Postnatal maturational changes in rat pelvic autonomic ganglion cells: a mixture of steroid-dependent and -independent effects. J Neurophysiol 2003; 89:315-23. [PMID: 12522182 DOI: 10.1152/jn.00479.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Androgens have potent effects on the maturation and maintenance of a number of neural pathways involved in reproductive behaviors in males. Most studies in this area have focused on central pathways, but androgen receptors are expressed by many peripheral neurons innervating reproductive organs, and previous studies have demonstrated structural and chemical changes in these neurons at puberty and after castration. We have performed the first electrophysiological comparison of pelvic autonomic ganglion neurons in male rats before and after puberty and following pre- or postpubertal castration. Studies were performed in vitro on intact ganglia with hypogastric and pelvic nerves attached to allow synaptic activation of sympathetic or parasympathetic neurons, respectively. Pelvic ganglion neurons underwent many changes in their passive and active membrane properties over the pubertal period, and some of these changes were dependent on exposure to circulating androgens. The most pronounced steroid-dependent effects were on membrane capacitance (soma size) in sympathetic neurons and duration of the action potential afterhyperpolarization in tonic neurons. Our study also showed that rat pelvic ganglion cells and their synaptic inputs were more diverse than previously reported. In conclusion, this study demonstrated that rat pelvic ganglion neurons undergo considerable postnatal changes in their electrophysiological properties. The steroid dependence of some of these changes indicates that circulating androgens may influence reproductive behaviors at many locations within the nervous system not just in the brain and spinal cord.
Collapse
Affiliation(s)
- R Kanjhan
- Prince of Wales Medical Research Institute, University of New South Wales, Sydney 2031, Australia
| | | | | | | |
Collapse
|
11
|
Bayer S, Crenner F, Aunis D, Angel F. Effects of GABA on circular smooth muscle spontaneous activities of rat distal colon. Life Sci 2002; 71:911-25. [PMID: 12084388 DOI: 10.1016/s0024-3205(02)01771-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GABAergic regulation of intestinal motility through the modulation of non-adrenergic non-cholinergic (NANC) neurons remains poorly understood especially in rat colon where very few studies have been undertaken. Therefore, the effects of GABA on circular preparations of rat distal colon were investigated using classical organ bath chambers to record spontaneous mechanical activities (SMA). SMA was characterized by the occurrence of rhythmic phasic contractions (type-I) or by spontaneously occurring large contractions superimposed on small rhythmic contractions (type-II). In the presence of atropine and guanethidine (NANC conditions), these large contractions were inhibited by bicuculline, a GABA(A)-receptor antagonist as well as by TTX, L-NAME and apamin together, or L 732-138, a NK1-receptor antagonist. In NANC conditions, GABA induced a transient monophasic relaxation or a biphasic effect characterized by a relaxation followed by a tonic contraction in both type-I and -II preparations. Both the inhibitory and excitatory effects of GABA were blocked by TTX and L-NAME + apamin; the GABA-induced contraction was also sensitive to L 732-138. The responses to GABA were mimicked by the GABA(A)-receptor agonist, muscimol, whereas baclofen and CACA, respectively GABA(B) and GABA(C)-receptors agonists showed no effect. These results demonstrated that only GABA(A)-receptors seem to be involved in the regulation of SMA in rat distal colon in NANC conditions. Release of NANC inhibitory transmitter (NO and probably ATP) and NANC excitatory transmitter (maybe substance P) might be involved.
Collapse
Affiliation(s)
- S Bayer
- INSERM Unité 338. Groupe de Neurogastroentérologie. Pavillon Poincaré. Hôpital Civil. 67000 Strasbourg, France
| | | | | | | |
Collapse
|
12
|
Sha L, Miller SM, Szurszewski JH. Electrophysiological effects of GABA on cat pancreatic neurons. Am J Physiol Gastrointest Liver Physiol 2001; 280:G324-31. [PMID: 11171614 DOI: 10.1152/ajpgi.2001.280.3.g324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In mammalian peripheral sympathetic ganglia GABA acts presynaptically to facilitate cholinergic transmission and postsynaptically to depolarize membrane potential. The GABA effect on parasympathetic pancreatic ganglia is unknown. We aimed to determine the effect of locally applied GABA on cat pancreatic ganglion neurons. Ganglia with attached nerve trunks were isolated from cat pancreata. Conventional intracellular recording techniques were used to record electrical responses from ganglion neurons. GABA pressure microejection depolarized membrane potential with an amplitude of 17.4 +/- 0.7 mV. Electrically evoked fast excitatory postsynaptic potentials were significantly inhibited (5.4 +/- 0.3 to 2.9 +/- 0.2 mV) after GABA application. GABA-evoked depolarizations were mimicked by the GABA(A) receptor agonist muscimol and abolished by the GABA(A) receptor antagonist bicuculline and the Cl(-) channel blocker picrotoxin. GABA was taken up and stored in ganglia during preincubation with 1 mM GABA; beta-aminobutyric acid application after GABA loading significantly (P < 0.05) increased depolarizing response to GABA (15.6 +/- 1.0 vs. 7.8 +/- 0.8 mV without GABA preincubation). Immunolabeling with antibodies to GABA, glial cell fibrillary acidic protein, protein gene product 9.5, and glutamic acid decarboxylase (GAD) immunoreactivity showed that GABA was present in glial cells, but not in neurons, and that glial cells did not contain GAD, whereas islet cells did. The data suggest that endogenous GABA released from ganglionic glial cells acts on pancreatic ganglion neurons through GABA(A) receptors.
Collapse
Affiliation(s)
- L Sha
- Department of Physiology and Biophysics, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
13
|
Pan ZH, Zhang D, Zhang X, Lipton SA. Evidence for coassembly of mutant GABAC rho1 with GABAA gamma2S, glycine alpha1 and glycine alpha2 receptor subunits in vitro. Eur J Neurosci 2000; 12:3137-45. [PMID: 10998097 DOI: 10.1046/j.1460-9568.2000.00198.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional coassembly of gamma-aminobutyric acid (GABA)C rho1 subunits with GABAA (alpha1, beta2, and gamma2S) or glycine (alpha1, alpha2, and beta) subunits was examined using two-electrode voltage-clamp recordings in the Xenopus laevis oocyte expression system. To facilitate this study, we took advantage of the unique gating and pharmacological properties of two mutant rho1 subunits, rho1(T314A) and rho1(T314A/L317A). When the rho1(T314A) subunit was coexpressed with GABA gamma2S, glycine alpha1 or glycine alpha2 subunits, GABA response properties were different from those of homomeric rho1(T314A) receptors. Additionally, the sensitivity of heteromeric rho1(T314A) and gamma2S receptors to picrotoxinin (PTX) blockade of GABA-evoked responses was altered compared to that of homomeric rho1(T314A) receptors. Changes in GABA response properties and picrotoxinin sensitivity were also observed when rho1(T314A) subunits were coexpressed with wild-type rho1 subunits. When rho1(T314A/L317A) subunits were coexpressed with GABA gamma2S, glycine alpha1 or glycine alpha2 subunits, suppression by GABA of spontaneously active current was reduced compared to that of homomeric rho1(T314A/L317A) receptors. Recovery of the spontaneous current from inhibition by GABA for GABA rho1(T314A/L317A)/gamma2S heteromeric receptors displayed an additional component. Coinjection of wild-type rho1 with gamma2S cRNAs at a ratio of 1 : 1 resulted in a > 10-fold reduction in GABA-evoked current. Furthermore, coexpression of wild-type rho1 and gamma2S subunits was found to shift the GABA dose-response curve. Our results provide functional evidence that the GABAC rho1 subunit can coassemble with the GABAA gamma2S subunit, and, at least in its mutated form, rho1 can also form heteromeric receptors with glycine alpha1 or alpha2 subunits in vitro.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Electrophysiology
- GABA Antagonists/pharmacology
- Gene Expression/physiology
- In Vitro Techniques
- Mutagenesis/physiology
- Neural Inhibition/genetics
- Oocytes/physiology
- Picrotoxin/pharmacology
- Protein Structure, Tertiary/genetics
- Rats
- Receptors, GABA/chemistry
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-B
- Receptors, Glycine/chemistry
- Receptors, Glycine/genetics
- Receptors, Glycine/metabolism
- Retina/metabolism
- Xenopus laevis
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- Z H Pan
- CNS Research Institute, Brigham & Women's Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
14
|
Akasu T, Tsurusaki M. Interleukin-1beta causes a biphasic response in neurons of rat major pelvic ganglia. Neurosci Lett 1999; 272:119-22. [PMID: 10507556 DOI: 10.1016/s0304-3940(99)00583-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of interleukin-1beta (IL-1beta) on peripheral autonomic neurons was examined with intracellular microelectrodes, in vitro. Recombinant human IL-1beta (6-300 pM) produced a depolarization, associated with decrease in input resistance, followed by a hyperpolarization, associated with increase in input resistance, in neurons of rat major pelvic ganglia (MPG). IL-1beta 163-171 (10-100 pM), the active domain of human IL-1beta, also produced a biphasic response. The IL-1beta-induced responses reversed polarity at the equilibrium potential for Cl-. The IL-1beta-induced responses were blocked by picrotoxin (100 microM) but not by bicuculline (20 microM). Imidazole-4-acetic acid (14AA, 100 microM), a GABA(C) receptor antagonist, reduced the IL-1beta-induced responses. The results suggest that the IL-1beta-induced biphasic response is mediated through GABA(C) receptors in rat MPG neurons.
Collapse
Affiliation(s)
- T Akasu
- Department of Physiology, Kurume University School of Medicine, Japan.
| | | |
Collapse
|