1
|
Testing broad-spectrum and isoform-preferring HCN channel blockers for anticonvulsant properties in mice. Epilepsy Res 2020; 168:106484. [DOI: 10.1016/j.eplepsyres.2020.106484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
|
2
|
|
3
|
Ketamine Action in the In Vitro Cortical Slice Is Mitigated by Potassium Channel Blockade. Anesthesiology 2019; 128:1167-1174. [PMID: 29509582 DOI: 10.1097/aln.0000000000002147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ketamine is a general anesthetic thought to act by antagonizing N-methyl-D-aspartate receptors. However, ketamine acts on multiple channels, many of which are potential targets-including hyperpolarization-activated cyclic nucleotide-gated and potassium channels. In this study we tested the hypothesis that potassium leak channels contribute to the anesthetic action of ketamine. METHODS Adult mouse cortical slices (400 µm) were exposed to no-magnesium artificial cerebrospinal fluid to generate seizure-like event activity. The reduction in seizure-like event frequency after exposure to ketamine (n = 14) was quantified as a signature of anesthetic effect. Pharmacologic manipulation of hyperpolarization-activated cyclic nucleotide-gated and potassium channels using ZD7288 (n = 11), cesium chloride (n = 10), barium chloride (n = 10), low-potassium (1.5 mM) artificial cerebrospinal fluid (n = 10), and urethane (n = 7) were investigated. RESULTS Ketamine reduced the frequency of seizure-like events (mean [SD], -62 [22]%, P < 0.0001). Selective hyperpolarization-activated cyclic nucleotide-gated channel block with ZD7288 did not significantly alter the potency of ketamine to inhibit seizure-like event activity. The inhibition of seizure-like event frequency by ketamine was fully antagonized by the potassium channel blockers cesium chloride and barium chloride (8 [26]% and 39 [58%] increase, respectively, P < 0.0001, compared to ketamine control) and was facilitated by the potassium leak channel opener urethane (-93 [8]%, P = 0.002 compared to ketamine control) and low potassium artificial cerebrospinal fluid (-86 [11]%, P = 0.004 compared to ketamine control). CONCLUSIONS The results of this study show that mechanisms additional to hyperpolarization-activated cyclic nucleotide-gated channel block are likely to explain the anesthetic action of ketamine and suggest facilitatory action at two-pore potassium leak channels.
Collapse
|
4
|
Karunasinghe RN, Grey AC, Telang R, Vlajkovic SM, Lipski J. Differential spread of anoxic depolarization contributes to the pattern of neuronal injury after oxygen and glucose deprivation (OGD) in the Substantia Nigra in rat brain slices. Neuroscience 2016; 340:359-372. [PMID: 27826106 DOI: 10.1016/j.neuroscience.2016.10.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/14/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022]
Abstract
Anoxic depolarization (AD) is an acute event evoked by brain ischemia, involving a profound loss of cell membrane potential and swelling that spreads over susceptible parts of the gray matter. Its occurrence is a strong predictor of the severity of neuronal injury. Little is known about this event in the Substantia Nigra, a midbrain nucleus critical for motor control. We tested the effects of oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia, in rat midbrain slices. AD developed within 4min from OGD onset and spread in the Substantia Nigra pars reticulata (SNr), but not through the Substantia Nigra pars compacta (SNc). This differential effect involved a contrasting pattern of changes in membrane potential between dopamine-producing SNc and non-dopaminergic SNr neurons. A fast depolarization in SNr neurons was not followed by repolarization after the end of OGD, and was associated with swollen somata and beaded dendrites. In contrast, slowly developing depolarization of SNc neurons led to repolarization after OGD ended, and no changes in neuronal morphology were observed. The AD-resistance of the SNc involved smaller dysregulations of K+ and Ca2+ ions, and a slower loss of energy metabolites. Our results show that acute ischemia profoundly impairs the function and morphology of SNr neurons but not adjacent SNc neurons, and that the surprising higher tolerance of SNc neurons correlates with the resistance of the SNc region to AD. This differential response may affect the pattern of early neuronal injury that develops in the brainstem after acute ischemic insults.
Collapse
Affiliation(s)
- Rashika N Karunasinghe
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Angus C Grey
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Ravindra Telang
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Janusz Lipski
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
5
|
Scemes E, Spray DC. Extracellular K⁺ and astrocyte signaling via connexin and pannexin channels. Neurochem Res 2012; 37:2310-6. [PMID: 22481627 DOI: 10.1007/s11064-012-0759-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
Astrocytes utilize two major pathways to achieve long distance intercellular communication. One pathway involves direct gap junction mediated signal transmission and the other consists of release of ATP through pannexin channels and excitation of purinergic receptors on nearby cells. Elevated extracellular potassium to levels occurring around hyperactive neurons affects both gap junction and pannexin1 channels. The action on Cx43 gap junctions is to increase intercellular coupling for a period that long outlasts the stimulus. This long term increase in coupling, termed "LINC", is mediated through calcium and calmodulin dependent activation of calmodulin dependent kinase (CaMK). Pannexin1 can be activated by elevations in extracellular potassium through a mechanism that is quite different. In this case, potassium shifts activation potentials to more physiological range, thereby allowing channel opening at resting or slightly depolarized potentials. Enhanced activity of both these channel types by elevations in extracellular potassium of the magnitude occurring during periods of high neuronal activity likely has profound effects on intercellular signaling among astrocytes in the nervous system.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
6
|
Andreasen M, Nedergaard S. Heterogeneous firing behavior during ictal-like epileptiform activity in vitro. J Neurophysiol 2011; 107:1379-92. [PMID: 22157126 DOI: 10.1152/jn.00309.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Seizure activity in vivo is caused by populations of neurons displaying a high degree of variability in activity pattern during the attack. The reason for this variability is not well understood. Here we show in an in vitro preparation that hippocampal CA1 pyramidal cells display four types of afterdischarge behavior during stimulus-induced ictal-like events in the presence of Cs(+) (5 mM): type I (43.7%) consisting of high-frequency firing riding on a plateau potential; type II (28.2%) consisting of low-frequency firing with no plateau potential; type III (18.3%) consisting of high-frequency firing with each action potential preceded by a transient hyperpolarization and time-locked to population activity, no plateau potential; "passive" (9.9%) typified by no afterdischarge. Type I behavior was blocked by TTX (0.2 μM) and intracellular injection of QX314 (12.5-25 mM). TTX (0.2 μM) or phenytoin (50 μM) terminated ictal-like events, suggesting that the persistent Na(+) current (I(NaP)) is pivotal for type I behavior. Type I behavior was not correlated to intrinsic bursting capability. Blockade of the M current (I(M)) with linopirdine (10 μM) increased the ratio of type I neurons to 100%, whereas enhancing I(M) with retigabine (50-100 μM) greatly reduced the epileptiform activity. These results suggest an important role of I(M) in determining afterdischarge behavior through control of I(NaP) expression. We propose that type I neurons act as pacemakers, which, through synchronization, leads to recruitment of type III neurons. Together, they provide the "critical mass" necessary for ictogenesis to become regenerative.
Collapse
|
7
|
Kraglund N, Andreasen M, Nedergaard S. Differential influence of non-synaptic mechanisms in two in vitro models of epileptic field bursts. Brain Res 2010; 1324:85-95. [PMID: 20153738 DOI: 10.1016/j.brainres.2010.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 12/26/2022]
Abstract
Non-synaptic interactions are known to promote epileptiform activity through mechanisms that have primarily been studied in one particular in vitro model (low Ca(2+) model). Here we characterize another non-synaptic model, where ictal-like field bursts are induced in the CA1 area of rat hippocampal slices by exposure to Cs(+) (4-5mM) together with blockers of fast chemical synaptic transmission, and compare it with the low Ca(2+) model. The Cs-induced field bursts were blocked by 1 microM tetrodotoxin, but persisted in the presence of 200 microM Cd(2+) or 300 microM Ni(2+). Hyperosmotic condition (addition of 30 mM sucrose), reduced burst amplitude, but, unlike field bursts induced by 0mM Ca(2+)/5.25 mM K(+), sucrose had no effect on frequency or duration. Intracellular alkalinization-acidification sequence induced by NH(4)Cl potentiated and blocked, respectively, the field bursts. Octanol (100-250 microM) blocked all activity in most experiments. A quantitative comparison of three gap junction antagonists (carbenoxolone (100 microM), quinidine (100-250 microM), and endothelin-3 (1-2 microM)) indicated that gap junction communication is implicated in both models. However, endothelin-3 had selective effect on the low Ca(2+)-induced field burst. The data suggest that extracellular space-dependent processes, including field effects, significantly contribute to ongoing field burst activity, whereas initiation of a field burst can occur with or without the aid of such interactions, depending on the level of neuronal excitability. Gap junctions seem to have a general role in initiating field bursts. However, the contribution to this effect from neuronal versus glial connexin types differs in the two epileptic models studied.
Collapse
Affiliation(s)
- Nikolaj Kraglund
- Department of Physiology and Biophysics, Aarhus University, Arhus C, Denmark
| | | | | |
Collapse
|
8
|
Kogure S, Takahashi S, Saito N, Kozuka K, Matsuda Y. Effects of low-power laser irradiation on the threshold of electrically induced paroxysmal discharge in rabbit hippocampus CA1. Lasers Med Sci 2009; 25:79-86. [PMID: 19462168 DOI: 10.1007/s10103-009-0681-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Accepted: 05/03/2009] [Indexed: 11/30/2022]
Abstract
In acute experiments using adult rabbits, we measured the paroxysmal discharge threshold (PADT) elicited by stimulation to the apical dendritic layer of the hippocampal CA1 region before and after low-power laser irradiation. Nd:YVO(4) laser irradiation (wavelength: 532 nm) was introduced into the same region as the stimulation site. The average PADT was 247 +/- 13 microA (n = 18) before laser irradiation, while after 5-min laser irradiation with 50, 75, and 100 mW, PADT was 333 +/- 40 (n = 4), 353 +/- 33 (n = 4) and 367 +/- 27 microA (n = 6), respectively. The latter two increments were statistically significant compared to the control (p < 0.05 and p < 0.01). After 10-min laser irradiation with 75 and 100 mW, PADT was 340 +/- 47 (n = 9) and 480 +/- 60 microA (n = 11; p < 0.01), respectively. Laser irradiation with a specific wavelength and average power offers the potential to suppress the generation of paroxysmal discharges in rabbit hippocampus CA1. Correlation analyses suggest that PADT increments are based on photochemical as well as photothermal effects of laser irradiation.
Collapse
Affiliation(s)
- Shinichi Kogure
- Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan.
| | | | | | | | | |
Collapse
|
9
|
Skov J, Nedergaard S, Andreasen M. The slow Ca2+-dependent K+-current facilitates synchronization of hyperexcitable pyramidal neurons. Brain Res 2009; 1252:76-86. [DOI: 10.1016/j.brainres.2008.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/13/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
|
10
|
The toxic function of cesium 5-sulfosalicylate based on the investigation of its trans-erythrocytes membrane behaviors and morphological properties. Chem Biol Interact 2008; 171:325-31. [PMID: 18178182 DOI: 10.1016/j.cbi.2007.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 11/20/2022]
Abstract
In order to evaluate the cesium-induced toxic functional changes in organisms, transmembrane activities of cesium 5-sulfosalicylate (Cs(H(2)Ssal)) into human erythrocyte in vitro is presented in this paper, including kinetic characteristic of transport process and pathways involved in it. The uptake amount of Cs(H(2)Ssal) by erythrocyte was determined both by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) and spectrofluorimetry. The pathways of Cs(H(2)Ssal) transporting into erythrocyte are proposed according to inhibition investigation. The influence of Cs(H(2)Ssal) on morphological properties of erythrocytes was examined using Scanning Electron Microscopy (SEM) to determined the endurable concentration extent of erythrocytes to Cs(H(2)Ssal). Results show that transmembrane of Cs(H(2)Ssal) has characteristic of first-order kinetic process during the first 2h, and four pathways were involved in its transporting activities: Ca(2+) channel, Na(+)-K(+) pump, Na(+)-Cs(+) countertransport, and anion Cl(-)/CsCO(3)(-) exchange. The transmembrane process of Cs(H(2)Ssal) can both prevent the uptake of K(+) and induces abnormal accumulation of extracellular K(+) as well as occupy some K(+)-binding sites in protein, causing some tissues losing their activities and functions. Only high concentrations of Cs(H(2)Ssal) could change morphological properties of erythrocytes greatly and cause hemolysis eventually.
Collapse
|
11
|
MATSUDA Y, SAITO N, YAMAMOTO K, NIITSU T, KOGURE S. Effects of the Ih Blockers CsCl and ZD7288 on Inherited Epilepsy in Mongolian Gerbils. Exp Anim 2008; 57:377-84. [DOI: 10.1538/expanim.57.377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Yoshiki MATSUDA
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Nobuko SAITO
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Kiyofumi YAMAMOTO
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Takashi NIITSU
- Department of Environmental Engineering for Symbiosis, Graduate School of Engineering, Soka University
| | - Shinichi KOGURE
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| |
Collapse
|
12
|
Andreasen M, Skov J, Nedergaard S. Inwardly rectifying K+ (Kir) channels antagonize ictal-like epileptiform activity in area CA1 of the rat hippocampus. Hippocampus 2007; 17:1037-48. [PMID: 17604346 DOI: 10.1002/hipo.20335] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive glial cells, for example, from patients with temporal lope epilepsy have a reduced density of inward rectifying K(+) (Kir) channels and thus a reduced K(+) buffering capacity. Evidence is accumulating that this downregulation of Kir channels could be implicated in epileptogenesis. In rat hippocampal brain slices, prolonged exposure to the nonselective Kir channel antagonist, Cs(+) (5 mM), gives rise to an epileptiform field potential (Cs-FP) in area CA1 composed of an initial positive (interictal-like) phase followed by a prolonged negative (ictal-like) phase. We have previously shown that the interictal-like phase depends on synaptic activation. The present study extends these findings by showing that the ictal-like phase of the Cs-FP is (i) sensitive to osmotic expansion of the extracellular space, (ii) reversed very quickly during wash out of Cs(+), and (iii) re-established in the presence of Ba(2+) (30-200 microM) or isosmotic low extracellular concentration of Na(+) ([Na(+)](o), 51.25 mM). The interictal-like phase showed less or no sensitivity to these treatments. In the complete absence of Cs(+), the Cs-FP could be fully reconstructed by the combined application of 4-aminopyridine (0.5 mM), an isosmotic high extracellular concentration of K(+) ([K(+)](o), 7 mM), and low [Na(+)](o) (51.25 mM). These results suggest that the interictal-like phase is initiated through synaptic activation and results from an unspecific increase in neuronal excitability, whereas the ictal-like phase is entirely dependent on blockade of Kir channels in CA1. We propose that glial dysfunction-related loss of Kir channels may not alone be sufficient for starting the induction process, but will likely increase the tendency of an epileptogenic process to proceed into seizure activity.
Collapse
Affiliation(s)
- Mogens Andreasen
- Department of Physiology, Institute of Physiology and Biophysics, University of Aarhus, Arhus C, Denmark.
| | | | | |
Collapse
|
13
|
Skov J, Andreasen M, Nedergaard S. Postnatal development of a new type of epileptiform activity in the rat hippocampus. Brain Res 2006; 1096:61-9. [PMID: 16725129 DOI: 10.1016/j.brainres.2006.04.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 04/07/2006] [Accepted: 04/10/2006] [Indexed: 11/29/2022]
Abstract
Long-term application of Cs(+) (5 mM) induces an epileptiform field potential (Cs-FP) in area CA1 of the rat hippocampus, which is independent of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors and gamma-aminobutyric acid (GABA)(A) receptors. To gain insight into possible mechanisms for the induction of the Cs-FP, we investigated the postnatal development of the response. In brain slices prepared from rats at different ages, the Cs-FP was evoked by stimulation of the Schaffer-collateral-commisural pathway. We found that expression of this potential was clearly dependent on the postnatal age. Thus, the Cs-FP was completely absent at 1 week of age. By 2 weeks, a reduced form of the response was observed, whereas slices taken from 3-week-old rats, displayed full Cs-FP, which were indistinguishable in size and shape from the adult form. In the presence of 4-aminopyridine, potentials resembling the Cs-FP were evoked. These potentials showed a similar age-dependency as the Cs-FP. The Na(+)/K(+) pump inhibitor dihydroouabain (DHO), when present during wash-in of Cs(+), gave a partial block of the Cs-FP in adult slices. This effect was not seen when DHO was applied after development of the Cs-FP. The data indicate that the processes necessary for expression of the Cs-PF are absent at birth and develop during the second postnatal week. We propose that the Cs-FP depends on Cs(+) entry into presynaptic neurons, and that the Na(+)/K(+) pump contributes to this transport of Cs(+). The observed age-dependency could therefore, in part, reflect the delayed development of the Na(+)/K(+) pump.
Collapse
Affiliation(s)
- Jane Skov
- Institute of Physiology and Biophysics, Department of Physiology, University of Aarhus, Denmark
| | | | | |
Collapse
|
14
|
Skov J, Nedergaard S, Andreasen M. New Type of Synaptically Mediated Epileptiform Activity Independent of Known Glutamate and GABA Receptors. J Neurophysiol 2005; 93:1845-56. [PMID: 15537816 DOI: 10.1152/jn.00656.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well known that excitatory synaptic transmission at the hippocampal CA3–CA1 synapse depends on the binding of released glutamate to ionotropic receptors. Here we report that during long-term application of Cs+ (5 mM), stimulation of the Schaffer collateral-commisural pathway evokes an epileptic field potential (Cs-FP) in area CA1 of the rat hippocampal slice, which is resistant to antagonists of ionotropic glutamate and GABAA receptors. The Cs-FP was blocked by N-type but not L-type Ca2+ channel antagonists and was attenuated by adenosine (0.5 mM), as expected for a synaptically mediated response. These properties make the Cs-FP fundamentally different from other types of Cs+-induced epileptiform activity. Replacement of Cs+ with antagonists of the hyperpolarization-activated nonselective cation current Ih and inwardly rectifying potassium channels (KIR) or partial inhibition of the Na+/K+ pump did not cause Cs-FP–like potentials, which indicates that such actions of Cs+ were not responsible for the Cs-FP. The effect of Cs+ was partly mimicked by 4-aminopyridine (4-AP; 2 mM), suggesting that an increase in transmitter release is involved. The group I metabotropic glutamate receptor (mGluR) agonist ( RS)-3,5-dihydroxyphenylglycine (DHPG) attenuated the Cs-FP. This effect was not, however, antagonized by group I mGluR antagonists. Selective and nonselective mGluR antagonists did not attenuate the Cs-FP. We conclude that long-term exposure to Cs+ induces a state where excitatory synaptic transmission can exist between area CA3 and CA1 in the hippocampus, independent of ionotropic and metabotropic glutamate receptors and GABAA receptors.
Collapse
Affiliation(s)
- Jane Skov
- Institute of Physiology and Biophysics, Deptartment of Physiology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
15
|
Barbaro NM, Takahashi DK, Baraban SC. A potential role for astrocytes in mediating the antiepileptic actions of furosemide in vitro. Neuroscience 2005; 128:655-63. [PMID: 15381293 DOI: 10.1016/j.neuroscience.2004.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2004] [Indexed: 11/17/2022]
Abstract
Epileptic seizures are characterized by abnormal electrical discharge. In previous studies we established a powerful antiepileptic action for a commonly used diuretic (furosemide). However, it remains unclear precisely how furosemide terminates abnormal electrical discharges. To address this issue, we performed in vitro experiments to examine conditions where furosemide exerts antiepileptic activity and patch-clamp studies to analyze the effect of furosemide on neuronal membrane properties, synaptic function and inward potassium current. Furosemide was not found to alter synaptic field responses, excitatory postsynaptic currents or intrinsic membrane properties of principal hippocampal neurons. Our in vitro studies indicate that furosemide does not abolish spontaneous epileptiform bursting during co-application of Ba2+ or Cs+ ions (to block inwardly rectifying potassium channels). Our patch-clamp data indicate that furosemide enhances the function of astrocytic, but not neuronal, inward potassium channels and that this modulation may be required for its antiepileptic activity. Although a variety of antiepileptic drugs are already available, none of these compounds selectively target astrocytes while preserving synaptic/neuronal function. Thus, furosemide-mediated modulation of inward potassium current (on astrocytes) represents a new target for control of abnormal electrical discharge in the CNS.
Collapse
Affiliation(s)
- N M Barbaro
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, 513 Parnassus Avenue, Box 0520, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
16
|
Abstract
Voltage-gated ion channels clearly are involved in the pathogenesis of epilepsy, with evidence implicating derangement of Na(+), K(+), and Ca(2+) voltage-gated channels, in both inherited and acquired forms of epilepsy ((1)). A newcomer to this list of ion channels involved in epilepsy is the hyperpolarization-activated cation channel or h-channel (otherwise known as I(h) or the pacemaker channel). This voltage-gated channel now is known to play a significant role in regulating neuronal excitability and recently has been shown to be modulated by seizures. Unlike other channels implicated in epilepsy whose function in normal neurons can clearly be labeled "excitatory" (Na(+) and Ca(2+)) or "inhibitory" (K(+)), the unique physiologic behavior of the h-channel allows it to both augment and decrease the excitability of neurons. Thus the role of I(h) in epilepsy, at present, is controversial and is a growing area of intense investigation ((2)(3)).
Collapse
|
17
|
Kitayama M, Miyata H, Yano M, Saito N, Matsuda Y, Yamauchi T, Kogure S. Ih blockers have a potential of antiepileptic effects. Epilepsia 2003; 44:20-4. [PMID: 12581225 DOI: 10.1046/j.1528-1157.2003.22702.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The h current (Ih) is an inwardly mixed cationic conductance activated by membrane hyperpolarization and distributed predominantly in the apical dendrites of hippocampal pyramidal neurons. To verify a hypothesis that an anomalous hyperpolarization generates an abnormal excitation by way of Ih channels, we examined the effects of Ih blockers (CsCl and ZD7288) on electrically induced paroxysmal discharges (PADs). METHODS Fifty-three adult male rabbits were used. We measured the PAD threshold elicited by stimulation to the apical dendritic layer of the hippocampal CA1 region before and after injecting 50 microl of each Ih blocker or saline extracellularly into the same region. RESULTS In Ih blocker injection groups (n = 26), we obtained a significant increase in PAD threshold (1 mM CsCl: 163%, p < 0.01; 10 mM CsCl: 265%, p < 0.01; 100 mM CsCl: 199%, p < 0.01; 100 microM ZD7288: 192%, p < 0.05; 1 mM ZD7288: 246%, p < 0.05). Conversely, we did not obtain the increase in PAD threshold in a saline injection group (n = 10, 107%). The magnitude as well as duration of the effect had a tendency to depend on concentration of Ih blockers, although a saturated or declining tendency was observed with the 100 mM CsCl injection. CONCLUSIONS We concluded that Ih channels might contribute to hippocampal epileptiform discharges in vivo. Our hypothesis for epileptogenesis demonstrated in the present experiment offers an idea to develop a new type of antiepileptic drug based on Ih blockers for the treatment of epileptic disorders refractory to current medications.
Collapse
Affiliation(s)
- Masaomi Kitayama
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Kitayama M, Taguchi T, Miyata H, Matsuda Y, Yamauchi T, Kogure S. The extracellular current blocking effect of cesium chloride on the theta wave in the rabbit hippocampal CA1 region. Neurosci Lett 2002; 334:45-8. [PMID: 12431772 DOI: 10.1016/s0304-3940(02)01067-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the extracellular effects of cesium chloride (CsCl), a blocker of the hyperpolarization-activated cationic current (I(h)), on the hippocampal theta wave in pentobarbital-anesthetized rabbits. We recorded spontaneous field potentials at the hippocampal CA1 region before and at three time periods after CsCl or saline injections. We found that CsCl injected into the apical dendritic layer attenuated the theta wave amplitude. CsCl affected neither the frequency nor the phase reversal of the theta wave between the apical and basal dendritic layers. Our findings indicate that I(h) in pyramidal neurons contributes to current generation of the limbic theta wave in vivo.
Collapse
Affiliation(s)
- Masaomi Kitayama
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto,Ontario M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Chen K, Aradi I, Santhakumar V, Soltesz I. H-channels in epilepsy: new targets for seizure control? Trends Pharmacol Sci 2002; 23:552-7. [PMID: 12457772 DOI: 10.1016/s0165-6147(02)02110-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hyperpolarization-activated cation channels (h-channels) are key regulators of neuronal excitation and inhibition, and have a rich diversity of subunit composition, distribution, modulation and function. Recent results indicate that the behavior of h-channels can be altered significantly by seizures. The activity-dependent, short-term and long-term plasticity of h-channels can, in turn, modulate neuronal excitability. The reciprocal interactions between neuronal activity and h-channels indicate that these ion channels could be promising novel targets for anti-epileptic therapies.
Collapse
Affiliation(s)
- Kang Chen
- Dept of Anatomy & Neurobiology, University of California Irvine, 92697-1280, USA
| | | | | | | |
Collapse
|
20
|
Fernandez N, Andreasen M, Nedergaard S. Influence of the hyperpolarization-activated cation current, I(h), on the electrotonic properties of the distal apical dendrites of hippocampal CA1 pyramidal neurones. Brain Res 2002; 930:42-52. [PMID: 11879794 DOI: 10.1016/s0006-8993(01)03404-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrical field application technique has revealed that the electrotonic length of the distal apical dendrites of hippocampal CA1 pyramidal neurones is long compared to the rest of the cell. This difference may be due to an asymmetrical distribution of channels responsible for the leak conductance in distal and proximal membrane segments. One such conductance, the hyperpolarization-activated cation current, I(h), is reported to display an increasing density with distance from the soma along the apical dendrite. Such asymmetry of I(h) could be a major cause of the increased electrotonic length of the distal apical dendrite. In the present study we found that blockade of I(h), by bath application of Cs(+) (3 mM) or ZD7288 (20 microM), reduced the electrical field-induced transmembrane polarization (TMP) in the distal apical dendrites. In some neurones the polarization reversed polarity, reflecting a movement of the indifference point (site of zero polarization) from the distal dendrites, across the recording site to a more proximal position. These effects were more pronounced when Cs(+) and ZD7288 were applied locally to the distal apical dendrites. Bath application of another antagonist of leak conductance, Ba(2+) (1 mM), also decreased the average field-induced polarization. This latter effect, however, did not reach statistical significance. These data suggest that I(h) is partly responsible for the distal location of the indifference point, and indicate that an elevated activity of I(h) contributes to the relatively increased electrotonic length of the most distal part of the apical dendrites.
Collapse
Affiliation(s)
- Nicolai Fernandez
- Department of Physiology, University of Aarhus, Ole Worms Allé 160, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
21
|
D'Ambrosio R, Gordon DS, Winn HR. Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol 2002; 87:87-102. [PMID: 11784732 DOI: 10.1152/jn.00240.2001] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little information is available on the specific roles of different cellular mechanisms involved in extracellular K(+) homeostasis during neuronal activity in situ. These studies have been hampered by the lack of an adequate experimental paradigm able to separate K(+)-buffering activity from the superimposed extrusion of K(+) from variably active neurons. We have devised a new protocol that allows for such an analysis. We used paired field- and K(+)-selective microelectrode recordings from CA3 stratum pyramidale during maximal Schaffer collateral stimulation in the presence of excitatory synapse blockade to evoke purely antidromic spikes in CA3. Under these conditions of controlled neuronal firing, we studied the [K(+)]o baseline during 0.05 Hz stimulation, and the accumulation and rate of recovery of extracellular K(+) at higher frequency stimulation (1-3 Hz). In the first set of experiments, we showed that neuronal hyperpolarization by extracellular application of ZD7288 (11 microM), a selective blocker of neuronal I(h) currents, does not affect the dynamics of extracellular K(+). This indicates that the K(+) dynamics evoked by controlled pyramidal cell firing do not depend on neuronal membrane potential, but only on the balance between K(+) extruded by firing neurons and K(+) buffered by neuronal and glial mechanisms. In the second set of experiments, we showed that di-hydro-ouabain (5 microM), a selective blocker of the Na(+)/K(+)-pump, yields an elevation of baseline [K(+)]o and abolishes the K(+) recovery during higher frequency stimulation and its undershoot during the ensuing period. In the third set of experiments, we showed that Ba(2+) (200 microM), a selective blocker of inwardly rectifying K(+) channels (KIR), does not affect the posttetanus rate of recovery of [K(+)]o, nor does it affect the rate of K(+) recovery during high-frequency stimulation. It does, however, cause an elevation of baseline [K(+)]o and an increase in the amplitude of the ensuing undershoot. We show for the first time that it is possible to differentiate the specific roles of Na(+)/K(+)-pump and KIR channels in buffering extracellular K(+). Neuronal and glial Na(+)/K(+)-pumps are involved in setting baseline [K(+)]o levels, determining the rate of its recovery during sustained high-frequency firing, and determining its postactivity undershoot. Conversely, glial KIR channels are involved in the regulation of baseline levels of K(+), and in decreasing the amplitude of the postactivity [K(+)]o undershoot, but do not affect the rate of K(+) clearance during neuronal firing. The results presented provide new insights into the specific physiological role of glial KIR channels in extracellular K(+) homeostasis.
Collapse
Affiliation(s)
- Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, School of Medicine, Harborview Medical Center, Seattle, Washington 98104, USA.
| | | | | |
Collapse
|
22
|
Mann-Metzer P, Yarom Y. Jittery trains induced by synaptic-like currents in cerebellar inhibitory interneurons. J Neurophysiol 2002; 87:149-56. [PMID: 11784737 DOI: 10.1152/jn.00310.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebellar inhibitory interneurons respond to parallel fiber input with a characteristic train of action potentials. Here we show that the characteristics of these trains reflect the intrinsic properties of the interneurons. In in vitro cerebellar slices, the response of these neurons to synaptic-like current resembles their in vivo response to parallel fiber input-a train of action potentials characterized by a gradual increase in interspike interval and spike amplitude. A large variability in spike timing, or jitter, was observed, the last action potential emerging from a slow depolarizing wave that lasted beyond the synaptic current and was prevented by either TTX or membrane hyperpolarization. While response duration was weakly dependent on current intensity, the variability of the overall duration was closely related to the variability of the timing of the last action potential. Blocking the Ca(2+) currents or partial blockade of the delayed rectifier (TEA 2 mM) decreased the excitability, leading to a decrease in the duration and variability of the response and increasing its dependence on stimulus intensity. Increased duration and variability was observed in the presence of Cs(+) ions (5 mM) that blocked an h-like current. We conclude that a persistent Na(+) current governs the duration of the response, whereas the synaptic current and the spiking mechanism shape its pattern. The large variability between trials is due to the stochastic nature of the persistent Na(+) current. Thus unless precise timing is achieved by a network of interconnected neurons, these results vote against temporal coding as a player in the cerebellar computational processing.
Collapse
Affiliation(s)
- Puah Mann-Metzer
- Department of Neurobiology, Institute of Life Sciences and the Interdisciplinary Center for Neuronal Computation, Hebrew University, Jerusalem 91904, Israel
| | | |
Collapse
|
23
|
Staley KJ, Bains JS, Yee A, Hellier J, Longacher JM. Statistical model relating CA3 burst probability to recovery from burst-induced depression at recurrent collateral synapses. J Neurophysiol 2001; 86:2736-47. [PMID: 11731533 DOI: 10.1152/jn.2001.86.6.2736] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When neuronal excitability is increased in area CA3 of the hippocampus in vitro, the pyramidal cells generate periodic bursts of action potentials that are synchronized across the network. We have previously provided evidence that synaptic depression at the excitatory recurrent collateral synapses in the CA3 network terminates each population burst so that the next burst cannot begin until these synapses have recovered. These findings raise the possibility that burst timing can be described in terms of the probability of recovery of this population of synapses. Here we demonstrate that when neuronal excitability is changed in the CA3 network, the mean and variance of the interburst interval change in a manner that is consistent with a timing mechanism comprised of a pool of exponentially relaxing pacemakers. The relaxation time constant of these pacemakers is the same as the time constant describing the recovery from activity-dependent depression of recurrent collateral synapses. Recovery was estimated from the rate of spontaneous transmitter release versus time elapsed since the last CA3 burst. Pharmacological and long-term alterations of synaptic strength and network excitability affected CA3 burst timing as predicted by the cumulative binomial distribution if the burst pace-maker consists of a pool of recovering recurrent synapses. These findings indicate that the recovery of a pool of synapses from burst-induced depression is a sufficient explanation for burst timing in the in vitro CA3 neuronal network. These findings also demonstrate how information regarding the nature of a pacemaker can be derived from the temporal pattern of synchronous network activity. This information could also be extracted from less accessible networks such as those generating interictal epileptiform discharges in vivo.
Collapse
Affiliation(s)
- K J Staley
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
24
|
Xiong ZQ, Stringer JL. Prolonged bursts occur in normal calcium in hippocampal slices after raising excitability and blocking synaptic transmission. J Neurophysiol 2001; 86:2625-8. [PMID: 11698549 DOI: 10.1152/jn.2001.86.5.2625] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the conditions that are required for the appearance of the long-duration seizure-like activity that can be recorded in hippocampal slices. Spontaneous interictal activity was induced in CA1 and CA3 by perfusing hippocampal slices with high potassium, cesium, 4-aminopyridine, or tetraethylammonium chloride, in normal levels of calcium. Synaptic transmission was then blocked by the addition of neurotransmitter receptor blockers (6-cyano-7-nitroquinoxaline-2,3-dione, D,L-2-amino-5-phosphonopentanoic acid, and bicuculline) or the calcium channel blocker cadmium, resulting in complete blockade of the interictal discharges and the appearance of spontaneous seizure-like events (ictal-like discharges) primarily in CA1 and the dentate gyrus. Blocking synaptic transmission in normal artificial cerebrospinal fluid did not induce ictal-like discharges in any region. The results demonstrate that ictal-like discharges can appear in normal levels of extracellular calcium when chemical synaptic transmission is blocked pharmacologically. The results suggest that an increase in neuronal excitability and absence of interictal activity promote the appearance of the longer ictal-like discharges.
Collapse
Affiliation(s)
- Z Q Xiong
- Department of Pharmacology and Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Gorji A, Madeja M, Straub H, Köhling R, Speckmann EJ. Lowering of the potassium concentration induces epileptiform activity in guinea-pig hippocampal slices. Brain Res 2001; 908:130-9. [PMID: 11454323 DOI: 10.1016/s0006-8993(01)02622-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extra- and intracellular recording techniques were used to study the epileptiform activity generated by guinea-pig hippocampal slices perfused with low potassium containing artificial cerebrospinal fluid. Extracellular field potentials were recorded in CA1 and CA3 regions along with intracellular recordings in CA3 subfield. Reduction of the extracellular potassium concentration [K(+)](o) from 4 to 2 mM caused a transient neuronal hyperpolarisation which was followed by a repolarisation and subsequent depolarisation period. Paroxysmal depolarisation shifts occurred during the transient hyperpolarisation period while epileptic field potentials (EFP) appeared in the late repolarisation or early depolarisation phase. EFP elicited by reduction of [K(+)](o) were neither affected by blockade of N-methyl-D-aspartate (NMDA) glutamate-subreceptor or gamma aminobutyric acid receptor, nor by application of the organic calcium channel blocker nifedipine or the anticonvulsant drugs carbamazepine and valproic acid. Upon application of non-NMDA glutamate-subreceptor blocker the EFP were abolished in all trials, while application of the organic calcium channel blocker verapamil only suppressed the EFP in some cases. The results point to a novel mechanism of epileptogenesis and may provide an in vitro model for the development of new drugs against difficult-to-treat epilepsy.
Collapse
Affiliation(s)
- A Gorji
- Institut für Physiologie, Universität Münster, Robert-Koch-Strasse 27a, D-48149 Münster,
| | | | | | | | | |
Collapse
|
26
|
Abstract
Recent work with functional neuroimaging that relies on blood flow techniques, (15)O water positron emission tomography and functional magnetic resonance imaging has identified the lateralization and location of language functions. These technologies are increasingly being explored as alternatives to the more invasive intracarotid amytal procedure. Paradigms and sequences have been designed to identify the capacity of the hippocampus and mesial structures to support memory. Magnetoelectroencephalography offers the prospect of mapping language function in real time. Event-related data acquisition has also been employed to localize blood flow changes that are associated with interictal activity.
Collapse
Affiliation(s)
- W D Gaillard
- Department of Neurology, Children's National Medical Center, The George Washington University, School of Medicine, Washington, DC, USA.
| |
Collapse
|