1
|
LaSarge CL, Pun RYK, Gu Z, Riccetti MR, Namboodiri DV, Tiwari D, Gross C, Danzer SC. mTOR-driven neural circuit changes initiate an epileptogenic cascade. Prog Neurobiol 2020; 200:101974. [PMID: 33309800 DOI: 10.1016/j.pneurobio.2020.101974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.
Collapse
Affiliation(s)
- Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Raymund Y K Pun
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Zhiqing Gu
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Shanghai Children's Hospital, Shanghai, 200062, China
| | - Matthew R Riccetti
- Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Devi V Namboodiri
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christina Gross
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Anesthesia, University of Cincinnati, Cincinnati, OH, 45267, United States.
| |
Collapse
|
2
|
Hendricks WD, Westbrook GL, Schnell E. Early detonation by sprouted mossy fibers enables aberrant dentate network activity. Proc Natl Acad Sci U S A 2019; 116:10994-10999. [PMID: 31085654 PMCID: PMC6561181 DOI: 10.1073/pnas.1821227116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In temporal lobe epilepsy, sprouting of hippocampal mossy fiber axons onto dentate granule cell dendrites creates a recurrent excitatory network. However, unlike mossy fibers projecting to CA3, sprouted mossy fiber synapses depress upon repetitive activation. Thus, despite their proximal location, relatively large presynaptic terminals, and ability to excite target neurons, the impact of sprouted mossy fiber synapses on hippocampal hyperexcitability is unclear. We find that despite their short-term depression, single episodes of sprouted mossy fiber activation in hippocampal slices initiated bursts of recurrent polysynaptic excitation. Consistent with a contribution to network hyperexcitability, optogenetic activation of sprouted mossy fibers reliably triggered action potential firing in postsynaptic dentate granule cells after single light pulses. This pattern resulted in a shift in network recruitment dynamics to an "early detonation" mode and an increased probability of release compared with mossy fiber synapses in CA3. A lack of tonic adenosine-mediated inhibition contributed to the higher probability of glutamate release, thus facilitating reverberant circuit activity.
Collapse
Affiliation(s)
- William D Hendricks
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, OR 97239
- Department of Anesthesiology and Perioperative Medicine; Oregon Health & Science University, Portland, OR 97239
| | - Gary L Westbrook
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239
| | - Eric Schnell
- Department of Anesthesiology and Perioperative Medicine; Oregon Health & Science University, Portland, OR 97239;
- Veterans Affairs Portland Health Care System, Portland, OR 97239
| |
Collapse
|
3
|
Cameron MC, Zhan RZ, Nadler JV. Morphologic integration of hilar ectopic granule cells into dentate gyrus circuitry in the pilocarpine model of temporal lobe epilepsy. J Comp Neurol 2011; 519:2175-92. [PMID: 21455997 DOI: 10.1002/cne.22623] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit.
Collapse
Affiliation(s)
- Michael C Cameron
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
4
|
Shao LR, Dudek FE. Repetitive perforant-path stimulation induces epileptiform bursts in minislices of dentate gyrus from rats with kainate-induced epilepsy. J Neurophysiol 2010; 105:522-7. [PMID: 21148094 DOI: 10.1152/jn.00456.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epileptic hippocampus has an enhanced propensity for seizure generation, but how spontaneous seizures start is poorly understood. Using whole cell and field-potential recordings, this study explored whether repetitive perforant-path stimulation at physiological frequencies could induce epileptiform bursts in dentate gyrus minislices from rats with kainate-induced epilepsy. Control slices from saline-treated rats responded to single perforant-path stimulation with an excitatory postsynaptic potential (EPSP) and a single population spike in normal medium, and repetitive stimulation at different frequencies (0.1, 1, 2, 5, 10 Hz) did not cause significant increases in the responses. Most minislices (82%) from rats with kainate-induced epilepsy also responded to single perforant-path stimulation with an EPSP and a single population spike/action potential, but some slices (18%) had a more robust response with a prolonged duration and negative DC shift or responses with two to three population spikes. Repetitive perforant-path stimulation at 5-10 Hz, however, transformed the single-spike responses into epileptiform bursts with multiple spikes in half (52%) of the slices, while lower frequency (e.g., ≤ 1 Hz) stimulation failed to produce these changes. The emergence of epileptiform bursts was consistently associated with a negative field-potential DC shift and membrane depolarization. The results suggest that compared with the controls, the "gate" function of the dentate gyrus is compromised in rats with kainate-induced epilepsy, and epileptiform bursts (but not full-length seizure events) can be induced in minislices by repetitive synaptic stimulation at physiological frequencies in the range of hippocampal theta rhythm (i.e., 5-10 Hz).
Collapse
Affiliation(s)
- Li-Rong Shao
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
5
|
Zhan RZ, Timofeeva O, Nadler JV. High ratio of synaptic excitation to synaptic inhibition in hilar ectopic granule cells of pilocarpine-treated rats. J Neurophysiol 2010; 104:3293-304. [PMID: 20881195 DOI: 10.1152/jn.00663.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After experimental status epilepticus, many dentate granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) have also been found in persons with epilepsy. These cells exhibit a high rate of spontaneous activity, which may enhance seizure propagation. Electron microscopic studies indicated that HEGCs receive more recurrent mossy fiber innervation than normotopic granule cells in the same animals but receive much less inhibitory innervation. This study used hippocampal slices prepared from rats that had experienced pilocarpine-induced status epilepticus to test the hypothesis that an imbalance of synaptic excitation and inhibition contributes to the hyperexcitability of HEGCs. Mossy fiber stimulation evoked a much smaller GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSC) in HEGCs than in normotopic granule cells from either control rats or rats that had experienced status epilepticus. However, recurrent mossy fiber-evoked excitatory postsynaptic currents (EPSCs) of similar size were recorded from HEGCs and normotopic granule cells in status epilepticus-experienced rats. HEGCs exhibited the highest frequency of miniature excitatory postsynaptic currents (mEPSCs) and the lowest frequency of miniature inhibitory postsynaptic currents (mIPSCs) of any granule cell group. On average, both mEPSCs and mIPSCs were of higher amplitude, transferred more charge per event, and exhibited slower kinetics in HEGCs than in granule cells from control rats. Charge transfer per unit time in HEGCs was greater for mEPSCs and much less for mIPSCs than in the normotopic granule cell groups. A high ratio of excitatory to inhibitory synaptic function probably accounts, in part, for the hyperexcitability of HEGCs.
Collapse
Affiliation(s)
- Ren-Zhi Zhan
- Dept. of Pharmacology and Cancer Biology, Box 3813, Duke Univ. Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
6
|
Li A, Choi YS, Dziema H, Cao R, Cho HY, Jung YJ, Obrietan K. Proteomic profiling of the epileptic dentate gyrus. Brain Pathol 2010; 20:1077-89. [PMID: 20608933 DOI: 10.1111/j.1750-3639.2010.00414.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The development of epilepsy is often associated with marked changes in central nervous system cell structure and function. Along these lines, reactive gliosis and granule cell axonal sprouting within the dentate gyrus of the hippocampus are commonly observed in individuals with temporal lobe epilepsy (TLE). Here we used the pilocarpine model of TLE in mice to screen the proteome and phosphoproteome of the dentate gyrus to identify molecular events that are altered as part of the pathogenic process. Using a two-dimensional gel electrophoresis-based approach, followed by liquid chromatography-tandem mass spectrometry, 24 differentially expressed proteins, including 9 phosphoproteins, were identified. Functionally, these proteins were organized into several classes, including synaptic physiology, cell structure, cell stress, metabolism and energetics. The altered expression of three proteins involved in synaptic physiology, actin, profilin 1 and α-synuclein was validated by secondary methods. Interestingly, marked changes in protein expression were detected in the supragranular cell region, an area where robust mossy fibers sprouting occurs. Together, these data provide new molecular insights into the altered protein profile of the epileptogenic dentate gyrus and point to potential pathophysiologic mechanisms underlying epileptogenesis.
Collapse
Affiliation(s)
- Aiqing Li
- Key Lab. for Organ Failure Research, Education Ministry of P.R. China, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Epsztein J, Sola E, Represa A, Ben-Ari Y, Crépel V. A selective interplay between aberrant EPSPKA and INaP reduces spike timing precision in dentate granule cells of epileptic rats. ACTA ACUST UNITED AC 2009; 20:898-911. [PMID: 19684246 PMCID: PMC2837093 DOI: 10.1093/cercor/bhp156] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spike timing precision is a fundamental aspect of neuronal information processing in the brain. Here we examined the temporal precision of input–output operation of dentate granule cells (DGCs) in an animal model of temporal lobe epilepsy (TLE). In TLE, mossy fibers sprout and establish recurrent synapses on DGCs that generate aberrant slow kainate receptor–mediated excitatory postsynaptic potentials (EPSPKA) not observed in controls. We report that, in contrast to time-locked spikes generated by EPSPAMPA in control DGCs, aberrant EPSPKA are associated with long-lasting plateaus and jittered spikes during single-spike mode firing. This is mediated by a selective voltage-dependent amplification of EPSPKA through persistent sodium current (INaP) activation. In control DGCs, a current injection of a waveform mimicking the slow shape of EPSPKA activates INaP and generates jittered spikes. Conversely in epileptic rats, blockade of EPSPKA or INaP restores the temporal precision of EPSP–spike coupling. Importantly, EPSPKA not only decrease spike timing precision at recurrent mossy fiber synapses but also at perforant path synapses during synaptic integration through INaP activation. We conclude that a selective interplay between aberrant EPSPKA and INaP severely alters the temporal precision of EPSP–spike coupling in DGCs of chronic epileptic rats.
Collapse
Affiliation(s)
- Jérôme Epsztein
- INMED, INSERM U901, Université de La Méditerranée, Parc scientifique de Luminy, BP 13, 13273, Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
8
|
Zhan RZ, Nadler JV. Enhanced tonic GABA current in normotopic and hilar ectopic dentate granule cells after pilocarpine-induced status epilepticus. J Neurophysiol 2009; 102:670-81. [PMID: 19474175 DOI: 10.1152/jn.00147.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In temporal lobe epilepsy, loss of inhibitory neurons and circuit changes in the dentate gyrus promote hyperexcitability. This hyperexcitability is compensated to the point that dentate granule cells exhibit normal or even subnormal excitability under some conditions. This study explored the possibility that compensation involves enhanced tonic GABA inhibition. Whole cell patch-clamp recordings were made from normotopic granule cells in hippocampal slices from control rats and from both normotopic and hilar ectopic granule cells in slices from rats subjected to pilocarpine-induced status epilepticus. After status epilepticus, tonic GABA current was an order of magnitude greater than control in normotopic granule cells and was significantly greater in hilar ectopic than in normotopic granule cells. These differences could be observed whether or not the extracellular GABA concentration was increased by adding GABA to the superfusion medium or blocking plasma membrane transport. The enhanced tonic GABA current had both action potential-dependent and action potential-independent components. Pharmacological studies suggested that the small tonic GABA current of granule cells in control rats was mediated largely by high-affinity alpha(4)beta(x)delta GABA(A) receptors but that the much larger current recorded after status epilepticus was mediated largely by the lower-affinity alpha(5)beta(x)gamma(2) GABA(A) receptors. A large alpha(5)beta(x)gamma(2)-mediated tonic current could be recorded from controls only when the extracellular GABA concentration was increased. Status epilepticus seemed not to impair the control of extracellular GABA concentration by plasma membrane transport substantially. Upregulated tonic GABA inhibition may account for the unexpectedly modest excitability of the dentate gyrus in epileptic brain.
Collapse
Affiliation(s)
- Ren-Zhi Zhan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
9
|
Williams PA, Dudek FE. A chronic histopathological and electrophysiological analysis of a rodent hypoxic-ischemic brain injury model and its use as a model of epilepsy. Neuroscience 2007; 149:943-61. [PMID: 17935893 PMCID: PMC2897748 DOI: 10.1016/j.neuroscience.2007.07.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/24/2007] [Accepted: 08/15/2007] [Indexed: 11/24/2022]
Abstract
Ischemic brain injury is one of the leading causes of epilepsy in the elderly, and there are currently no adult rodent models of global ischemia, unilateral hemispheric ischemia, or focal ischemia that report the occurrence of spontaneous motor seizures following ischemic brain injury. The rodent hypoxic-ischemic (H-I) model of brain injury in adult rats is a model of unilateral hemispheric ischemic injury. Recent studies have shown that an H-I injury in perinatal rats causes hippocampal mossy fiber sprouting and epilepsy. These experiments aimed to test the hypothesis that a unilateral H-I injury leading to severe neuronal loss in young-adult rats also causes mossy fiber sprouting and spontaneous motor seizures many months after the injury, and that the mossy fiber sprouting induced by the H-I injury forms new functional recurrent excitatory synapses. The right common carotid artery of 30-day old rats was permanently ligated, and the rats were placed into a chamber with 8% oxygen for 30 min. A quantitative stereologic analysis revealed that the ipsilateral hippocampus had significant hilar and CA1 pyramidal neuronal loss compared with the contralateral and sham-control hippocampi. The septal region from the ipsilateral and contralateral hippocampus had small but significantly increased amounts of Timm staining in the inner molecular layer compared with the sham-control hippocampi. Three of 20 lesioned animals (15%) were observed to have at least one spontaneous motor seizure 6-12 months after treatment. Approximately 50% of the ipsilateral and contralateral hippocampal slices displayed abnormal electrophysiological responses in the dentate gyrus, manifest as all-or-none bursts to hilar stimulation. This study suggests that H-I injury is associated with synaptic reorganization in the lesioned region of the hippocampus, and that new recurrent excitatory circuits can predispose the hippocampus to abnormal electrophysiological activity and spontaneous motor seizures.
Collapse
|
10
|
Jiao Y, Nadler JV. Stereological analysis of GluR2-immunoreactive hilar neurons in the pilocarpine model of temporal lobe epilepsy: correlation of cell loss with mossy fiber sprouting. Exp Neurol 2007; 205:569-82. [PMID: 17475251 PMCID: PMC1995080 DOI: 10.1016/j.expneurol.2007.03.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/22/2007] [Accepted: 03/24/2007] [Indexed: 02/05/2023]
Abstract
Mossy fiber sprouting and the genesis of ectopic granule cells contribute to reverberating excitation in the dentate gyrus of epileptic brain. This study determined whether the extent of sprouting after status epilepticus in rats correlates with the seizure-induced degeneration of GluR2-immunoreactive (GluR2+) hilar neurons (presumptive mossy cells) and also quantitated granule cell-like GluR2-immunoreactive hilar neurons. Stereological cell counting indicated that GluR2+ neurons account for 57% of the total hilar neuron population. Prolonged pilocarpine-induced status epilepticus killed 95% of these cells. A smaller percentage of GluR2+ neurons (74%) was killed when status epilepticus was interrupted after 1-3.5 h with a single injection of phenobarbital, and the number of residual GluR2+ neurons varied among animals by a factor of 6.2. GluR2+ neurons were not necessarily more vulnerable than other hilar neurons. In rats administered phenobarbital, the extent of recurrent mossy fiber growth varied inversely and linearly with the number of GluR2+ hilar neurons that remained intact (P=0.0001). Thus the loss of each GluR2+ neuron was associated with roughly the same amount of sprouting. These findings support the hypothesis that mossy fiber sprouting is driven largely by the degeneration of and/or loss of innervation from mossy cells. Granule cell-like GluR2-immunoreactive neurons were rarely encountered in the hilus of control rats, but increased 6- to 140-fold after status epilepticus. Their number did not correlate with the extent of hilar cell death or mossy fiber sprouting in the same animal. The morphology, number, and distribution of these neurons suggested that they were hilar ectopic granule cells.
Collapse
Affiliation(s)
- Yiqun Jiao
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Durham, North Carolina 27710, USA
| | | |
Collapse
|
11
|
Nadler JV, Tu B, Timofeeva O, Jiao Y, Herzog H. Neuropeptide Y in the recurrent mossy fiber pathway. Peptides 2007; 28:357-64. [PMID: 17204350 PMCID: PMC1853293 DOI: 10.1016/j.peptides.2006.07.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/14/2006] [Indexed: 10/23/2022]
Abstract
In the epileptic brain, hippocampal dentate granule cells become synaptically interconnected through the sprouting of mossy fibers. This new circuitry is expected to facilitate epileptiform discharge. Prolonged seizures induce the long-lasting neoexpression of neuropeptide Y (NPY) in mossy fibers. NPY is released spontaneously from recurrent mossy fiber terminals, reduces glutamate release from those terminals by activating presynaptic Y2 receptors, and depresses granule cell epileptiform activity dependent on the recurrent pathway. These effects are much greater in rats than in C57BL/6 mice, despite apparently equivalent mossy fiber sprouting and neoexpression of NPY. This species difference can be explained by contrasting changes in the expression of mossy fiber Y2 receptors; seizures upregulate Y2 receptors in rats but downregulate them in mice. The recurrent mossy fiber pathway may synchronize granule cell discharge more effectively in humans and mice than in rats, due to its lower expression of either NPY (humans) or Y2 receptors (mice).
Collapse
Affiliation(s)
- J Victor Nadler
- Department of Pharmacology and Cancer Biology and Department of Neurobiology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
12
|
Dudek FE, Sutula TP. Epileptogenesis in the dentate gyrus: a critical perspective. PROGRESS IN BRAIN RESEARCH 2007; 163:755-73. [PMID: 17765749 DOI: 10.1016/s0079-6123(07)63041-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The dentate gyrus has long been a focal point for studies on the molecular, cellular, and network mechanisms responsible for epileptogenesis in temporal lobe epilepsy (TLE). Although several hypothetical mechanisms are considered in this chapter, two that have garnered particular interest and experimental support are: (1) the selective loss of vulnerable interneurons in the region of the hilus and (2) the formation of new recurrent excitatory circuits after mossy fiber sprouting. Histopathological data show that specific GABAergic interneurons in the hilus are lost in animal models of TLE, and several lines of electrophysiological evidence, including intracellular analyses of postsynaptic currents, support this hypothesis. In particular, whole-cell recordings have demonstrated a reduction in the frequency of miniature inhibitory postsynaptic currents in the dentate gyrus and other areas (e.g., CA1 pyramidal cells), which provides relatively specific evidence for a reduction in GABAergic input to granule cells. These studies support the viewpoint that modest alterations in GABAergic inhibition can have significant functional impact in the dentate gyrus, and suggest that dynamic activity-dependent mechanisms of GABAergic regulation add complexity to this local synaptic circuitry and to analyses of epileptogenesis. In regard to mossy fiber sprouting, a wide variety of experiments involving intracellular or whole-cell recordings during electrical stimulation of the hilus, glutamate microstimulation, and dual recordings from granule cells support the hypothesis that mossy fiber sprouting forms new recurrent excitatory circuits in the dentate gyrus in animal models of TLE. Similar to previous studies on recurrent excitation in the CA3 area, GABA-mediated inhibition and the intrinsic high threshold of granule cells in the dentate gyrus tends to mask the presence of the new recurrent excitatory circuits and reduce the likelihood that reorganized circuits will generate seizure-like activity. How cellular alterations such as neuron loss in the hilus and mossy fiber sprouting influence functional properties is potentially important for understanding fundamental aspects of epileptogenesis, such as the consequences of primary initial injuries, mechanisms underlying network synchronization, and progression of intractability. The continuous nature of the axonal sprouting and formation of recurrent excitation could account for aspects of the latent period and the progressive nature of the epileptogenesis. Future studies will need to identify precisely how these hypothetical mechanisms and others contribute to the process whereby epileptic seizures are initiated or propagated through an area such as the dentate gyrus. Finally, in addition to its unique features and potential importance in epileptogenesis, the dentate gyrus may also serve as a model for other cortical structures in acquired epilepsy.
Collapse
Affiliation(s)
- F Edward Dudek
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | | |
Collapse
|
13
|
Sutula TP, Dudek FE. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. PROGRESS IN BRAIN RESEARCH 2007; 163:541-63. [PMID: 17765737 DOI: 10.1016/s0079-6123(07)63029-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seizure-induced sprouting of the mossy fiber pathway in the dentate gyrus has been observed nearly universally in experimental models of limbic epilepsy and in the epileptic human hippocampus. The observation of progressive mossy fiber sprouting induced by kindling demonstrated that even a few repeated seizures are sufficient to alter synaptic connectivity and circuit organization. As it is now recognized that seizures induce synaptic reorganization in hippocampal and cortical pathways, the implications of seizure-induced synaptic reorganization for circuit properties and function have been subjects of intense interest. Detailed anatomical characterization of the sprouted mossy fiber pathway has revealed that the overwhelming majority of sprouted synapses in the inner molecular layer of the dentate gyrus form recurrent excitatory connections, and are thus likely to contribute to recurrent excitation and potentially to enhanced susceptibility to seizures. Nevertheless, difficulties in detecting functional abnormalities in circuits reorganized by mossy fiber sprouting and the fact that some sprouted axons appear to form synapses with inhibitory interneurons have been cited as evidence that sprouting may not contribute to seizure susceptibility, but could form recurrent inhibitory circuits and be a compensatory response to prevent seizures. Quantitative analysis of the synaptic connections of the sprouted mossy fiber pathway, assessment of the functional features of sprouted circuitry using reliable physiological measures, and the perspective of complex systems analysis of neural circuits strongly support the view that the functional effects of the recurrent excitatory circuits formed by mossy fiber sprouting after seizures or injury emerge only conditionally and intermittently, as observed with spontaneous seizures in human epilepsy. The recognition that mossy fiber sprouting is induced after hippocampal injury and seizures and contributes conditionally to emergence of recurrent excitation has provided a conceptual framework for understanding how injury and seizure-induced circuit reorganization may contribute to paroxysmal network synchronization, epileptogenesis, and the consequences of repeated seizures, and thus has had a major influence on understanding of fundamental aspects of the epilepsies.
Collapse
Affiliation(s)
- Thomas P Sutula
- Department of Neurology H6/570 CSC, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA.
| | | |
Collapse
|
14
|
McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. ACTA ACUST UNITED AC 2006; 2006:re12. [PMID: 17033045 DOI: 10.1126/stke.3562006re12] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epilepsy, a disorder of recurrent seizures, is a common and frequently devastating neurological condition. Available therapy is only symptomatic and often ineffective. Understanding epileptogenesis, the process by which a normal brain becomes epileptic, may help identify molecular targets for drugs that could prevent epilepsy. A number of acquired and genetic causes of this disorder have been identified, and various in vivo and in vitro models of epileptogenesis have been established. Here, we review current insights into the molecular signaling mechanisms underlying epileptogenesis, focusing on limbic epileptogenesis. Study of different models reveals that activation of various receptors on the surface of neurons can promote epileptogenesis; these receptors include ionotropic and metabotropic glutamate receptors as well as the TrkB neurotrophin receptor. These receptors are all found in the membrane of a discrete signaling domain within a particular type of cortical neuron--the dendritic spine of principal neurons. Activation of any of these receptors results in an increase Ca2+ concentration within the spine. Various Ca2+-regulated enzymes found in spines have been implicated in epileptogenesis; these include the nonreceptor protein tyrosine kinases Src and Fyn and a serine-threonine kinase [Ca2+-calmodulin-dependent protein kinase II (CaMKII)] and phosphatase (calcineurin). Cross-talk between astrocytes and neurons promotes increased dendritic Ca2+ and synchronous firing of neurons, a hallmark of epileptiform activity. The hypothesis is proposed that limbic epilepsy is a maladaptive consequence of homeostatic responses to increases of Ca2+ concentration within dendritic spines induced by abnormal neuronal activity.
Collapse
Affiliation(s)
- James O McNamara
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
15
|
Tu B, Jiao Y, Herzog H, Nadler JV. Neuropeptide Y regulates recurrent mossy fiber synaptic transmission less effectively in mice than in rats: Correlation with Y2 receptor plasticity. Neuroscience 2006; 143:1085-94. [PMID: 17027162 DOI: 10.1016/j.neuroscience.2006.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 07/25/2006] [Accepted: 08/20/2006] [Indexed: 10/24/2022]
Abstract
A unique feature of temporal lobe epilepsy is the formation of recurrent excitatory connections among granule cells of the dentate gyrus as a result of mossy fiber sprouting. This novel circuit contributes to a reduced threshold for granule cell synchronization. In the rat, activity of the recurrent mossy fiber pathway is restrained by the neoexpression and spontaneous release of neuropeptide Y (NPY). NPY inhibits glutamate release tonically through activation of presynaptic Y2 receptors. In the present study, the effects of endogenous and applied NPY were investigated in C57Bl/6 mice that had experienced pilocarpine-induced status epilepticus and subsequently developed a robust recurrent mossy fiber pathway. Whole cell patch clamp recordings made from dentate granule cells in hippocampal slices demonstrated that, as in rats, applied NPY inhibits recurrent mossy fiber synaptic transmission, the Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide (BIIE0246) blocks its action and BIIE0246 enhances synaptic transmission when applied by itself. Y5 receptor agonists had no significant effect. Thus spontaneous release of NPY tonically inhibits synaptic transmission in mice and its effects are mediated by Y2 receptor activation. However, both NPY and BIIE0246 were much less effective in mice than in rats, despite apparently equivalent expression of NPY in the recurrent mossy fibers. Immunohistochemistry indicated greater expression of Y2 receptors in the mossy fiber pathway of normal mice than of normal rats. Pilocarpine-induced status epilepticus markedly reduced the immunoreactivity of mouse mossy fibers, but increased the immunoreactivity of rat mossy fibers. Mossy fiber growth into the inner portion of the dentate molecular layer was associated with increased Y2 receptor immunoreactivity in rat, but not in mouse. These contrasting receptor changes can explain the quantitatively different effects of endogenously released and applied NPY on recurrent mossy fiber transmission in mice and rats.
Collapse
MESH Headings
- Animals
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Benzazepines/pharmacology
- Convulsants/pharmacology
- Dentate Gyrus/cytology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/physiopathology
- Glutamic Acid/metabolism
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mossy Fibers, Hippocampal/drug effects
- Mossy Fibers, Hippocampal/metabolism
- Mossy Fibers, Hippocampal/ultrastructure
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/physiology
- Neuropeptide Y/metabolism
- Neuropeptide Y/pharmacology
- Organ Culture Techniques
- Patch-Clamp Techniques
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Neuropeptide Y/agonists
- Receptors, Neuropeptide Y/antagonists & inhibitors
- Receptors, Neuropeptide Y/metabolism
- Species Specificity
- Status Epilepticus/chemically induced
- Status Epilepticus/metabolism
- Status Epilepticus/physiopathology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- B Tu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, PO Box 3813, 100B Research Park 2, Research Drive, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
16
|
Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crépel V. Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci 2006; 25:8229-39. [PMID: 16148230 PMCID: PMC6725550 DOI: 10.1523/jneurosci.1469-05.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic mossy fibers of the hippocampus sprout in temporal lobe epilepsy and establish aberrant synapses on granule cells from which they originate. There is currently no evidence for the activation of kainate receptors (KARs) at recurrent mossy fiber synapses in epileptic animals, despite their important role at control mossy fiber synapses. We report that KARs are involved in ongoing glutamatergic transmission in granule cells from chronic epileptic but not control animals. KARs provide a substantial component of glutamatergic activity, because they support half of the non-NMDA receptor-mediated excitatory drive in these cells. KAR-mediated EPSC(KA)s are selectively generated by recurrent mossy fiber inputs and have a slower kinetics than EPSC(AMPA). Therefore, in addition to axonal rewiring, sprouting of mossy fibers induces a shift in the nature of glutamatergic transmission in granule cells that may contribute to the physiopathology of the dentate gyrus in epileptic animals.
Collapse
Affiliation(s)
- Jérôme Epsztein
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Unité 29, Université de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
17
|
Timofeeva O, Nadler JV. Facilitation of granule cell epileptiform activity by mossy fiber-released zinc in the pilocarpine model of temporal lobe epilepsy. Brain Res 2006; 1078:227-34. [PMID: 16490181 DOI: 10.1016/j.brainres.2006.01.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/12/2006] [Accepted: 01/16/2006] [Indexed: 11/30/2022]
Abstract
Recurrent mossy fiber synapses in the dentate gyrus of epileptic brain facilitate the synchronous firing of granule cells and may promote seizure propagation. Mossy fiber terminals contain and release zinc. Released zinc inhibits the activation of NMDA receptors and may therefore oppose the development of granule cell epileptiform activity. Hippocampal slices from rats that had experienced pilocarpine-induced status epilepticus and developed a recurrent mossy fiber pathway were used to investigate this possibility. Actions of released zinc were inferred from the effects of chelation with 1 mM calcium disodium EDTA (CaEDTA). When granule cell population bursts were evoked by mossy fiber stimulation in the presence of 6 mM K(+) and 30 microM bicuculline, CaEDTA slowed the rate at which evoked bursting developed, but did not change the magnitude of the bursts once they had developed fully. The effects of CaEDTA were then studied on the pharmacologically isolated NMDA receptor- and AMPA/kainate receptor-mediated components of the fully developed bursts. CaEDTA increased the magnitude of NMDA receptor-mediated bursts and reduced the magnitude of AMPA/kainate receptor-mediated bursts. CaEDTA did not affect the granule cell bursts evoked in slices from untreated rats by stimulating the perforant path in the presence of bicuculline and 6 mM K(+). These results suggest that zinc released from the recurrent mossy fibers serves mainly to facilitate the recruitment of dentate granule cells into population bursts.
Collapse
Affiliation(s)
- Olga Timofeeva
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
18
|
Sloviter RS, Zappone CA, Harvey BD, Frotscher M. Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: possible anatomical substrate of granule cell hyper-inhibition in chronically epileptic rats. J Comp Neurol 2006; 494:944-60. [PMID: 16385488 PMCID: PMC2597112 DOI: 10.1002/cne.20850] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kainic acid-induced neuron loss in the hippocampal dentate gyrus may cause epileptogenic hyperexcitability by triggering the formation of recurrent excitatory connections among normally unconnected granule cells. We tested this hypothesis by assessing granule cell excitability repeatedly within the same awake rats at different stages of the synaptic reorganization process initiated by kainate-induced status epilepticus (SE). Granule cells were maximally hyperexcitable to afferent stimulation immediately after SE and became gradually less excitable during the first month post-SE. The chronic epileptic state was characterized by granule cell hyper-inhibition, i.e., abnormally increased paired-pulse suppression and an abnormally high resistance to generating epileptiform discharges in response to afferent stimulation. Focal application of the gamma-aminobutyric acid type A (GABA(A)) receptor antagonist bicuculline methiodide within the dentate gyrus abolished the abnormally increased paired-pulse suppression recorded in chronically hyper-inhibited rats. Combined Timm staining and parvalbumin immunocytochemistry revealed dense innervation of dentate inhibitory interneurons by newly formed, Timm-positive, mossy fiber terminals. Ultrastructural analysis by conventional and postembedding GABA immunocytochemical electron microscopy confirmed that abnormal mossy fiber terminals of the dentate inner molecular layer formed frequent asymmetrical synapses with inhibitory interneurons and with GABA-immunopositive dendrites as well as with GABA-immunonegative dendrites of presumed granule cells. These results in chronically epileptic rats demonstrate that dentate granule cells are maximally hyperexcitable immediately after SE, prior to mossy fiber sprouting, and that synaptic reorganization following kainate-induced injury is temporally associated with GABA(A) receptor-dependent granule cell hyper-inhibition rather than a hypothesized progressive hyperexcitability. The anatomical data provide evidence of a possible anatomical substrate for the chronically hyper-inhibited state.
Collapse
Affiliation(s)
- Robert S Sloviter
- Department of Pharmacology and the Graduate Program in Neuroscience, University of Arizona College of Medicine, Tucson, Arizona 85724, USA.
| | | | | | | |
Collapse
|
19
|
Tu B, Timofeeva O, Jiao Y, Nadler JV. Spontaneous release of neuropeptide Y tonically inhibits recurrent mossy fiber synaptic transmission in epileptic brain. J Neurosci 2005; 25:1718-29. [PMID: 15716408 PMCID: PMC6725947 DOI: 10.1523/jneurosci.4835-04.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the pilocarpine model of temporal lobe epilepsy, mossy fibers coexpress the inhibitory transmitter neuropeptide Y (NPY) with glutamate. The effects of endogenous and applied NPY on recurrent mossy fiber synaptic transmission were investigated with the use of whole-cell voltage-clamp and field recordings in rat hippocampal slices. Applied NPY reversibly inhibited synaptic transmission at recurrent mossy fiber synapses on dentate granule cells but not at perforant path or associational-commissural synapses. It also reduced the frequency of miniature EPSCs (mEPSCs) in granule cells from epileptic, but not control, rats and depressed granule cell epileptiform activity dependent on the recurrent mossy fiber pathway. These actions of NPY were mediated by activation of presynaptic Y2 receptors. The Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]argininamide (BIIE0246) not only blocked the effects of NPY but also enhanced recurrent mossy fiber synaptic transmission, the frequency of mEPSCs, and the magnitude of mossy fiber-evoked granule cell epileptiform activity when applied by itself. Several observations supported the selectivity of BIIE0246. These results suggest that even the spontaneous release of NPY (or an active metabolite) from recurrent mossy fibers is sufficient to depress glutamate release from this pathway. Tonic release of NPY accounts at least partially for the low probability of glutamate release from recurrent mossy fiber terminals, impedes the ability of these fibers to synchronize granule cell discharge, and may protect the hippocampus from seizures that involve the entorhinal cortex. This pathway may synchronize granule cell discharge more effectively in human brain than in rat because of its lower expression of NPY.
Collapse
Affiliation(s)
- Bin Tu
- Department of Pharmacology and Cancer Biolog, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
20
|
Dudek FE, Shao LR. Mossy fiber sprouting and recurrent excitation: direct electrophysiologic evidence and potential implications. Epilepsy Curr 2005; 4:184-7. [PMID: 16059495 PMCID: PMC1176367 DOI: 10.1111/j.1535-7597.2004.04507.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Peng Z, Houser CR. Temporal patterns of fos expression in the dentate gyrus after spontaneous seizures in a mouse model of temporal lobe epilepsy. J Neurosci 2005; 25:7210-20. [PMID: 16079403 PMCID: PMC6725230 DOI: 10.1523/jneurosci.0838-05.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 11/21/2022] Open
Abstract
Identifying the brain regions and neuronal cell types that become active at the time of spontaneous seizures remains an important challenge for epilepsy research, and the involvement of dentate granule cells in early seizure events continues to be debated. Although Fos expression is commonly used to evaluate patterns of neuronal activation, there have been few studies of Fos localization after spontaneous seizures. Thus, in a pilocarpine model of recurrent seizures in C57BL/6 mice, Fos expression was examined at multiple time points after spontaneous seizures to follow the temporal and spatial patterns of Fos activation. By 15 min after the beginning of a spontaneous behavioral seizure, Fos labeling was evident in dentate granule cells. This labeling was particularly striking because of its wide extent and relatively uniform appearance in the granule cell layer. At later time points, from 30 min to 4 h after a spontaneous seizure, Fos labeling was also detected in interneurons within the dentate gyrus and in widespread regions of the temporal lobe. Interestingly, the timing of Fos activation appeared to differ among different types of GABAergic interneurons in the dentate gyrus, with labeling of parvalbumin neurons along the base of the granule cell layer preceding that of GABA neurons in the molecular layer. The findings in this mouse model are consistent with previous suggestions that spontaneous seizures in temporal lobe epilepsy may result from a periodic breakdown of the normal filter functions of the dentate gyrus and a resulting increase in hypersynchronous activity of dentate granule cells.
Collapse
Affiliation(s)
- Zechun Peng
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
22
|
Patel LS, Wenzel HJ, Schwartzkroin PA. Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J Neurosci 2005; 24:9005-14. [PMID: 15483119 PMCID: PMC6730067 DOI: 10.1523/jneurosci.2943-04.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a high correlation between pediatric epilepsies and neuronal migration disorders. What remains unclear is whether there are intrinsic features of the individual dysplastic cells that give rise to heightened seizure susceptibility, or whether these dysplastic cells contribute to seizure activity by establishing abnormal circuits that alter the balance of inhibition and excitation. Mice lacking a functional p35 gene provide an ideal model in which to address these questions, because these knock-out animals not only exhibit aberrant neuronal migration but also demonstrate spontaneous seizures. Extracellular field recordings from hippocampal slices, characterizing the input-output relationship in the dentate, revealed little difference between wild-type and knock-out mice under both normal and elevated extracellular potassium conditions. However, in the presence of the GABA(A) antagonist bicuculline, p35 knock-out slices, but not wild-type slices, exhibited prolonged depolarizations in response to stimulation of the perforant path. There were no significant differences in the intrinsic properties of dentate granule cells (i.e., input resistance, time constant, action potential generation) from wild-type versus knock-out mice. However, antidromic activation (mossy fiber stimulation) evoked an excitatory synaptic response in over 65% of granule cells from p35 knock-out slices that was never observed in wild-type slices. Ultrastructural analyses identified morphological substrates for this aberrant excitation: recurrent axon collaterals, abnormal basal dendrites, and mossy fiber terminals forming synapses onto the spines of neighboring granule cells. These studies suggest that granule cells in p35 knock-out mice contribute to seizure activity by forming an abnormal excitatory feedback circuit.
Collapse
Affiliation(s)
- Leena S Patel
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
23
|
Bausch SB, McNamara JO. Contributions of Mossy Fiber and CA1 Pyramidal Cell Sprouting to Dentate Granule Cell Hyperexcitability in Kainic Acid–Treated Hippocampal Slice Cultures. J Neurophysiol 2004; 92:3582-95. [PMID: 15269228 DOI: 10.1152/jn.01028.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatoty postsynaptic currents (sEPSCs) >600pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.
Collapse
Affiliation(s)
- Suzanne B Bausch
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
24
|
Gabriel S, Njunting M, Pomper JK, Merschhemke M, Sanabria ERG, Eilers A, Kivi A, Zeller M, Meencke HJ, Cavalheiro EA, Heinemann U, Lehmann TN. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J Neurosci 2004; 24:10416-30. [PMID: 15548657 PMCID: PMC6730304 DOI: 10.1523/jneurosci.2074-04.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 08/28/2004] [Accepted: 10/02/2004] [Indexed: 11/21/2022] Open
Abstract
Hippocampal specimens resected to cure medically intractable temporal lobe epilepsy (TLE) provide a unique possibility to study functional consequences of morphological alterations. One intriguing alteration predominantly observed in cases of hippocampal sclerosis is an uncommon network of granule cells monosynaptically interconnected via aberrant supragranular mossy fibers. We investigated whether granule cell populations in slices from sclerotic and nonsclerotic hippocampi would develop ictaform activity when challenged by low-frequency hilar stimulation in the presence of elevated extracellular potassium concentration (10 and 12 mm) and whether the experimental activity differs according to the presence of aberrant mossy fibers. We found that ictaform activity could be evoked in slices from sclerotic and nonsclerotic hippocampi (27 of 40 slices, 14 of 20 patients; and 11 of 22 slices, 6 of 12 patients, respectively). However, the two patient groups differed with respect to the pattern of ictaform discharges and the potassium concentration mandatory for its induction. Seizure-like events were already induced with 10 mm K+. They exclusively occurred in slices from sclerotic hippocampi, of which 80% displayed stimulus-induced oscillatory population responses (250-300 Hz). In slices from nonsclerotic hippocampi, atypical negative field potential shifts were predominantly evoked with 12 mm K+. In both groups, the ictaform activity was sensitive to ionotropic glutamate receptor antagonists and lowering of [Ca2+]o. Our results show that, in granule cell populations of hippocampal slices from TLE patients, high K+-induced seizure-like activity and ictal spiking coincide with basic electrophysiological abnormalities, hippocampal sclerosis, and mossy fiber sprouting, suggesting that network reorganization could play a crucial role in determining type and threshold of such activity.
Collapse
Affiliation(s)
- Siegrun Gabriel
- Johannes Mueller Institute of Physiology, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 2004; 73:1-60. [PMID: 15193778 DOI: 10.1016/j.pneurobio.2004.03.009] [Citation(s) in RCA: 613] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/24/2004] [Indexed: 01/09/2023]
Abstract
This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
26
|
Sutula TP. Mechanisms of epilepsy progression: current theories and perspectives from neuroplasticity in adulthood and development. Epilepsy Res 2004; 60:161-71. [PMID: 15380560 DOI: 10.1016/j.eplepsyres.2004.07.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/05/2004] [Accepted: 07/01/2004] [Indexed: 11/17/2022]
Abstract
Clinical and epidemiological studies have repeatedly demonstrated that a subset of patients with epilepsy have progressive syndromes with increasing seizure frequency and cumulative adverse effects despite optimal anticonvulsant therapy. Recent longitudinal imaging studies and long-term neuropsychological studies have confirmed that a substantial subset of people with epilepsy undergo progressive brain atrophy accompanied by functional declines that worsen with duration of epilepsy. As further evidence of the progressive and adverse effects of inadequately controlled epilepsy, chronic experimental models of epilepsy and the phenomenon of kindling have provided abundant evidence that neural circuits undergo long-term progressive structural and functional alterations in response to seizures. This long-term seizure-induced plasticity in neural circuits appears to be "bidirectional", inducing progressive damage while also inducing resistance to additional damage, as a function of timing or inter-seizure interval. Seizure-induced plasticity has pronounced age-dependence, and influences long-term cognitive consequences of seizures during early life and acquired susceptibility to epilepsy in adulthood. While it is clear from clinical and epidemiological studies that human epilepsy is a heterogeneous disorder and that not all epileptic syndromes are progressive, emerging results from studies of activity-dependent and seizure-induced plasticity and perspectives from "complex systems" analysis are providing new insights into systematic neurobiological processes that are likely to influence the progressive features of epileptic syndromes and patterns of progression in individual patients. The emerging perspective is that phenomena of plasticity and genetic background exert powerful effects in development and adulthood through regulation of activity-dependent structural and functional remodeling of neural circuitry, and that these effects not only influence progression and consequences of seizures, but also offer new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas P Sutula
- Departments of Neurology and Anatomy, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
27
|
Smolders I, Lindekens H, Clinckers R, Meurs A, O'Neill MJ, Lodge D, Ebinger G, Michotte Y. In vivo modulation of extracellular hippocampal glutamate and GABA levels and limbic seizures by group I and II metabotropic glutamate receptor ligands. J Neurochem 2004; 88:1068-77. [PMID: 15009663 DOI: 10.1046/j.1471-4159.2003.02251.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of several metabotropic receptor (mGluR) ligands on baseline hippocampal glutamate and GABA overflow in conscious rats and the modulation of limbic seizure activity by these ligands were investigated. Intrahippocampal mGluR group I agonist perfusion via a microdialysis probe [1 mm (R,S)-3,5-dihydroxyphenylglycine] induced seizures and concomitant augmentations in amino acid dialysate levels. The mGlu1a receptor antagonist LY367385 (1 mm) decreased baseline glutamate but not GABA concentrations, suggesting that mGlu1a receptors, which regulate hippocampal glutamate levels, are tonically activated by endogenous glutamate. This decrease in glutamate may contribute to the reported LY367385-mediated anticonvulsant effect. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (50 mg/kg) also clearly abolished pilocarpine-induced seizures. Agonist-mediated actions at mGlu2/3 receptors by LY379268 (100 microm, 10 mg/kg intraperitoneally) decreased basal hippocampal GABA but not glutamate levels. This may partly explain the increased excitation following systemic LY379268 administration and the lack of complete anticonvulsant protection within our epilepsy model with the mGlu2/3 receptor agonist. Group II selective mGluR receptor blockade with LY341495 (1-10 microm) did not alter the rats' behaviour or hippocampal amino acid levels. These data provide a neurochemical basis for the full anticonvulsant effects of mGlu1a and mGlu5 antagonists and the partial effects observed with mGlu2/3 agonists in vivo.
Collapse
Affiliation(s)
- Ilse Smolders
- Department of Pharmaceutical Chemistry, Research group Experimental Pharmacology, Pharmaceutical Institute, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The dentate gyrus is believed to play a key role in the pathogenesis of temporal lobe epilepsy. In normal brain the dentate granule cells serve as a high-resistance gate or filter, inhibiting the propagation of seizures from the entorhinal cortex to the hippocampus. The filtering function of the dentate gyrus depends in part on the near absence of monosynaptic connections among granule cells. In humans with temporal lobe epilepsy and in animal models of temporal lobe epilepsy, dentate granule cells form an interconnected synaptic network associated with loss of hilar interneurons. This recurrent mossy fiber pathway mediates reverberating excitation that can reduce the threshold for granule cell synchronization. Factors that augment activity in this pathway include modest increases in [K+]o; loss of GABA inhibition; short-term, frequency-dependent facilitation (frequencies of 1-2 Hz); feedback activation of kainate autoreceptors; and release of zinc from recurrent mossy fiber boutons. Factors that diminish activity include short-term, frequency-dependent depression (frequencies < 1 Hz); feedback activation of type II metabotropic glutamate receptors; and the potential release of GABA, neuropeptide Y, adenosine, and dynorphin from recurrent mossy fiber boutons. The axon sprouting and reactive synaptogenesis that follow seizure-related brain damage can also create or strengthen recurrent excitation in other brain regions. These changes are expected to facilitate participation of these regions in seizures. Thus, reactive processes that are often considered important for recovery of function after most brain injuries probably contribute to neurological dysfunction in epilepsy.
Collapse
Affiliation(s)
- J Victor Nadler
- Department of Pharmacology, Box 3813, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
29
|
Scharfman HE, Sollas AL, Berger RE, Goodman JH. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 2004; 90:2536-47. [PMID: 14534276 DOI: 10.1152/jn.00251.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mossy fiber sprouting is a form of synaptic reorganization in the dentate gyrus that occurs in human temporal lobe epilepsy and animal models of epilepsy. The axons of dentate gyrus granule cells, called mossy fibers, develop collaterals that grow into an abnormal location, the inner third of the dentate gyrus molecular layer. Electron microscopy has shown that sprouted fibers from synapses on both spines and dendritic shafts in the inner molecular layer, which are likely to represent the dendrites of granule cells and inhibitory neurons. One of the controversies about this phenomenon is whether mossy fiber sprouting contributes to seizures by forming novel recurrent excitatory circuits among granule cells. To date, there is a great deal of indirect evidence that suggests this is the case, but there are also counterarguments. The purpose of this study was to determine whether functional monosynaptic connections exist between granule cells after mossy fiber sprouting. Using simultaneous recordings from granule cells, we obtained direct evidence that granule cells in epileptic rats have monosynaptic excitatory connections with other granule cells. Such connections were not obtained when age-matched, saline control rats were examined. The results suggest that indeed mossy fiber sprouting provides a substrate for monosynaptic recurrent excitation among granule cells in the dentate gyrus. Interestingly, the characteristics of the excitatory connections that were found indicate that the pathway is only weakly excitatory. These characteristics may contribute to the empirical observation that the sprouted dentate gyrus does not normally generate epileptiform discharges.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw 10993-1195, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
The granule cells of the dentate gyrus (DG), origin of the mossy fibers (MFs), have been considered to be glutamatergic. However, data obtained with different experimental approaches in recent years may be calling for a redefinition of their phenotype. Although they indeed release glutamate for fast neurotransmission, immunohistological and molecular biology evidence has revealed that these glutamatergic cells also express GABAergic markers. The granule cell expression of a GABAergic phenotype is developmentally regulated. Electrophysiological studies reveal that during the first 3 weeks of age, mossy fiber stimulation provokes monosynaptic fast inhibitory transmission mediated by GABA, besides the monosynaptic excitatory glutamatergic transmission, onto their targets in CA3. After this age, mossy fiber GABAergic transmission abruptly disappears and the GABAergic markers are undetected. In the adult, the GABAergic markers are upregulated and GABA-mediated transmission emerges after induction of hyperexcitability. The simultaneous glutamate- and GABA-mediated signals share the same plastic and pharmacological characteristics that correspond to neurotransmission of mossy fiber origin. This intriguing evidence gives rise to two fundamental points of discussion. The first is the plausible fact that glutamate and GABA, two neurotransmitters of opposing actions, are coreleased from the mossy fibers. The second relates to its functional implications that can be immediately inferred, as the dentate gyrus can exert direct GABA-mediated excitatory actions early in life and inhibitory actions in young and adult hippocampus. This evidence poses the need to reevaluate and reinterpret some aspects of the physiology of the mossy fiber pathway under normal and pathological conditions. This work reviews the recent evidence that supports the assumption that glutamate and GABA can be coreleased from a single pathway, the mossy fibers, and makes some considerations about its functional implications.
Collapse
Affiliation(s)
- Rafael Gutiérrez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City 07000, D.F., Mexico.
| |
Collapse
|
31
|
Abstract
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in human temporal lobe epilepsy and in animal models of this disorder, creating monosynaptic connections among granule cells. This novel granule cell network can support reverberating excitation but is difficult to activate with low-frequency stimulation. This study used hippocampal slices from pilocarpine-treated rats to explore the dependence of synaptic transmission in this pathway on stimulus frequency. Minimal electrically evoked EPSCs exhibited a high failure rate ( approximately 60%). Stimulus trains delivered at a frequency of <1 Hz depressed synaptic transmission, as evidenced by an increase in response failures. Conversely, stimulus trains delivered at higher frequencies reduced the percentage of response failures and increased the amplitude of compound EPSCs, including pharmacologically isolated NMDA receptor-mediated EPSCs. Short-term frequency-dependent facilitation was of modest size compared with mossy fiber synapses on other neuronal types. Facilitation depended on the activation of kainate receptors by released glutamate and was inhibited by feedback activation of type II metabotropic glutamate receptors. These results suggest that the recurrent mossy fiber pathway may be functionally silent during baseline asynchronous granule cell activity in vivo attributable, in part, to progressive transmission failure. The pathway may synchronize granule cell firing and may promote seizure propagation most effectively during the brief periods of high-frequency granule cell firing that occur during normal behavior, during the periods of hypersynchronous fast activity characteristic of epileptic brain and, most importantly, during the period of increasing granule cell activity that precedes a spontaneous seizure.
Collapse
|
32
|
Cavazos JE, Zhang P, Qazi R, Sutula TP. Ultrastructural features of sprouted mossy fiber synapses in kindled and kainic acid-treated rats. J Comp Neurol 2003; 458:272-92. [PMID: 12619081 DOI: 10.1002/cne.10581] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mossy fiber pathway in the dentate gyrus undergoes sprouting and synaptic reorganization in response to seizures. The types of new synapses, their location and number, and the identity of their postsynaptic targets determine the functional properties of the reorganized circuitry. The goal of this study was to characterize the types and proportions of sprouted mossy fiber synapses in kindled and kainic acid-treated rats. In normal rats, synapses labeled by Timm histochemistry or dynorphin immunohistochemistry were rarely observed in the supragranular region of the inner molecular layer when examined by electron microscopy. In epileptic rats, sprouted mossy fiber synaptic terminals were frequently observed. The ultrastructural analysis of the types of sprouted synapses revealed that 1) in the supragranular region, labeled synaptic profiles were more frequently axospinous than axodendritic, and many axospinous synapses were perforated; 2) sprouted mossy fiber synaptic terminals formed exclusively asymmetric, putatively excitatory synapses with dendritic spines and shafts in the supragranular region and with the soma of granule cells in the granule cell layer; 3) in contrast to the large sprouted mossy fiber synapses in resected human epileptic hippocampus, the synapses formed by sprouted mossy fibers in rats were smaller; and 4) in several cases, the postsynaptic targets of sprouted synapses were identified as granule cells, but, in one case, a sprouted synaptic terminal formed a synapse with an inhibitory interneuron. The results demonstrate that axospinous asymmetric synapses are the most common type of synapse formed by sprouted mossy fiber terminals, supporting the viewpoint that most sprouted mossy fibers contribute to recurrent excitation in epilepsy.
Collapse
Affiliation(s)
- José E Cavazos
- Department of Medicine (Neurology), University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| | | | | | | |
Collapse
|
33
|
Williams PA, Wuarin JP, Dou P, Ferraro DJ, Dudek FE. Reassessment of the effects of cycloheximide on mossy fiber sprouting and epileptogenesis in the pilocarpine model of temporal lobe epilepsy. J Neurophysiol 2002; 88:2075-87. [PMID: 12364529 DOI: 10.1152/jn.2002.88.4.2075] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A feature of animal models of temporal lobe epilepsy and the human disorder is hippocampal sclerosis and Timm stain in the inner molecular layer (IML) of the dentate gyrus, which represents synaptic reorganization and may be important in epileptogenesis. We reassessed the hypothesis that pre-treatment with cycloheximide (CHX) prevents Timm staining in the IML following pilocarpine (PILO)-induced status epilepticus (a multifocal model of temporal lobe epilepsy), but allows epileptogenesis (i.e., chronic spontaneous seizures) after a latent period. Hippocampal slices from PILO-treated rats without Timm stain in the IML after CHX treatment were hypothesized to lack the electrophysiological abnormalities suggestive of recurrent excitation. The primary experimental groups were as follows: 1) CHX (1 mg/kg) 30-45 min prior to administration of PILO (320 mg/kg ip, 2) only PILO, and 3) only saline (0.5 ml, IP). The CHX pre-treatment significantly decreased the number of rats that responded to PILO with status epilepticus compared to rats that received only PILO. Pre-treatment with CHX did not significantly alter the spontaneous motor seizure rate post-treatment compared to treatment with PILO alone in those animals from each group that developed status epilepticus during PILO treatment. Timm stain in the IML was not significantly different between the PILO- and PILO+CHX-treated rats. Using quantitative methods, CHX did not prevent hilar, CA1, or CA3 neuronal loss compared to the PILO-treated rats. Extracellular responses to hilar stimulation in 30 microM bicuculline and 6 mM [K(+)](o) demonstrated all-or-none bursting in both the CHX+PILO- and PILO-treated rats but not in control rats. Whole cell recordings from granule cells, using glutamate flash photolysis to activate other granule cells, showed that both the CHX+PILO- and PILO-treated rats had excitatory synaptic interactions in the granule cell layer, which were not found after saline treatment. Some rats responded to PILO (with or without CHX pre-treatment) with only one or a few seizures at treatment, and some of these animals (n = 4) demonstrated spontaneous motor seizures within 2 mo after treatment. Timm staining and neuron loss in this group were not clearly different from saline-treated rats. These results suggest that in the PILO model, pre-treatment with CHX does not affect mossy fiber sprouting in the IML of epileptic rats and does not prevent the formation of recurrent excitatory circuits. However, the develoment of spontaneous motor seizures, in a small number of rats, could occur without detectable hippocampal neuron loss or mossy fiber sprouting, as assessed by the Timm stain method.
Collapse
Affiliation(s)
- Philip A Williams
- Department of Biomedical Sciences, Anatomy and Neurobiology Section, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
34
|
Dudek FE, Hellier JL, Williams PA, Ferraro DJ, Staley KJ. The course of cellular alterations associated with the development of spontaneous seizures after status epilepticus. PROGRESS IN BRAIN RESEARCH 2002; 135:53-65. [PMID: 12143370 DOI: 10.1016/s0079-6123(02)35007-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Chronic epilepsy, as a consequence of status epilepticus, has been studied in animal models in order to analyze the cellular mechanisms responsible for the subsequent occurrence of spontaneous seizures. Status epilepticus, induced by either kainic acid or pilocarpine or by prolonged electrical stimulation, causes a characteristic pattern of neuronal death in the hippocampus; which is followed--after an apparent latent period--by the development of chronic, recurrent, spontaneous seizures. The question most relevant to this conference is the degree to which the subsequent chronic seizures contribute further to epileptogenesis and brain damage. This article addresses the temporal and anatomical parameters that must be understood in order to address this question. (1) How does one evaluate experimentally whether the chronic epileptic seizures that follow status epilepticus contribute to epileptogenesis and lead to brain damage? To answer this question, we must first know the time course of the development of the chronic epileptic seizures, and whether the interval between subsequent individual chronic seizures is a relevant factor. (2) What anatomical parameters are most relevant to the progression of epilepsy? For instance, how does loss of inhibitory interneurons potentially influence seizure generation and the progressive development of epileptogenesis? Does axon sprouting and formation of new synaptic connections represent a form of seizure-induced brain damage? These specific issues bear directly on the general question of whether seizures damage the brain during the chronic epilepsy that follows status epilepticus.
Collapse
Affiliation(s)
- F Edward Dudek
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
35
|
Sutula T. Seizure-Induced Axonal Sprouting: Assessing Connections Between Injury, Local Circuits, and Epileptogenesis. Epilepsy Curr 2002. [PMID: 15309153 DOI: 10.1046/j.1535-7597.2002.00032.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurons and neural circuits undergo extensive structural and functional remodeling in response to seizures. Sprouting of axons in the mossy fiber pathway of the hippocampus is a prominent example of a seizure-induced structural alteration which has received particular attention because it is easily detected, is induced by intense or repeated brief seizures in focal chronic models of epilepsy, and is also observed in the human epileptic hippocampus. During the last decade the association of mossy fiber sprouting with seizures and epilepsy has been firmly established. Many anatomical features of mossy fiber sprouting have been described in considerable detail, and there is evidence that sprouting occurs in a variety of other pathways in association with seizures and injury. There is uncertainty, however, about how or when mossy fiber sprouting may contribute to hippocampal dysfunction and generation of seizures. Study of mossy fiber sprouting has provided a strong theoretical and conceptual framework for efforts to understand how seizures and injury may contribute to epileptogenesis and its consequences. It is likely that investigation of mossy fiber sprouting will continure to offer significant opportunities for insights into seizure-induced plasticity of neural circuits at molecular, cellular, and systems levels.
Collapse
Affiliation(s)
- Thomas Sutula
- Departments of Neurology and Anatomy, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
36
|
Sutula T. Seizure-Induced Axonal Sprouting: Assessing Connections between Injury, Local Circuits, and Epileptogenesis. Epilepsy Curr 2002; 2:86-91. [PMID: 15309153 PMCID: PMC321023 DOI: 10.1111/j.1535-7597.2002.00032.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurons and neural circuits undergo extensive structural and functional remodeling in response to seizures. Sprouting of axons in the mossy fiber pathway of the hippocampus is a prominent example of a seizure-induced structural alteration which has received particular attention because it is easily detected, is induced by intense or repeated brief seizures in focal chronic models of epilepsy, and is also observed in the human epileptic hippocampus. During the last decade the association of mossy fiber sprouting with seizures and epilepsy has been firmly established. Many anatomical features of mossy fiber sprouting have been described in considerable detail, and there is evidence that sprouting occurs in a variety of other pathways in association with seizures and injury. There is uncertainty, however, about how or when mossy fiber sprouting may contribute to hippocampal dysfunction and generation of seizures. Study of mossy fiber sprouting has provided a strong theoretical and conceptual framework for efforts to understand how seizures and injury may contribute to epileptogenesis and its consequences. It is likely that investigation of mossy fiber sprouting will continure to offer significant opportunities for insights into seizure-induced plasticity of neural circuits at molecular, cellular, and systems levels.
Collapse
Affiliation(s)
- Thomas Sutula
- Departments of Neurology and Anatomy, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
37
|
Abstract
Zinc is concentrated in the hippocampus, particularly in the mossy fiber axons of the dentate gyrus, and has been hypothesized to be important in neurodegeneration and epilepsy. Previous studies have suggested that activity-dependent release of zinc from reorganized mossy fibers leads to collapse of granule-cell inhibition. Synaptically released zinc has been proposed to depress the function of the new "epileptic" GABA(A) receptors, which have subunits that are zinc-sensitive. Recent experiments by Molnar and Nadler have replicated the previous data, and further tested this hypothesis. Their work suggests that activated mossy fibers in hippocampal slices do not release adequate zinc to depress GABA(A) receptor function at nearby inhibitory synapses. These studies point to the complexity of this hypothesis, particularly in regard to zinc release in vitro versus in vivo and the diffusion of zinc in the extracellular space.
Collapse
Affiliation(s)
- F Edward Dudek
- Department of Anatomy and Neurobiology,Colorado State University, Fort Collins, Colorado
| |
Collapse
|
38
|
Okazaki MM, Nadler JV. Glutamate receptor involvement in dentate granule cell epileptiform activity evoked by mossy fiber stimulation. Brain Res 2001; 915:58-69. [PMID: 11578620 DOI: 10.1016/s0006-8993(01)02824-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In many persons with temporal lobe epilepsy, dentate granule cells form an interconnected synaptic network. This recurrent mossy fiber circuit mediates reverberating excitation that may facilitate seizure propagation by synchronizing granule cell discharge. The involvement of specific glutamate receptors in granule cell epileptiform activity evoked by stimulating the mossy fibers was investigated with use of rat hippocampal slices superfused with bicuculline, with or without increasing [K+](o) to 6 mM. The occurrence of short-latency mossy fiber-evoked granule cell epileptiform activity in slices from pilocarpine-treated rats correlated with the presence and extent of recurrent mossy fiber growth. Blockade of AMPA receptors nearly abolished the orthodromic component of the response; subsequent antagonism of kainate receptors as well appeared to have no further action. Antagonism of NMDA receptors reduced the duration of epileptiform discharge, but increased the amplitude of population spikes within the evoked burst. Thus AMPA and NMDA, but perhaps not kainate, receptors play an important role in this type of epileptiform activity. Activation of type II metabotropic glutamate receptors, which inhibits the release of glutamate from mossy fiber boutons, reduced the magnitude of epileptiform discharge. This action was reversed by a partial agonist of these receptors. However, neither an agonist nor an antagonist of type III metabotropic glutamate receptors significantly altered the response. Considering the importance of synchronous granule cell discharge for seizure propagation from the entorhinal cortex to the hippocampus, agonists of type II metabotropic glutamate receptors may be useful in suppressing such discharge both experimentally and clinically.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Electric Stimulation
- Epilepsy, Temporal Lobe/chemically induced
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/physiopathology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Male
- Mossy Fibers, Hippocampal/drug effects
- Mossy Fibers, Hippocampal/metabolism
- Mossy Fibers, Hippocampal/physiopathology
- Muscarinic Agonists/pharmacology
- Organ Culture Techniques
- Pilocarpine/pharmacology
- Potassium/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Status Epilepticus/chemically induced
- Status Epilepticus/metabolism
- Status Epilepticus/physiopathology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- M M Okazaki
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
39
|
Molnár P, Nadler JV. Synaptically-released zinc inhibits N-methyl-D-aspartate receptor activation at recurrent mossy fiber synapses. Brain Res 2001; 910:205-7. [PMID: 11489274 DOI: 10.1016/s0006-8993(01)02720-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hippocampal slices from pilocarpine-treated rats were used to explore the effect of zinc released at mossy fiber synapses on dentate granule cells. Chelation of zinc enhanced the N-methyl-D-aspartate (NMDA) receptor-mediated component of the excitatory postsynaptic current (EPSC), but did not affect the AMPA/kainate receptor-mediated component. Its effect was detectable only at negative membrane potentials and was pathway specific. Thus corelease of zinc reduces the ability of glutamate to activate postsynaptic NMDA receptors. Through this action, zinc would be expected to attenuate granule cell epileptiform activity supported by the recurrent mossy fiber pathway.
Collapse
Affiliation(s)
- P Molnár
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
40
|
Lehmann TN, Gabriel S, Eilers A, Njunting M, Kovacs R, Schulze K, Lanksch WR, Heinemann U. Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. Eur J Neurosci 2001; 14:83-95. [PMID: 11488952 DOI: 10.1046/j.0953-816x.2001.01632.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal fibres of the hippocampal formation of normal and chronic epileptic rats were investigated by fluorescent tracing methods using the pilocarpine model of limbic epilepsy. Two months after onset of spontaneous limbic seizures, hippocampal slices were prepared and maintained in vitro for 10 h. Small crystals of fluorescent dye [fluorescein (fluoro-emerald) and tetramethylrhodamine (fluoro-ruby)] were applied to different hippocampal regions. The main findings were: (i) in control rats there was no supragranular labelling when the mossy fibre tract was stained in stratum radiatum of area CA3. However, in epileptic rats a fibre network in the inner molecular layer of the dentate gyrus was retrogradely labelled; (ii) a retrograde innervation of area CA3 by CA1 pyramidal cells was disclosed by labelling remote CA1 neurons after dye injection into the stratum radiatum of area CA3 in chronic epileptic rats; (iii) labelling of CA1 neurons apart from the injection site within area CA1 was observed in epileptic rats but not in control animals; and (iv), a subicular-hippocampal projection was present in pilocarpine-treated rats when the tracer was injected just below the stratum pyramidale of area CA1. The findings show that fibre rearrangement in distinct regions of the epileptic hippocampal formation can occur as an aftermath of pilocarpine-induced status epilepticus.
Collapse
Affiliation(s)
- T N Lehmann
- Department of Neurosurgery, Charité Campus Virchow-Klinikum, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Molnár P, Nadler JV. Lack of Effect of Mossy Fiber-Released Zinc on Granule Cell GABAAReceptors in the Pilocarpine Model of Epilepsy. J Neurophysiol 2001; 85:1932-40. [PMID: 11353010 DOI: 10.1152/jn.2001.85.5.1932] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABAAreceptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABAAreceptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 μM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABAAreceptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K+]o, nominally Mg2+-free medium, 33°C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABAAreceptors sufficient to inhibit agonist-evoked activation.
Collapse
Affiliation(s)
- P Molnár
- Department of Pharmacology and Cancer Biology and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
Dashtipour K, Tran PH, Okazaki MM, Nadler JV, Ribak CE. Ultrastructural features and synaptic connections of hilar ectopic granule cells in the rat dentate gyrus are different from those of granule cells in the granule cell layer. Brain Res 2001; 890:261-71. [PMID: 11164792 DOI: 10.1016/s0006-8993(00)03119-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several investigators have shown the existence of dentate granule cells in ectopic locations within the hilus and molecular layer using both Golgi and retrograde tracing studies but the ultrastructural features and synaptic connections of ectopic granule cells were not previously examined. In the present study, the biocytin retrograde tracing technique was used to label ectopic granule cells following injections into stratum lucidum of CA3b of hippocampal slices obtained from epileptic rats. Electron microscopy was used to study hilar ectopic granule cells that were located 20-40 microm from the granule cell layer (GCL). They had ultrastructural features similar to those of granule cells in the GCL but showed differences, including nuclei that often displayed infoldings and thicker apical dendrites. At their origin, these dendrites were 6 microm in diameter and they tapered down to 2 microm at the border with the GCL. Both biocytin-labeled and unlabeled axon terminals formed exclusively asymmetric synapses with the somata and proximal dendrites of hilar ectopic granule cells. The mean number of axosomatic synapses for these cells was three times that for granule cells in the GCL. Together, these data indicate that hilar ectopic granule cells are postsynaptic to mossy fibers and have less inhibitory input on their somata and proximal dendrites than granule cells in the GCL. This finding is consistent with recent physiological results showing that hilar ectopic granule cells from epileptic rats are more hyperexcitable than granule cells in the GCL.
Collapse
Affiliation(s)
- K Dashtipour
- Department of Anatomy and Neurobiology, University of California at Irvine, College of Medicine, Irvine, CA 92697-1275, USA
| | | | | | | | | |
Collapse
|