1
|
Călin A, Waseem T, Raimondo JV, Newey SE, Akerman CJ. A genetically targeted ion sensor reveals distinct seizure-related chloride and pH dynamics in GABAergic interneuron populations. iScience 2023; 26:106363. [PMID: 37034992 PMCID: PMC10074576 DOI: 10.1016/j.isci.2023.106363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Intracellular chloride and pH play fundamental roles in determining a neuron's synaptic inhibition and excitability. Yet it has been difficult to measure changes in these ions during periods of heightened network activity, such as occur in epilepsy. Here we develop a version of the fluorescent reporter, ClopHensorN, to enable simultaneous quantification of chloride and pH in genetically defined neurons during epileptiform activity. We compare pyramidal neurons to the major GABAergic interneuron subtypes in the mouse hippocampus, which express parvalbumin (PV), somatostatin (SST), or vasoactive intestinal polypeptide (VIP). Interneuron populations exhibit higher baseline chloride, with PV interneurons exhibiting the highest levels. During an epileptiform discharge, however, all subtypes converge upon a common elevated chloride level. Concurrent with these dynamics, epileptiform activity leads to different degrees of intracellular acidification, which reflect baseline pH. Thus, a new optical tool for dissociating chloride and pH reveals neuron-specific ion dynamics during heightened network activity.
Collapse
Affiliation(s)
- Alexandru Călin
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tatiana Waseem
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Joseph V. Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Sarah E. Newey
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Colin J. Akerman
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
2
|
Adenosine A 2A receptors control synaptic remodeling in the adult brain. Sci Rep 2022; 12:14690. [PMID: 36038626 PMCID: PMC9424208 DOI: 10.1038/s41598-022-18884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanisms underlying circuit re-wiring in the mature brain remains ill-defined. An eloquent example of adult circuit remodelling is the hippocampal mossy fiber (MF) sprouting found in diseases such as temporal lobe epilepsy. The molecular determinants underlying this retrograde re-wiring remain unclear. This may involve signaling system(s) controlling axon specification/growth during neurodevelopment reactivated during epileptogenesis. Since adenosine A2A receptors (A2AR) control axon formation/outgrowth and synapse stabilization during development, we now examined the contribution of A2AR to MF sprouting. A2AR blockade significantly attenuated status epilepticus(SE)-induced MF sprouting in a rat pilocarpine model. This involves A2AR located in dentate granule cells since their knockdown selectively in dentate granule cells reduced MF sprouting, most likely through the ability of A2AR to induce the formation/outgrowth of abnormal secondary axons found in rat hippocampal neurons. These A2AR should be activated by extracellular ATP-derived adenosine since a similar prevention/attenuation of SE-induced hippocampal MF sprouting was observed in CD73 knockout mice. These findings demonstrate that A2AR contribute to epilepsy-related MF sprouting, most likely through the reactivation of the ability of A2AR to control axon formation/outgrowth observed during neurodevelopment. These results frame the CD73-A2AR axis as a regulator of circuit remodeling in the mature brain.
Collapse
|
3
|
Aussel A, Ranta R, Aron O, Colnat-Coulbois S, Maillard L, Buhry L. Cell to network computational model of the epileptic human hippocampus suggests specific roles of network and channel dysfunctions in the ictal and interictal oscillations. J Comput Neurosci 2022; 50:519-535. [PMID: 35971033 DOI: 10.1007/s10827-022-00829-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The mechanisms underlying the generation of hippocampal epileptic seizures and interictal events and their interactions with the sleep-wake cycle are not yet fully understood. Indeed, medial temporal lobe epilepsy is associated with hippocampal abnormalities both at the neuronal (channelopathies, impaired potassium and chloride dynamics) and network level (neuronal and axonal loss, mossy fiber sprouting), with more frequent seizures during wakefulness compared with slow-wave sleep. In this article, starting from our previous computational modeling work of the hippocampal formation based on realistic topology and synaptic connectivity, we study the role of micro- and mesoscale pathological conditions of the epileptic hippocampus in the generation and maintenance of seizure-like theta and interictal oscillations. We show, through the simulations of hippocampal activity during slow-wave sleep and wakefulness that: (i) both mossy fiber sprouting and sclerosis account for seizure-like theta activity, (ii) but they have antagonist effects (seizure-like activity occurrence increases with sprouting but decreases with sclerosis), (iii) though impaired potassium and chloride dynamics have little influence on the generation of seizure-like activity, they do play a role on the generation of interictal patterns, and (iv) seizure-like activity and fast ripples are more likely to occur during wakefulness and interictal spikes during sleep.
Collapse
Affiliation(s)
- Amélie Aussel
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France. .,Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.
| | - Radu Ranta
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France
| | - Olivier Aron
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Sophie Colnat-Coulbois
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Louise Maillard
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Laure Buhry
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France
| |
Collapse
|
4
|
Preparation of Rat Organotypic Hippocampal Slice Cultures Using the Membrane-Interface Method. Methods Mol Biol 2021; 2188:243-257. [PMID: 33119855 DOI: 10.1007/978-1-0716-0818-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cultured hippocampal slices from rodents, in which the architecture and functional properties of the hippocampal network are largely preserved, have proved to be a powerful substrate for studying healthy and pathological neuronal mechanisms. Here, we delineate the membrane-interface method for maintaining organotypic slices in culture for several weeks. The protocol includes procedures for dissecting hippocampus from rat brain, and collecting slices using a vibratome. This method provides the experimenter with easy access to both the brain tissue and culture medium, which facilitates genetic and pharmacological manipulations and enables experiments that incorporate imaging and electrophysiology. The method is generally applicable to rats of different ages, and to different brain regions, and can be modified for culture of slices from other species including mice.
Collapse
|
5
|
Restrained Dendritic Growth of Adult-Born Granule Cells Innervated by Transplanted Fetal GABAergic Interneurons in Mice with Temporal Lobe Epilepsy. eNeuro 2019; 6:ENEURO.0110-18.2019. [PMID: 31043461 PMCID: PMC6497906 DOI: 10.1523/eneuro.0110-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
The dentate gyrus (DG) is a region of the adult rodent brain that undergoes continuous neurogenesis. Seizures and loss or dysfunction of GABAergic synapses onto adult-born dentate granule cells (GCs) alter their dendritic growth and migration, resulting in dysmorphic and hyperexcitable GCs. Additionally, transplants of fetal GABAergic interneurons in the DG of mice with temporal lobe epilepsy (TLE) result in seizure suppression, but it is unknown whether increasing interneurons with these transplants restores GABAergic innervation to adult-born GCs. Here, we address this question by birth-dating GCs with retrovirus at different times up to 12 weeks after pilocarpine-induced TLE in adult mice. Channelrhodopsin 2 (ChR2)-enhanced yellow fluorescent protein (EYFP)-expressing medial-ganglionic eminence (MGE)-derived GABAergic interneurons from embryonic day (E)13.5 mouse embryos were transplanted into the DG of the TLE mice and GCs with transplant-derived inhibitory post-synaptic currents (IPSCs) were identified by patch-clamp electrophysiology and optogenetic interrogation. Putative synaptic sites between GCs and GABAergic transplants were also confirmed by intracellular biocytin staining, immunohistochemistry, and confocal imaging. 3D reconstructions of dendritic arbors and quantitative morphometric analyses were carried out in >150 adult-born GCs. GABAergic inputs from transplanted interneurons correlated with markedly shorter GC dendrites, compared to GCs that were not innervated by the transplants. Moreover, these effects were confined to distal dendritic branches and a short time window of six to eight weeks. The effects were independent of seizures as they were also observed in naïve mice with MGE transplants. These findings are consistent with the hypothesis that increased inhibitory currents over a smaller dendritic arbor in adult-born GCs may reduce their excitability and lead to seizure suppression.
Collapse
|
6
|
Chong SA, Balosso S, Vandenplas C, Szczesny G, Hanon E, Claes K, Van Damme X, Danis B, Van Eyll J, Wolff C, Vezzani A, Kaminski RM, Niespodziany I. Intrinsic Inflammation Is a Potential Anti-Epileptogenic Target in the Organotypic Hippocampal Slice Model. Neurotherapeutics 2018; 15:470-488. [PMID: 29464573 PMCID: PMC5935638 DOI: 10.1007/s13311-018-0607-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding the mechanisms of epileptogenesis is essential to develop novel drugs that could prevent or modify the disease. Neuroinflammation has been proposed as a promising target for therapeutic interventions to inhibit the epileptogenic process that evolves from traumatic brain injury. However, it remains unclear whether cytokine-related pathways, particularly TNFα signaling, have a critical role in the development of epilepsy. In this study, we investigated the role of innate inflammation in an in vitro model of post-traumatic epileptogenesis. We combined organotypic hippocampal slice cultures, representing an in vitro model of post-traumatic epilepsy, with multi-electrode array recordings to directly monitor the development of epileptiform activity and to examine the concomitant changes in cytokine release, cell death, and glial cell activation. We report that synchronized ictal- and interictal-like activities spontaneously evolve in this culture. Dynamic changes in the release of the pro-inflammatory cytokines IL-1β, TNFα, and IL-6 were observed throughout the culture period (3 to 21 days in vitro) with persistent activation of microglia and astrocytes. We found that neutralizing TNFα with a polyclonal antibody significantly reduced ictal discharges, and this effect lasted for 1 week after antibody washout. Neither phenytoin nor an anti-IL-6 polyclonal antibody was efficacious in inhibiting the development of epileptiform activity. Our data show a sustained effect of the anti-TNFα antibody on the ictal progression in organotypic hippocampal slice cultures supporting the critical role of inflammatory mediators in epilepsy and establishing a proof-of-principle evidence for the utility of this preparation to test the therapeutic effects of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Seon-Ah Chong
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium.
| | - Silvia Balosso
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | | | - Gregory Szczesny
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Etienne Hanon
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Kasper Claes
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Xavier Van Damme
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Bénédicte Danis
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Jonathan Van Eyll
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Christian Wolff
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | - Rafal M Kaminski
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | | |
Collapse
|
7
|
Chong SA, Balosso S, Vandenplas C, Szczesny G, Hanon E, Claes K, Van Damme X, Danis B, Van Eyll J, Wolff C, Vezzani A, Kaminski RM, Niespodziany I. Intrinsic Inflammation Is a Potential Anti-Epileptogenic Target in the Organotypic Hippocampal Slice Model. Neurotherapeutics 2018; 15:470-488. [PMID: 29464573 DOI: 10.1007/s13311-018-0607-6/figures/7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Understanding the mechanisms of epileptogenesis is essential to develop novel drugs that could prevent or modify the disease. Neuroinflammation has been proposed as a promising target for therapeutic interventions to inhibit the epileptogenic process that evolves from traumatic brain injury. However, it remains unclear whether cytokine-related pathways, particularly TNFα signaling, have a critical role in the development of epilepsy. In this study, we investigated the role of innate inflammation in an in vitro model of post-traumatic epileptogenesis. We combined organotypic hippocampal slice cultures, representing an in vitro model of post-traumatic epilepsy, with multi-electrode array recordings to directly monitor the development of epileptiform activity and to examine the concomitant changes in cytokine release, cell death, and glial cell activation. We report that synchronized ictal- and interictal-like activities spontaneously evolve in this culture. Dynamic changes in the release of the pro-inflammatory cytokines IL-1β, TNFα, and IL-6 were observed throughout the culture period (3 to 21 days in vitro) with persistent activation of microglia and astrocytes. We found that neutralizing TNFα with a polyclonal antibody significantly reduced ictal discharges, and this effect lasted for 1 week after antibody washout. Neither phenytoin nor an anti-IL-6 polyclonal antibody was efficacious in inhibiting the development of epileptiform activity. Our data show a sustained effect of the anti-TNFα antibody on the ictal progression in organotypic hippocampal slice cultures supporting the critical role of inflammatory mediators in epilepsy and establishing a proof-of-principle evidence for the utility of this preparation to test the therapeutic effects of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Seon-Ah Chong
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium.
| | - Silvia Balosso
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | | | - Gregory Szczesny
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Etienne Hanon
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Kasper Claes
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Xavier Van Damme
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Bénédicte Danis
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Jonathan Van Eyll
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Christian Wolff
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | - Rafal M Kaminski
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | | |
Collapse
|
8
|
Synaptic Plasticity and Excitation-Inhibition Balance in the Dentate Gyrus: Insights from In Vivo Recordings in Neuroligin-1, Neuroligin-2, and Collybistin Knockouts. Neural Plast 2018; 2018:6015753. [PMID: 29670649 PMCID: PMC5835277 DOI: 10.1155/2018/6015753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/02/2017] [Accepted: 12/11/2017] [Indexed: 01/29/2023] Open
Abstract
The hippocampal dentate gyrus plays a role in spatial learning and memory and is thought to encode differences between similar environments. The integrity of excitatory and inhibitory transmission and a fine balance between them is essential for efficient processing of information. Therefore, identification and functional characterization of crucial molecular players at excitatory and inhibitory inputs is critical for understanding the dentate gyrus function. In this minireview, we discuss recent studies unraveling molecular mechanisms of excitatory/inhibitory synaptic transmission, long-term synaptic plasticity, and dentate granule cell excitability in the hippocampus of live animals. We focus on the role of three major postsynaptic proteins localized at excitatory (neuroligin-1) and inhibitory synapses (neuroligin-2 and collybistin). In vivo recordings of field potentials have the advantage of characterizing the effects of the loss of these proteins on the input-output function of granule cells embedded in a network with intact connectivity. The lack of neuroligin-1 leads to deficient synaptic plasticity and reduced excitation but normal granule cell output, suggesting unaltered excitation-inhibition ratio. In contrast, the lack of neuroligin-2 and collybistin reduces inhibition resulting in a shift towards excitation of the dentate circuitry.
Collapse
|
9
|
Vivar C, van Praag H. Running Changes the Brain: the Long and the Short of It. Physiology (Bethesda) 2017; 32:410-424. [PMID: 29021361 PMCID: PMC6148340 DOI: 10.1152/physiol.00017.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Exercise is a simple intervention that profoundly benefits cognition. In rodents, running increases neurogenesis in the hippocampus, a brain area important for memory. We describe the dynamic changes in new neuron number and afferent connections throughout their maturation. We highlight the effects of exercise on the neurotransmitter systems involved, with a focus on the role of glutamate and acetylcholine in the initial development of new neurons in the adult brain.
Collapse
Affiliation(s)
- Carmen Vivar
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico; and
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
10
|
Sah N, Peterson BD, Lubejko ST, Vivar C, van Praag H. Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons. Sci Rep 2017; 7:10903. [PMID: 28883658 PMCID: PMC5589841 DOI: 10.1038/s41598-017-11268-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 07/05/2017] [Indexed: 12/23/2022] Open
Abstract
Adult hippocampal neurogenesis is an important form of structural and functional plasticity in the mature mammalian brain. The existing consensus is that GABA regulates the initial integration of adult-born neurons, similar to neuronal development during embryogenesis. Surprisingly, virus-based anatomical tracing revealed that very young, one-week-old, new granule cells in male C57Bl/6 mice receive input not only from GABAergic interneurons, but also from multiple glutamatergic cell types, including mature dentate granule cells, area CA1-3 pyramidal cells and mossy cells. Consistently, patch-clamp recordings from retrovirally labeled new granule cells at 7-8 days post retroviral injection (dpi) show that these cells respond to NMDA application with tonic currents, and that both electrical and optogenetic stimulation can evoke NMDA-mediated synaptic responses. Furthermore, new dentate granule cell number, morphology and excitatory synaptic inputs at 7 dpi are modified by voluntary wheel running. Overall, glutamatergic and GABAergic innervation of newly born neurons in the adult hippocampus develops concurrently, and excitatory input is reorganized by exercise.
Collapse
Affiliation(s)
- Nirnath Sah
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Benjamin D Peterson
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Susan T Lubejko
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, 07360, Mexico.
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
11
|
Du X, Zhang H, Parent JM. Rabies tracing of birthdated dentate granule cells in rat temporal lobe epilepsy. Ann Neurol 2017; 81:790-803. [PMID: 28470680 DOI: 10.1002/ana.24946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/08/2017] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To understand how monosynaptic inputs onto adult-born dentate granule cells (DGCs) are altered in experimental mesial temporal lobe epilepsy (mTLE) and whether their integration differs from early-born DGCs that are mature at the time of epileptogenesis. METHODS A dual-virus tracing strategy combining retroviral birthdating with rabies virus-mediated putative retrograde trans-synaptic tracing was used to identify and compare presynaptic inputs onto adult-born and early-born DGCs in the rat pilocarpine model of mTLE. RESULTS Our results demonstrate that hilar ectopic DGCs preferentially synapse onto adult-born DGCs after pilocarpine-induced status epilepticus (SE), whereas normotopic DGCs synapse onto both adult-born and early-born DGCs. We also find that parvalbumin- and somatostatin- interneuron inputs are greatly diminished onto early-born DGCs after SE. However, somatostatin- interneuron inputs onto adult-born DGCs are maintained, likely due to preferential sprouting. Intriguingly, CA3 pyramidal cell backprojections that specifically target adult-born DGCs arise in the epileptic brain, whereas axons of interneurons and pyramidal cells in CA1 appear to sprout across the hippocampal fissure to preferentially synapse onto early-born DGCs. INTERPRETATION These data support the presence of substantial hippocampal circuit remodeling after an epileptogenic insult that generates prominent excitatory monosynaptic inputs, both local recurrent and widespread feedback loops, onto DGCs. Both adult-born and early-born DGCs are targets of new inputs from other DGCs as well as from CA3 and CA1 pyramidal cells after pilocarpine treatment, changes that likely contribute to epileptogenesis in experimental mTLE. Ann Neurol 2017;81:790-803.
Collapse
Affiliation(s)
- Xi Du
- Neuroscience Graduate Program.,Medical Scientist Training Program
| | - Helen Zhang
- Department of Neurology, University of Michigan Medical Center and Ann Arbor VA Healthcare System, Ann Arbor, MI
| | - Jack M Parent
- Neuroscience Graduate Program.,Medical Scientist Training Program.,Department of Neurology, University of Michigan Medical Center and Ann Arbor VA Healthcare System, Ann Arbor, MI
| |
Collapse
|
12
|
Epilepsy and optogenetics: can seizures be controlled by light? Clin Sci (Lond) 2017; 131:1605-1616. [DOI: 10.1042/cs20160492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/30/2017] [Accepted: 04/13/2017] [Indexed: 01/12/2023]
Abstract
Over the past decade, ‘optogenetics’ has been consolidated as a game-changing tool in the neuroscience field, by allowing optical control of neuronal activity with high cell-type specificity. The ability to activate or inhibit targeted neurons at millisecond resolution not only offers an investigative tool, but potentially also provides a therapeutic intervention strategy for acute correction of aberrant neuronal activity. As efficient therapeutic tools are in short supply for neurological disorders, optogenetic technology has therefore spurred considerable enthusiasm and fostered a new wave of translational studies in neuroscience. Epilepsy is among the disorders that have been widely explored. Partial epilepsies are characterized by seizures arising from excessive excitatory neuronal activity that emerges from a focal area. Based on the constricted seizure focus, it appears feasible to intercept partial seizures by acutely shutting down excitatory neurons by means of optogenetics. The availability of both inhibitory and excitatory optogenetic probes, along with the available targeting strategies for respective excitatory or inhibitory neurons, allows multiple conceivable scenarios for controlling abnormal circuit activity. Several such scenarios have been explored in the settings of experimental epilepsy and have provided encouraging translational findings and revealed interesting and unexpected new aspects of epileptogenesis. However, it has also emerged that considerable challenges persist before clinical translation becomes feasible. This review provides a general introduction to optogenetics, and an overview of findings that are relevant for understanding how optogenetics may be utilized therapeutically as a highly innovative treatment for epilepsy.
Collapse
|
13
|
Liu J, Saponjian Y, Mahoney MM, Staley KJ, Berdichevsky Y. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition. PLoS One 2017; 12:e0172677. [PMID: 28225808 PMCID: PMC5321418 DOI: 10.1371/journal.pone.0172677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium), which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF). Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH) levels (biomarkers of ictal activity and cell death, respectively) in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Yero Saponjian
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark M. Mahoney
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Kevin J. Staley
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yevgeny Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
14
|
Berdichevsky Y, Saponjian Y, Park K, Roach B, Pouliot W, Lu K, Swiercz W, Dudek FE, Staley KJ. Staged anticonvulsant screening for chronic epilepsy. Ann Clin Transl Neurol 2016; 3:908-923. [PMID: 28097203 PMCID: PMC5224819 DOI: 10.1002/acn3.364] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Current anticonvulsant screening programs are based on seizures evoked in normal animals. One-third of epileptic patients do not respond to the anticonvulsants discovered with these models. We evaluated a tiered program based on chronic epilepsy and spontaneous seizures, with compounds advancing from high-throughput in vitro models to low-throughput in vivo models. METHODS Epileptogenesis in organotypic hippocampal slice cultures was quantified by lactate production and lactate dehydrogenase release into culture media as rapid assays for seizure-like activity and cell death, respectively. Compounds that reduced these biochemical measures were retested with in vitro electrophysiological confirmation (i.e., second stage). The third stage involved crossover testing in the kainate model of chronic epilepsy, with blinded analysis of spontaneous seizures after continuous electrographic recordings. RESULTS We screened 407 compound-concentration combinations. The cyclooxygenase inhibitor, celecoxib, had no effect on seizures evoked in normal brain tissue but demonstrated robust antiseizure activity in all tested models of chronic epilepsy. INTERPRETATION The use of organotypic hippocampal cultures, where epileptogenesis occurs on a compressed time scale, and where seizure-like activity and seizure-induced cell death can be easily quantified with biomarker assays, allowed us to circumvent the throughput limitations of in vivo chronic epilepsy models. Ability to rapidly screen compounds in a chronic model of epilepsy allowed us to find an anticonvulsant that would be missed by screening in acute models.
Collapse
Affiliation(s)
- Yevgeny Berdichevsky
- Department of Electrical and Computer Engineering and Bioengineering ProgramLehigh UniversityBethlehemPennsylvania18015
| | - Yero Saponjian
- Department of NeurologyMassachusetts General HospitalBostonMassachusetts02129
- Harvard Medical SchoolBostonMassachusetts02129
| | - Kyung‐Il Park
- Department of NeurologySeoul National University Hospital Healthcare System Gangnam CenterSeoulSouth Korea06236
| | - Bonnie Roach
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtah84108
| | - Wendy Pouliot
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtah84108
| | - Kimberly Lu
- Boston University School of MedicineBostonMassachusetts02119
| | - Waldemar Swiercz
- Department of NeurologyMassachusetts General HospitalBostonMassachusetts02129
- Harvard Medical SchoolBostonMassachusetts02129
| | - F. Edward Dudek
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtah84108
| | - Kevin J. Staley
- Department of NeurologyMassachusetts General HospitalBostonMassachusetts02129
- Harvard Medical SchoolBostonMassachusetts02129
| |
Collapse
|
15
|
Song Y, Pimentel C, Walters K, Boller L, Ghiasvand S, Liu J, Staley KJ, Berdichevsky Y. Neuroprotective levels of IGF-1 exacerbate epileptogenesis after brain injury. Sci Rep 2016; 6:32095. [PMID: 27561791 PMCID: PMC4999804 DOI: 10.1038/srep32095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023] Open
Abstract
Exogenous Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective in animal models of brain injury, and has been considered as a potential therapeutic. Akt-mTOR and MAPK are downstream targets of IGF-1 signaling that are activated after brain injury. However, both brain injury and mTOR are linked to epilepsy, raising the possibility that IGF-1 may be epileptogenic. Here, we considered the role of IGF-1 in development of epilepsy after brain injury, using the organotypic hippocampal culture model of post-traumatic epileptogenesis. We found that IGF-1 was neuroprotective within a few days of injury but that long-term IGF-1 treatment was pro-epileptic. Pro-epileptic effects of IGF-1 were mediated by Akt-mTOR signaling. We also found that IGF-1 - mediated increase in epileptic activity led to neurotoxicity. The dualistic nature of effects of IGF-1 treatment demonstrates that anabolic enhancement through IGF-1 activation of mTOR cascade can be beneficial or harmful depending on the stage of the disease. Our findings suggest that epilepsy risk may need to be considered in the design of neuroprotective treatments for brain injury.
Collapse
Affiliation(s)
- Yu Song
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| | - Corrin Pimentel
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| | - Katherine Walters
- Integrated Degree in Engineering, Arts, and Sciences (IDEAS) Program, Lehigh University, PA 18015, USA
| | - Lauren Boller
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| | | | - Jing Liu
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02129, USA
| | - Yevgeny Berdichevsky
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA.,Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
16
|
Avaliani N, Andersson M, Runegaard AH, Woldbye D, Kokaia M. DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue. Gene Ther 2016; 23:760-766. [PMID: 27416078 DOI: 10.1038/gt.2016.56] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Epilepsy is a neurological disorder with a prevalence of ≈1% of general population. Available antiepileptic drugs (AEDs) have multiple side effects and are ineffective in 30% of patients. Therefore, development of effective treatment strategies is highly needed, requiring drug-screening models that are relevant and reliable. We investigated novel chemogenetic approach, using DREADDs (designer receptors exclusively activated by designer drugs) as possible inhibitor of epileptiform activity in organotypic hippocampal slice cultures (OHSCs). The OHSCs are characterized by increased overall excitability and closely resemble features of human epileptic tissue. Studies suggest that chemically induced epileptiform activity in rat OHSCs is pharmacoresistant to most of AEDs. However, high-frequency electric stimulus train-induced bursting (STIB) in OHSCs is responsive to carbamazepine and phenytoin. We investigated whether inhibitory DREADD, hM4Di, would be effective in suppressing STIB in OHSC. hM4Di is a mutated muscarinic receptor selectively activated by otherwise inert clozapine-N-oxide, which leads to hyperpolarization in neurons. We demonstrated that this hyperpolarization effectively suppresses STIB in mouse OHSCs. As we also found that STIB in mouse OHSCs is resistant to common AED, valproic acid, collectively our findings suggest that DREADD-based strategy may be effective in suppressing epileptiform activity in a pharamcoresitant epileptic brain tissue.
Collapse
Affiliation(s)
- N Avaliani
- Epilepsy Centre, Experimental Epilepsy Group, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - M Andersson
- Epilepsy Centre, Experimental Epilepsy Group, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - A H Runegaard
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - M Kokaia
- Epilepsy Centre, Experimental Epilepsy Group, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
17
|
Liu J, Pan L, Cheng X, Berdichevsky Y. Perfused drop microfluidic device for brain slice culture-based drug discovery. Biomed Microdevices 2016; 18:46. [PMID: 27194028 PMCID: PMC5563980 DOI: 10.1007/s10544-016-0073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Living slices of brain tissue are widely used to model brain processes in vitro. In addition to basic neurophysiology studies, brain slices are also extensively used for pharmacology, toxicology, and drug discovery research. In these experiments, high parallelism and throughput are critical. Capability to conduct long-term electrical recording experiments may also be necessary to address disease processes that require protein synthesis and neural circuit rewiring. We developed a novel perfused drop microfluidic device for use with long term cultures of brain slices (organotypic cultures). Slices of hippocampus were placed into wells cut in polydimethylsiloxane (PDMS) film. Fluid level in the wells was hydrostatically controlled such that a drop was formed around each slice. The drops were continuously perfused with culture medium through microchannels. We found that viable organotypic hippocampal slice cultures could be maintained for at least 9 days in vitro. PDMS microfluidic network could be readily integrated with substrate-printed microelectrodes for parallel electrical recordings of multiple perfused organotypic cultures on a single MEA chip. We expect that this highly scalable perfused drop microfluidic device will facilitate high-throughput drug discovery and toxicology.
Collapse
Affiliation(s)
- Jing Liu
- Department of Electrical and Computer Engineering, Lehigh University, 111 Research Dr. D-320, Bethlehem, PA, 18015, USA
| | - Liping Pan
- Materials Science and Engineering Department, Lehigh University, Bethlehem, PA, 18015, USA
| | - Xuanhong Cheng
- Materials Science and Engineering Department, Lehigh University, Bethlehem, PA, 18015, USA
- Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, USA
| | - Yevgeny Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, 111 Research Dr. D-320, Bethlehem, PA, 18015, USA.
- Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
18
|
Abstract
Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree) or sends out (out-degree). To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series) and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts) to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to which a neuron modifies incoming information streams depends on its topological location in the surrounding functional network. We recorded the electrical activity of hundreds of neurons simultaneously in brain tissue from mice and we analyzed these signals using state-of-the-art tools from information theory. These tools allowed us to ascertain which neurons were transmitting information to other neurons and to characterize the computations performed by neurons using the inputs they received from two or more other neurons. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to be recipients of information from neurons with a large number of outgoing connections. Interestingly, the number of incoming connections to a neuron was not related to the amount of information that neuron computed. To better understand these results, we built a network model to match the data. Unexpectedly, the model also maximized information transfer in the presence of network-wide correlations. This suggested a way that networks of cortical neurons could deal with common random background input. These results are the first to show that the amount of information computed by a neuron depends on where it is located in the surrounding network.
Collapse
|
19
|
Llorens-Martín M, Rábano A, Ávila J. The Ever-Changing Morphology of Hippocampal Granule Neurons in Physiology and Pathology. Front Neurosci 2016; 9:526. [PMID: 26834550 PMCID: PMC4717329 DOI: 10.3389/fnins.2015.00526] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022] Open
Abstract
Newborn neurons are continuously added to the hippocampal dentate gyrus throughout adulthood. In this review, we analyze the maturational stages that newborn granule neurons go through, with a focus on their unique morphological features during each stage under both physiological and pathological circumstances. In addition, the influence of deleterious (such as schizophrenia, stress, Alzheimer's disease, seizures, stroke, inflammation, dietary deficiencies, or the consumption of drugs of abuse or toxic substances) and neuroprotective (physical exercise and environmental enrichment) stimuli on the maturation of these cells will be examined. Finally, the regulation of this process by proteins involved in neurodegenerative and neurological disorders such as Glycogen synthase kinase 3β, Disrupted in Schizophrenia 1 (DISC-1), Glucocorticoid receptor, pro-inflammatory mediators, Presenilin-1, Amyloid precursor protein, Cyclin-dependent kinase 5 (CDK5), among others, will be evaluated. Given the recently acquired relevance of the dendritic branch as a functional synaptic unit required for memory storage, a full understanding of the morphological alterations observed in newborn neurons may have important consequences for the prevention and treatment of the cognitive and affective alterations that evolve in conjunction with impaired adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- María Llorens-Martín
- Molecular Neurobiology, Function of Microtubular Proteins, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid)Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Instituto de Salud Carlos III)Madrid, Spain
| | - Alberto Rábano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Instituto de Salud Carlos III)Madrid, Spain; Neuropathology Department, CIEN FoundationMadrid, Spain
| | - Jesús Ávila
- Molecular Neurobiology, Function of Microtubular Proteins, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid)Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Instituto de Salud Carlos III)Madrid, Spain
| |
Collapse
|
20
|
Avaliani N, Sørensen AT, Ledri M, Bengzon J, Koch P, Brüstle O, Deisseroth K, Andersson M, Kokaia M. Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors. Stem Cells 2015; 32:3088-98. [PMID: 25183299 DOI: 10.1002/stem.1823] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/14/2014] [Indexed: 01/03/2023]
Abstract
Reprogramming of somatic cells into pluripotency stem cell state has opened new opportunities in cell replacement therapy and disease modeling in a number of neurological disorders. It still remains unknown, however, to what degree the grafted human-induced pluripotent stem cells (hiPSCs) differentiate into a functional neuronal phenotype and if they integrate into the host circuitry. Here, we present a detailed characterization of the functional properties and synaptic integration of hiPSC-derived neurons grafted in an in vitro model of hyperexcitable epileptic tissue, namely organotypic hippocampal slice cultures (OHSCs), and in adult rats in vivo. The hiPSCs were first differentiated into long-term self-renewing neuroepithelial stem (lt-NES) cells, which are known to form primarily GABAergic neurons. When differentiated in OHSCs for 6 weeks, lt-NES cell-derived neurons displayed neuronal properties such as tetrodotoxin-sensitive sodium currents and action potentials (APs), as well as both spontaneous and evoked postsynaptic currents, indicating functional afferent synaptic inputs. The grafted cells had a distinct electrophysiological profile compared to host cells in the OHSCs with higher input resistance, lower resting membrane potential, and APs with lower amplitude and longer duration. To investigate the origin of synaptic afferents to the grafted lt-NES cell-derived neurons, the host neurons were transduced with Channelrhodopsin-2 (ChR2) and optogenetically activated by blue light. Simultaneous recordings of synaptic currents in grafted lt-NES cell-derived neurons using whole-cell patch-clamp technique at 6 weeks after grafting revealed limited synaptic connections from host neurons. Longer differentiation times, up to 24 weeks after grafting in vivo, revealed more mature intrinsic properties and extensive synaptic afferents from host neurons to the lt-NES cell-derived neurons, suggesting that these cells require extended time for differentiation/maturation and synaptogenesis. However, even at this later time point, the grafted cells maintained a higher input resistance. These data indicate that grafted lt-NES cell-derived neurons receive ample afferent input from the host brain. Since the lt-NES cells used in this study show a strong propensity for GABAergic differentiation, the host-to-graft synaptic afferents may facilitate inhibitory neurotransmitter release, and normalize hyperexcitable neuronal networks in brain diseases, for example, such as epilepsy.
Collapse
Affiliation(s)
- Natalia Avaliani
- Epilepsy Center, Institute of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Epileptogenesis is a chronic process that can be triggered by genetic or acquired factors, and that can continue long after epilepsy diagnosis. In 2015, epileptogenesis is not a treatment indication, and there are no therapies available in clinic to treat individuals at risk of epileptogenesis. However, thanks to active research, a large number of animal models have become available for search of molecular mechanisms of epileptogenesis. The first glimpses of treatment targets and biomarkers that could be developed to become useful in clinic are in sight. However, the heterogeneity of the epilepsy condition, and the dynamics of molecular changes over the course of epileptogenesis remain as challenges to overcome.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland Department of Neurology, Kuopio University Hospital, FI-70211 Kuopio, Finland
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
22
|
What Elements of the Inflammatory System Are Necessary for Epileptogenesis In Vitro? eNeuro 2015; 2:eN-NWR-0027-14. [PMID: 26464976 PMCID: PMC4596089 DOI: 10.1523/eneuro.0027-14.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
The inflammatory and central nervous systems share many signaling molecules, compromising the utility of traditional pharmacological and knockout approaches in defining the role of inflammation in CNS disorders such as epilepsy. In an in vitro model of post-traumatic epileptogenesis, the development of epilepsy proceeded in the absence of the systemic inflammatory system, and was unaffected by removal of cellular mediators of inflammation, including macrophages and T-lymphocytes. Epileptogenesis in vivo can be altered by manipulation of molecules such as cytokines and complement that subserve intercellular signaling in both the inflammatory and central nervous systems. Because of the dual roles of these signaling molecules, it has been difficult to precisely define the role of systemic inflammation in epileptogenesis. Organotypic hippocampal brain slices can be maintained in culture independently of the systemic inflammatory system, and the rapid course of epileptogenesis in these cultures supports the idea that inflammation is not necessary for epilepsy. However, this preparation still retains key cellular inflammatory mediators. Here, we found that rodent hippocampal organotypic slice cultures depleted of T lymphocytes and microglia developed epileptic activity at essentially the same rate and to similar degrees of severity as matched control slice cultures. These data support the idea that although the inflammatory system, neurons, and glia share key intercellular signaling molecules, neither systemic nor CNS-specific cellular elements of the immune and inflammatory systems are necessary components of epileptogenesis.
Collapse
|
23
|
Timme N, Ito S, Myroshnychenko M, Yeh FC, Hiolski E, Hottowy P, Beggs JM. Multiplex networks of cortical and hippocampal neurons revealed at different timescales. PLoS One 2014; 9:e115764. [PMID: 25536059 PMCID: PMC4275261 DOI: 10.1371/journal.pone.0115764] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022] Open
Abstract
Recent studies have emphasized the importance of multiplex networks--interdependent networks with shared nodes and different types of connections--in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy--an information theoretic quantity that can be used to measure linear and nonlinear interactions--to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons ("hubs") were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons.
Collapse
Affiliation(s)
- Nicholas Timme
- Department of Physics, Indiana University, Bloomington, Indiana, 47405, United States of America
| | - Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, 95064, United States of America
| | - Maxym Myroshnychenko
- Program in Neuroscience, Indiana University, Bloomington, Indiana, 47405, United States of America
| | - Fang-Chin Yeh
- Department of Physics, Indiana University, Bloomington, Indiana, 47405, United States of America
| | - Emma Hiolski
- Department of Microbiology & Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, 95064, United States of America
| | - Pawel Hottowy
- Physics and Applied Computer Science, AGH University of Science and Technology, 30–059, Krakow, Poland
| | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, Indiana, 47405, United States of America
| |
Collapse
|
24
|
Proix T, Bartolomei F, Chauvel P, Bernard C, Jirsa VK. Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. J Neurosci 2014; 34:15009-21. [PMID: 25378166 PMCID: PMC6608363 DOI: 10.1523/jneurosci.1570-14.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 11/21/2022] Open
Abstract
Brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other brain regions and propagate activity through large brain networks, which comprise brain regions that are not necessarily epileptogenic. The identification of the EZ is crucial for candidates for neurosurgery and requires unambiguous criteria that evaluate the degree of epileptogenicity of brain regions. To obtain such criteria and investigate the mechanisms of seizure recruitment and propagation, we develop a mathematical framework of coupled neural populations, which can interact via signaling through a slow permittivity variable. The permittivity variable captures effects evolving on slow timescales, including extracellular ionic concentrations and energy metabolism, with time delays of up to seconds as observed clinically. Our analyses provide a set of indices quantifying the degree of epileptogenicity and predict conditions, under which seizures propagate to nonepileptogenic brain regions, explaining the responses to intracerebral electric stimulation in epileptogenic and nonepileptogenic areas. In conjunction, our results provide guidance in the presurgical evaluation of epileptogenicity based on electrographic signatures in intracerebral electroencephalograms.
Collapse
Affiliation(s)
- Timothée Proix
- Aix Marseille Université, Institut de Neurosciences des Systèmes, 13005 Marseille, France and INSERM, UMR 1106, 13005 Marseille, France and
| | - Fabrice Bartolomei
- Aix Marseille Université, Institut de Neurosciences des Systèmes, 13005 Marseille, France and INSERM, UMR 1106, 13005 Marseille, France and Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, 13005 Marseille, France
| | - Patrick Chauvel
- Aix Marseille Université, Institut de Neurosciences des Systèmes, 13005 Marseille, France and INSERM, UMR 1106, 13005 Marseille, France and Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, 13005 Marseille, France
| | - Christophe Bernard
- Aix Marseille Université, Institut de Neurosciences des Systèmes, 13005 Marseille, France and INSERM, UMR 1106, 13005 Marseille, France and
| | - Viktor K Jirsa
- Aix Marseille Université, Institut de Neurosciences des Systèmes, 13005 Marseille, France and INSERM, UMR 1106, 13005 Marseille, France and
| |
Collapse
|
25
|
Ito S, Yeh FC, Hiolski E, Rydygier P, Gunning DE, Hottowy P, Timme N, Litke AM, Beggs JM. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures. PLoS One 2014; 9:e105324. [PMID: 25126851 PMCID: PMC4134292 DOI: 10.1371/journal.pone.0105324] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022] Open
Abstract
Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30–80 Hz) and beta (12–30 Hz) range) showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100–1000 Hz). The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| | - Fang-Chin Yeh
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Emma Hiolski
- Microbiology and Environmental Toxicology Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Przemyslaw Rydygier
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Deborah E. Gunning
- Institute of Photonics, University of Strathclyde, Glasgow, United Kingdom
| | - Pawel Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Nicholas Timme
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Alan M. Litke
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
26
|
Krook-Magnuson E, Ledri M, Soltesz I, Kokaia M. How might novel technologies such as optogenetics lead to better treatments in epilepsy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:319-36. [PMID: 25012388 DOI: 10.1007/978-94-017-8914-1_26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent technological advances open exciting avenues for improving the understanding of mechanisms in a broad range of epilepsies. This chapter focuses on the development of optogenetics and on-demand technologies for the study of epilepsy and the control of seizures. Optogenetics is a technique which, through cell-type selective expression of light-sensitive proteins called opsins, allows temporally precise control via light delivery of specific populations of neurons. Therefore, it is now possible not only to record interictal and ictal neuronal activity, but also to test causality and identify potential new therapeutic approaches. We first discuss the benefits and caveats to using optogenetic approaches and recent advances in optogenetics related tools. We then turn to the use of optogenetics, including on-demand optogenetics in the study of epilepsies, which highlights the powerful potential of optogenetics for epilepsy research.
Collapse
Affiliation(s)
- Esther Krook-Magnuson
- Department of Anatomy and Neurobiology, University of California, 192 Irvine Hall, Irvine, CA, 92697, USA,
| | | | | | | |
Collapse
|
27
|
He S, Bausch SB. Synaptic plasticity in glutamatergic and GABAergic neurotransmission following chronic memantine treatment in an in vitro model of limbic epileptogenesis. Neuropharmacology 2013; 77:379-86. [PMID: 24184417 DOI: 10.1016/j.neuropharm.2013.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 12/12/2022]
Abstract
Chronic N-methyl-D-aspartate receptor (NMDAR) blockade with high affinity competitive and uncompetitive antagonists can lead to seizure exacerbation, presumably due to an imbalance in glutamatergic and GABAergic transmission. Acute administration of the moderate affinity NMDAR antagonist memantine in vivo has been associated with pro- and anticonvulsive properties. Chronic treatment with memantine can exacerbate seizures. Therefore, we hypothesized that chronic memantine treatment would increase glutamatergic and decrease GABAergic transmission, similar to high affinity competitive and uncompetitive antagonists. To test this hypothesis, organotypic hippocampal slice culture were treated for 17-21 days with memantine and then subjected to electrophysiological recordings. Whole-cell recordings from dentate granule cells revealed that chronic memantine treatment slightly, but significantly increased sEPSC frequency, mEPSC amplitude and mEPSC charge transfer, consistent with minimally increased glutamatergic transmission. Chronic memantine treatment also increased both sIPSC and mIPSC frequency and amplitude, suggestive of increased GABAergic transmission. Results suggest that a simple imbalance between glutamatergic and GABAergic neurotransmission may not underlie memantine's ictogenic properties. That said, glutamatergic and GABAergic transmission were assayed independently of one another in the current study. More complex interactions between glutamatergic and GABAergic transmission may prevail under conditions of intact circuitry.
Collapse
Affiliation(s)
- Shuijin He
- Graduate Program in Neuroscience, Uniformed Services University, School of Medicine, Bethesda, MD 20814, USA
| | - Suzanne B Bausch
- Department of Pharmacology, Uniformed Services University, School of Medicine, Bethesda, MD 20814, USA; Graduate Program in Neuroscience, Uniformed Services University, School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
28
|
Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci 2013; 14:18284-318. [PMID: 24013377 PMCID: PMC3794781 DOI: 10.3390/ijms140918284] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 01/19/2023] Open
Abstract
This article describes current experimental models of status epilepticus (SE) and neuronal injury for use in the screening of new therapeutic agents. Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. SE is an emergency condition associated with continuous seizures lasting more than 30 min. It causes significant mortality and morbidity. SE can cause devastating damage to the brain leading to cognitive impairment and increased risk of epilepsy. Benzodiazepines are the first-line drugs for the treatment of SE, however, many people exhibit partial or complete resistance due to a breakdown of GABA inhibition. Therefore, new drugs with neuroprotective effects against the SE-induced neuronal injury and degeneration are desirable. Animal models are used to study the pathophysiology of SE and for the discovery of newer anticonvulsants. In SE paradigms, seizures are induced in rodents by chemical agents or by electrical stimulation of brain structures. Electrical stimulation includes perforant path and self-sustaining stimulation models. Pharmacological models include kainic acid, pilocarpine, flurothyl, organophosphates and other convulsants that induce SE in rodents. Neuronal injury occurs within the initial SE episode, and animals exhibit cognitive dysfunction and spontaneous seizures several weeks after this precipitating event. Current SE models have potential applications but have some limitations. In general, the experimental SE model should be analogous to the human seizure state and it should share very similar neuropathological mechanisms. The pilocarpine and diisopropylfluorophosphate models are associated with prolonged, diazepam-insensitive seizures and neurodegeneration and therefore represent paradigms of refractory SE. Novel mechanism-based or clinically relevant models are essential to identify new therapies for SE and neuroprotective interventions.
Collapse
|
29
|
Hall D, Kuhlmann L. Mechanisms of seizure propagation in 2-dimensional centre-surround recurrent networks. PLoS One 2013; 8:e71369. [PMID: 23967201 PMCID: PMC3742758 DOI: 10.1371/journal.pone.0071369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/29/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding how seizures spread throughout the brain is an important problem in the treatment of epilepsy, especially for implantable devices that aim to avert focal seizures before they spread to, and overwhelm, the rest of the brain. This paper presents an analysis of the speed of propagation in a computational model of seizure-like activity in a 2-dimensional recurrent network of integrate-and-fire neurons containing both excitatory and inhibitory populations and having a difference of Gaussians connectivity structure, an approximation to that observed in cerebral cortex. In the same computational model network, alternative mechanisms are explored in order to simulate the range of seizure-like activity propagation speeds (0.1-100 mm/s) observed in two animal-slice-based models of epilepsy: (1) low extracellular [Formula: see text], which creates excess excitation and (2) introduction of gamma-aminobutyric acid (GABA) antagonists, which reduce inhibition. Moreover, two alternative connection topologies are considered: excitation broader than inhibition, and inhibition broader than excitation. It was found that the empirically observed range of propagation velocities can be obtained for both connection topologies. For the case of the GABA antagonist model simulation, consistent with other studies, it was found that there is an effective threshold in the degree of inhibition below which waves begin to propagate. For the case of the low extracellular [Formula: see text] model simulation, it was found that activity-dependent reductions in inhibition provide a potential explanation for the emergence of slowly propagating waves. This was simulated as a depression of inhibitory synapses, but it may also be achieved by other mechanisms. This work provides a localised network understanding of the propagation of seizures in 2-dimensional centre-surround networks that can be tested empirically.
Collapse
Affiliation(s)
- David Hall
- Victoria Research Labs, National ICT Australia, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Levin Kuhlmann
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Gafurov B, Bausch SB. GABAergic transmission facilitates ictogenesis and synchrony between CA3, hilus, and dentate gyrus in slices from epileptic rats. J Neurophysiol 2013; 110:441-55. [PMID: 23615549 DOI: 10.1152/jn.00679.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The impact of regional hippocampal interactions and GABAergic transmission on ictogenesis remain unclear. Cortico-hippocampal slices from pilocarpine-treated epileptic rats were compared with controls to investigate associations between seizurelike events (SLE), GABAergic transmission, and neuronal synchrony within and between cortico-hippocampal regions. Multielectrode array recordings revealed more prevalent hippocampal SLE in epileptic tissue when excitatory transmission was enhanced and GABAergic transmission was intact [removal of Mg(2+) (0Mg)] than when GABAergic transmission was blocked [removal of Mg(2+) + bicuculline methiodide (0Mg+BMI)]. When activity within individual regions was analyzed, spectral and temporal slow oscillation/SLE correlations and cross-correlations were highest within the hilus of epileptic tissue during SLE but were similar in 0Mg and 0Mg+BMI. GABAergic facilitation of spectral "slow" oscillation and ripple correlations was most prominent within CA3 of epileptic tissue during SLE. When activity between regions was analyzed, slow oscillation and ripple coherence was highest between the hilus and dentate gyrus as well as between the hilus and CA3 of epileptic tissue during SLE and was significantly higher in 0Mg than 0Mg+BMI. High 0Mg-induced SLE cross-correlations between the hilus and dentate gyrus as well as between the hilus and CA3 were reduced or abolished in 0Mg+BMI. SLE cross-correlation lag measurements provided evidence for a monosynaptic connection from the hilus to the dentate gyrus during SLE. Findings implicate the hilus as an oscillation generator, whose impact on other cortico-hippocampal regions is mediated by GABAergic transmission. Data also suggest that GABAA receptor-mediated transmission facilitates back-propagation from CA3/hilus to the dentate gyrus and that this back-propagation augments SLE in epileptic hippocampus.
Collapse
Affiliation(s)
- Boris Gafurov
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD 20814-4799, USA
| | | |
Collapse
|
31
|
He S, Shao LR, Wang Y, Bausch SB. Synaptic and extrasynaptic plasticity in glutamatergic circuits involving dentate granule cells following chronic N-methyl-D-aspartate receptor inhibition. J Neurophysiol 2013; 109:1535-47. [PMID: 23255721 PMCID: PMC3602941 DOI: 10.1152/jn.00667.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/12/2012] [Indexed: 01/25/2023] Open
Abstract
Chronic global N-methyl-d-aspartate receptor (NMDAR) blockade leads to changes in glutamatergic transmission. The impact of more subunit-selective NMDAR inhibition on glutamatergic circuits remains incomplete. To this end, organotypic hippocampal slice cultures were treated for 17-21 days with the high-affinity competitive antagonist d-aminophosphonovaleric acid (d-APV), the allosteric GluN2B-selective antagonist Ro25-6981, or the newer competitive GluN2A-preferring antagonist NVP-AAM077. Electrophysiological recordings from dentate granule cells revealed that chronic d-APV treatment increased, whereas chronic Ro25-6981 reduced, epileptiform event-associated large-amplitude spontaneous excitatory postsynaptic currents (sEPSC) compared with all other treatment groups, consistent with opposite effects on glutamatergic networks. Presynaptically, chronic d-APV or Ro25-6981 increased small-amplitude sEPSCs and AMPA/kainate receptor-mediated miniature EPSCs (mEPSCAMPAR) frequency. Chronic d-APV or NVP-AAM077, but not Ro25-6981, increased putative vGlut1-positive glutamatergic synapses. Postsynaptically, chronic d-APV dramatically increased mEPSCAMPAR and profoundly decreased NMDAR-mediated mEPSC (mEPSCNMDAR) measures, suggesting increased AMPAR/NMDAR ratio. Ro25-6981 decreased mEPSCAMPAR charge transfer and modestly decreased mEPSCNMDAR frequency and decay, suggesting downward scaling of AMPAR and NMDAR function without dramatically altering AMPAR/NMDAR ratio. Extrasynaptically, threo-β-benzyloxyaspartate-enhanced "tonic" NMDAR current amplitude and activated channel number estimates were significantly increased only by chronic Ro25-6981. For intrinsic excitability, action potential threshold was slightly more negative following chronic d-APV or NVP-AAM077. The predominant pro-excitatory effects of chronic d-APV are consistent with increased glutamatergic transmission and network excitability. The minor effects of chronic NVP-AAM077 on action potential threshold and synapse number are consistent with minimal effects on circuit function. The chronic Ro25-6981-induced downward scaling of synaptic AMPAR and NMDAR function is consistent with decreased postsynaptic glutamate receptors and reduced network excitability.
Collapse
Affiliation(s)
- Shuijin He
- Graduate Program in Neuroscience, Uniformed Services University School of Medicine, Bethesda, Maryland 20814-4799, USA
| | | | | | | |
Collapse
|
32
|
Simonato M, Löscher W, Cole AJ, Dudek FE, Engel J, Kaminski RM, Loeb JA, Scharfman H, Staley KJ, Velíšek L, Klitgaard H. Finding a better drug for epilepsy: preclinical screening strategies and experimental trial design. Epilepsia 2012; 53:1860-7. [PMID: 22708847 DOI: 10.1111/j.1528-1167.2012.03541.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antiepileptic drugs (AEDs) introduced during the past two decades have provided several benefits: they offered new treatment options for symptomatic treatment of seizures, improved ease of use and tolerability, and lowered risk for hypersensitivity reactions and detrimental drug-drug interactions. These drugs, however, neither attenuated the problem of drug-refractory epilepsy nor proved capable of preventing or curing the disease. Therefore, new preclinical screening strategies are needed to identify AEDs that target these unmet medical needs. New therapies may derive from novel targets identified on the basis of existing hypotheses for drug-refractory epilepsy and the biology of epileptogenesis; from research on genetics, transcriptomics, and epigenetics; and from mechanisms relevant for other therapy areas. Novel targets should be explored using new preclinical screening strategies, and new technologies should be used to develop medium- to high-throughput screening models. In vivo testing of novel drugs should be performed in models mimicking relevant aspects of drug refractory epilepsy and/or epileptogenesis. To minimize the high attrition rate associated with drug development, which arises mainly from a failure to demonstrate sufficient clinical efficacy of new treatments, it is important to define integrated strategies for preclinical screening and experimental trial design. An important tool will be the discovery and implementation of relevant biomarkers that will facilitate a continuum of proof-of-concept approaches during early clinical testing to rapidly confirm or reject preclinical findings, and thereby lower the risk of the overall development effort. In this review, we overview some of the issues related to these topics and provide examples of new approaches that we hope will be more successful than those used in the past.
Collapse
Affiliation(s)
- Michele Simonato
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Ferrara, and National Institute of Neuroscience, via Fossato di Mortara 17-19, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
He S, Shao LR, Rittase WB, Bausch SB. Increased Kv1 channel expression may contribute to decreased sIPSC frequency following chronic inhibition of NR2B-containing NMDAR. Neuropsychopharmacology 2012; 37:1338-56. [PMID: 22218089 PMCID: PMC3327840 DOI: 10.1038/npp.2011.320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/21/2011] [Accepted: 11/29/2011] [Indexed: 12/20/2022]
Abstract
Numerous studies have documented the effects of chronic N-methyl-D-aspartate receptor (NMDAR) blockade on excitatory circuits, but the effects on inhibitory circuitry are not well studied. NR2A- and NR2B-containing NMDARs play differential roles in physiological processes, but the consequences of chronic NR2A- or NR2B-containing NMDAR inhibition on glutamatergic and GABAergic neurotransmission are unknown. We investigated altered GABAergic neurotransmission in dentate granule cells and interneurons following chronic treatment with the NR2B-selective antagonist, Ro25,6981, the NR2A-prefering antagonist, NVP-AAM077, or the non-subunit-selective NMDAR antagonist, D-APV, in organotypic hippocampal slice cultures. Electrophysiological recordings revealed large reductions in spontaneous inhibitory postsynaptic current (sIPSC) frequency in both granule cells and interneurons following chronic Ro25,6981 treatment, which was associated with minimally altered sIPSC amplitude, miniature inhibitory postsynaptic current (mIPSC) frequency, and mIPSC amplitude, suggesting diminished action potential-dependent GABA release. Chronic NVP-AAM077 or D-APV treatment had little effect on these measures. Reduced sIPSC frequency did not arise from downregulated GABA(A)R, altered excitatory or inhibitory drive to interneurons, altered interneuron membrane properties, increased failure rate, decreased action potential-dependent release probability, or mGluR/GABA(B) receptor modulation of GABA release. However, chronic Ro25,6981-mediated reductions in sIPSC frequency were occluded by the K+ channel blockers, dendrotoxin, margatoxin, and agitoxin, but not dendrotoxin-K or XE991. Immunohistochemistry also showed increased Kv1.2, Kv1.3, and Kv1.6 in the dentate molecular layer following chronic Ro25,6981 treatment. Our findings suggest that increased Kv1 channel expression/function contributed to diminished action potential-dependent GABA release following chronic NR2B-containing NMDAR inhibition and that these Kv1 channels may be heteromeric complexes containing Kv1.2, Kv1.3, and Kv1.6.
Collapse
Affiliation(s)
- Shuijin He
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
- Graduate Program in Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Li-Rong Shao
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - W Bradley Rittase
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Suzanne B Bausch
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
- Graduate Program in Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| |
Collapse
|
34
|
An organotypic hippocampal slice culture model of excitotoxic injury induced spontaneous recurrent epileptiform discharges. Brain Res 2010; 1371:110-20. [PMID: 21111720 DOI: 10.1016/j.brainres.2010.11.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 02/01/2023]
Abstract
Stroke is the major cause of acquired epilepsy in the adult population. The mechanisms of ischemia-induced epileptogenesis are not completely understood, but glutamate is associated with both ischemia-induced injury and epileptogenesis. The objective of this study was to develop an in vitro model of epileptogenesis induced by glutamate injury in organotypic hippocampal slice cultures (OHSCs), as observed in stroke-induced acquired epilepsy. OHSCs were prepared from 1-week-old Sprague-Dawley rat pups. They were exposed to 3.5 mM glutamate for 35 minutes at 21 days in vitro. Field potential recordings and whole-cell current clamp electrophysiology were used to monitor the development of in vitro seizure events up to 19 days after injury. Propidium iodide uptake assays were used to examine acute cell death following injury. Glutamate exposure produced a subset of hippocampal neurons that died acutely and a larger population of injured but surviving neurons. These surviving neurons manifested spontaneous, recurrent epileptiform discharges in neural networks, characterized by paroxysmal depolarizing shifts and high frequency spiking in both field potential and intracellular recordings. This model also exhibited anticonvulsant sensitivity similar to in vivo models. Our study is the first demonstration of a chronic model of acquired epilepsy in OHSCs following a glutamate injury. This in vitro model of glutamate injury-induced epileptogenesis may help develop therapeutic strategies to prevent epileptogenesis after stroke and elucidate some of the mechanisms that underlie stroke-induced epilepsy in a more anatomically intact system.
Collapse
|
35
|
Isaeva E, Lushnikova I, Savrasova A, Skibo G, Holmes GL, Isaev D. Blockade of endogenous neuraminidase leads to an increase of neuronal excitability and activity-dependent synaptogenesis in the rat hippocampus. Eur J Neurosci 2010; 32:1889-96. [PMID: 21044183 DOI: 10.1111/j.1460-9568.2010.07468.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polysialic acids are widely distributed in neuronal tissue. Due to their position on glycoproteins and gangliosides on the outer cell membranes and anionic nature, polysialic acids are involved in multiple cell signaling events. The level of sialylation of the cellular surface is regulated by endogenous neuraminidase (NEU), which catalyses the hydrolysis of terminal sialic acid residues. Using the specific blocker of endogenous NEU, N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (NADNA), we show that downregulation of the endogenous NEU activity causes a significant increase in the level of hippocampal tissue sialylation. Acute application of NADNA increased the firing frequency and amplitude of spontaneous synchronous oscillations, and frequency of multiple unit activity in cultured hippocampal slices. The tonic phase of seizure-like activity in the low-magnesium model of ictogenesis was significantly increased in slices pretreated with NADNA. These data indicate that the degree of synchronization is influenced by the amount of active NEU in cultured hippocampal slices. Pretreatment with NADNA led to an increase of the density of simple and perforated synapses in the hippocampal CA1 stratum radiatum region. Co-incubation of slices with NADNA and high concentrations of calcium eliminated the effect of the NEU blocker on synaptic density, suggesting that synaptogenesis observed following downregulation of the endogenous NEU activity is an activity-dependent process.
Collapse
Affiliation(s)
- Elena Isaeva
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | | | | | | | | | | |
Collapse
|
36
|
Bausch SB, He S, Dong Y. Inverse relationship between seizure expression and extrasynaptic NMDAR function following chronic NMDAR inhibition. Epilepsia 2010; 51 Suppl 3:102-5. [PMID: 20618412 DOI: 10.1111/j.1528-1167.2010.02621.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We showed previously that electrographic seizures involving dentate granule cells in organotypic hippocampal slice cultures were dramatically reduced following chronic treatment with the NR2B-selective antagonist, Ro25,6981, but were increased following chronic treatment with the high-affinity competitive antagonist, D(-)-2-amino-5-phosphonopentanoic acid (D-APV). To begin to investigate the potential mechanisms underlying the differential effects of N-methyl-D-aspartate receptor (NMDAR) antagonists on seizures, electrophysiologic experiments were conducted in dentate granule cells in hippocampal slice cultures treated for the entire 17-21 day culture period with vehicle, Ro25,6981 or D-APV. Initial experiments revealed a lack of an association between miniature excitatory postsynaptic current (mEPSC) measures and seizures suggesting that shifts in mEPSC were unlikely to account for the differential effects of D-APV and Ro25,6981 on seizures. However, the amplitude of tonic NMDAR-mediated currents was reduced in cultures treated chronically with D-APV and dramatically enhanced in cultures treated chronically with Ro25,6981. Because tonic NMDAR currents are mediated primarily by extrasynaptic NMDAR, these data show an inverse relationship between changes in extrasynaptic NMDAR function and alterations in seizure expression.
Collapse
Affiliation(s)
- Suzanne B Bausch
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, Maryland 20814-4799, USA.
| | | | | |
Collapse
|
37
|
Postsynaptic response to stimulation of the Schaffer collaterals with properties similar to those of synaptosomal aspartate release. Brain Res 2009; 1295:13-20. [PMID: 19664606 DOI: 10.1016/j.brainres.2009.07.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 07/17/2009] [Accepted: 07/30/2009] [Indexed: 11/23/2022]
Abstract
Aspartate satisfies all the criteria normally required for identification of a CNS neurotransmitter. Nevertheless, little electrophysiological evidence supports the existence of aspartate transmission. In studies with rat hippocampal synaptosomes, chemically evoked aspartate release differed from glutamate release in its relative sensitivity to increased Ca(2+) concentration outside the presynaptic active zones, inefficient coupling to P/Q-type Ca(2+) channels, sensitivity to KB-R7943, and resistance to native Clostridial toxins. We took advantage of these differences to search for a potential aspartate-mediated response at Schaffer collateral synapses in organotypic hippocampal slice cultures. The slice cultures were pretreated with botulinum neurotoxin C (BoNT/C) to eliminate most of the glutamate release so that an expectedly smaller aspartate-like component of the compound EPSC could be detected by whole cell patch clamp recording. In control cultures, NMDA receptor activation accounted for only 18% of the evoked EPSC and an NR2B-selective antagonist reduced the NMDA receptor-mediated component by only 20%. Block of P/Q-type Ca(2+) channels essentially eliminated the response and 0.1 muM KB-R7943 had no significant effect. In BoNT/C-pretreated cultures, however, NMDA receptor activation accounted for 77% of the evoked EPSC and an NR2B-selective antagonist reduced the NMDA receptor-mediated component by 57%. Block of P/Q-type Ca(2+) channels reduced the response by only 28%, but 0.1 muM KB-R7943 reduced it by 45%. These results suggest that part of the Schaffer collateral synaptic response has pharmacological properties similar to those of synaptosomal aspartate release and may therefore be mediated at least partly by released aspartate.
Collapse
|
38
|
Abstract
The optogenetic approach to gain control over neuronal excitability both in vitro and in vivo has emerged as a fascinating scientific tool to explore neuronal networks, but it also opens possibilities for developing novel treatment strategies for neurologic conditions. We have explored whether such an optogenetic approach using the light-driven halorhodopsin chloride pump from Natronomonas pharaonis (NpHR), modified for mammalian CNS expression to hyperpolarize central neurons, may inhibit excessive hyperexcitability and epileptiform activity. We show that a lentiviral vector containing the NpHR gene under the calcium/calmodulin-dependent protein kinase IIalpha promoter transduces principal cells of the hippocampus and cortex and hyperpolarizes these cells, preventing generation of action potentials and epileptiform activity during optical stimulation. This study proves a principle, that selective hyperpolarization of principal cortical neurons by NpHR is sufficient to curtail paroxysmal activity in transduced neurons and can inhibit stimulation train-induced bursting in hippocampal organotypic slice cultures, which represents a model tissue of pharmacoresistant epilepsy. This study demonstrates that the optogenetic approach may prove useful for controlling epileptiform activity and opens a future perspective to develop it into a strategy to treat epilepsy.
Collapse
|
39
|
Excitotoxic-mediated transcriptional decreases in HCN2 channel function increase network excitability in CA1. Exp Neurol 2009; 219:249-57. [PMID: 19500574 DOI: 10.1016/j.expneurol.2009.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 12/21/2022]
Abstract
Changes in the conductance of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel that mediates Ih are proposed to contribute to increased network excitability. Synchronous neuronal burst activity is a good reflection of network excitability and can be generated in isolated hippocampal slice cultures by removing Mg2+ from the extracellular fluid. We demonstrate that Ih contributes to this activity by increasing both the frequency and duration of bursting events. Changes in HCN channel function are also implicated in altered seizure susceptibility. Short-term application of kainic acid (KA) is known to initiate long lasting changes in neuronal networks that result in seizures, and in slice cultures was found to alter HCN mRNA levels in an isoform and hippocampal sub-region specific manner. These changes correlate with the ability of each sub-region to develop synchronous burst activity following KA that we have previously reported. Specifically, a loss of synchronous activity in the CA3 correlated with an increase in HCN2 mRNA levels that normalized concomitantly with the restoration of CA3 burst activity 7 days post insult. In contrast, in CA1 an increase in synchronous burst duration correlated with a reduction in HCN2 mRNA levels and both changes were still evident for 7 days post insult. Lamotrigine, known to increase Ih, reversed the impact of KA on burst duration in CA1 at both time-points linking a transcriptional reduction in HCN2 function to increased burst duration.
Collapse
|
40
|
Abstract
Homeostatic synaptic plasticity allows neural circuits to function stably despite fluctuations to their inputs. Previous work has shown that excitatory synaptic strength increases globally when neuronal inputs are chronically silenced. A recent paper by Kim and Tsien describes a new type of synapse-specific homeostatic plasticity in which input silencing causes simultaneous strengthening and weakening of different populations of excitatory synapses within a hippocampal network. These seemingly antagonistic homeostatic adaptations maintain synaptic gain and preserve overall network stability by limiting harmful reverberatory bursting, which may underlie epileptic seizures.
Collapse
Affiliation(s)
- Katherine E Deeg
- Department of Neuroscience, Brown University, Box G-LN, Sidney E. Frank Hall for Life Science, 185 Meeting Street, Providence, RI 02912, USA.
| |
Collapse
|
41
|
Cimarosti H, Henley JM. Investigating the mechanisms underlying neuronal death in ischemia using in vitro oxygen-glucose deprivation: potential involvement of protein SUMOylation. Neuroscientist 2008; 14:626-36. [PMID: 19029060 PMCID: PMC3310903 DOI: 10.1177/1073858408322677] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well established that brain ischemia can cause neuronal death via different signaling cascades. The relative importance and interrelationships between these pathways, however, remain poorly understood. Here is presented an overview of studies using oxygen-glucose deprivation of organotypic hippocampal slice cultures to investigate the molecular mechanisms involved in ischemia. The culturing techniques, setup of the oxygen-glucose deprivation model, and analytical tools are reviewed. The authors focus on SUMOylation, a posttranslational protein modification that has recently been implicated in ischemia from whole animal studies as an example of how these powerful tools can be applied and could be of interest to investigate the molecular pathways underlying ischemic cell death.
Collapse
Affiliation(s)
- Helena Cimarosti
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University Walk, University of Bristol, Bristol, UK
| | | |
Collapse
|
42
|
Reid CA, Adams BEL, Myers D, O'Brien TJ, Williams DA. Sub region-specific modulation of synchronous neuronal burst firing after a kainic acid insult in organotypic hippocampal cultures. BMC Neurosci 2008; 9:59. [PMID: 18593482 PMCID: PMC2474631 DOI: 10.1186/1471-2202-9-59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 07/02/2008] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Excitotoxicity occurs in a number of pathogenic states including stroke and epilepsy. The adaptations of neuronal circuits in response to such insults may be expected to play an underlying role in pathogenesis. Synchronous neuronal firing can be induced in isolated hippocampal slices and involves all regions of this structure, thereby providing a measure of circuit activity. The effect of an excitotoxic insult (kainic acid, KA) on Mg2+-free-induced synchronized neuronal firing was tested in organotypic hippocampal culture by measuring extracellular field activity in CA1 and CA3. RESULTS Within 24 hrs of the insult regional specific changes in neuronal firing patterns were evident as: (i) a dramatic reduction in the ability of CA3 to generate firing; and (ii) a contrasting increase in the frequency and duration of synchronized neuronal firing events in CA1. Two distinct processes underlie the increased propensity of CA1 to generate synchronized burst firing; a lack of ability of the CA3 region to 'pace' CA1 resulting in an increased frequency of synchronized events; and a change in the 'intrinsic' properties limited to the CA1 region, which is responsible for increased event duration. Neuronal quantification using NeuN immunoflurescent staining and stereological confocal microscopy revealed no significant cell loss in hippocampal sub regions, suggesting that changes in the properties of neurons within this region were responsible for the KA-mediated excitability changes. CONCLUSION These results provide novel insight into adaptation of hippocampal circuits following excitotoxic injury. KA-mediated disruption of the interplay between CA3 and CA1 clearly increases the propensity to synchronized firing in CA1.
Collapse
Affiliation(s)
- Christopher A Reid
- Department of Physiology, The University of Melbourne, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
43
|
Bausch SB. Potential roles for hyaluronan and CD44 in kainic acid-induced mossy fiber sprouting in organotypic hippocampal slice cultures. Neuroscience 2006; 143:339-50. [PMID: 16949761 DOI: 10.1016/j.neuroscience.2006.07.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/23/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
The most well-documented synaptic rearrangement associated with temporal lobe epilepsy is mossy fiber sprouting (MFS). MFS is a pronounced expansion of granule cell mossy fiber axons into the inner dentate molecular layer. The recurrent excitatory network formed by MFS is hypothesized to play a critical role in epileptogenesis, which is the transformation of the normal brain into one that is prone to recurrent spontaneous seizures. While many studies have focused on the functional consequences of MFS, relatively few have investigated the molecular mechanisms underlying the increased propensity of mossy fibers to invade the inner molecular layer. We hypothesized that changes in two components of the extracellular matrix, hyaluronan and its primary receptor, CD44, contribute to MFS. Hyaluronan contributes to laminar-specificity in the hippocampus and increases in hyaluronan and CD44 are associated with temporal lobe epilepsy. We tested our hypothesis in an in vitro model of MFS using a combination of histological and biochemical approaches. Application of kainic acid (KA) to organotypic hippocampal slice cultures induced robust MFS into the inner dentate molecular layer compared with vehicle-treated controls. Degradation of hyaluronan with hyaluronidase significantly reduced but did not eliminate KA-induced MFS, suggesting that hyaluronan played a permissive role in MFS, but that loss of hyaluronan signaling alone was not sufficient to block mossy fiber reorganization. Comparison of CD44 expression with MFS revealed that when CD44 expression in the molecular layers was high, MFS was minimal and when CD44 expression/function was reduced following KA treatment or with function blocking antibodies, MFS was increased. The time course of KA-induced reductions in CD44 expression was identical to the temporal progression of KA-induced MFS reported previously in hippocampal slice cultures, suggesting that reduced CD44 expression may help promote MFS. Understanding the molecular mechanisms underlying MFS may lead to therapeutic interventions that limit epileptogenesis.
Collapse
Affiliation(s)
- S B Bausch
- Department of Pharmacology, Uniformed Services University, Room C2007, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| |
Collapse
|
44
|
Bausch SB, He S, Petrova Y, Wang XM, McNamara JO. Plasticity of both excitatory and inhibitory synapses is associated with seizures induced by removal of chronic blockade of activity in cultured hippocampus. J Neurophysiol 2006; 96:2151-67. [PMID: 16790597 DOI: 10.1152/jn.00355.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One factor common to many neurological insults that can lead to acquired epilepsy is a loss of afferent neuronal input. Neuronal activity is one cellular mechanism implicated in transducing deafferentation into epileptogenesis. Therefore the effects of chronic activity blockade on seizure susceptibility and its underlying mechanisms were examined in organotypic hippocampal slice cultures treated chronically with the sodium channel blocker, tetrodotoxin (TTX), or the N-methyl-D-aspartate receptor (NMDAR) antagonist, D-2-amino-5-phosphonovaleric acid (D-APV). Granule cell field potential recordings in physiological buffer revealed spontaneous electrographic seizures in 83% of TTX-, 9% of D-APV-, but 0% of vehicle-treated cultures. TTX-induced seizures were not associated with membrane property alterations that would elicit granule cell hyperexcitability. Seizures were blocked by glutamate receptor antagonists, suggesting that plasticity in excitatory synaptic circuits contributed to seizures. The morphology of granule cells and their mossy fiber axons remained largely unchanged, and the number of synapses onto granule cells measured immunohistochemically was not increased in TTX- or D-APV-treated cultures. However, voltage-clamp recordings revealed that miniature excitatory postsynaptic current frequency and kinetics were increased and miniature inhibitory postsynaptic current kinetics were decreased in D-APV- and TTX-treated cultures compared with vehicle. Changes were more profound and qualitatively different in TTX- compared with D-APV-treated cultures, consistent with the dramatic effects of TTX treatment on seizure expression. We propose that chronic blockade of action potentials by TTX induces homeostatic responses including plasticity of both excitatory and inhibitory synapses. Removal of TTX unmasks the impact of these synaptic plasticities on local circuit excitability, resulting in spontaneous seizures.
Collapse
Affiliation(s)
- Suzanne B Bausch
- Department of Pharmacology, Uniformed Services University, Bethesda, MD 20814-4799, USA.
| | | | | | | | | |
Collapse
|
45
|
Sadgrove MP, Laskowski A, Gray WP. Examination of granule layer cell count, cell density, and single-pulse brdu incorporation in rat organotypic hippocampal slice cultures with respect to culture medium, septotemporal position, and time in vitro. J Comp Neurol 2006; 497:397-415. [PMID: 16736467 DOI: 10.1002/cne.21000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adult neurogenesis in the dentate gyrus is assuming an increasingly important role in supporting hippocampal-dependent learning and the modulation of mood and anxiety. Moreover, injury to the developing postnatal dentate gyrus has profound effects on neurogenesis and hippocampal learning throughout life. Organotypic hippocampal slice cultures represent an attractive model for studying neurogenesis both in the early postnatal and adult hippocampus, as they retain much of their anatomical and functional circuitry in vitro. Ongoing neurogenesis has been recently demonstrated in organotypic hippocampal slice cultures. However, cell proliferation, one of the critical components of neurogenesis, has yet to be characterized in this culture system. We examined single-pulse S-phase bromo-deoxyuridine (BrdU) labeling in the dentate granule layer with respect to the septotemporal position of origin of the slice culture, the medium the cultures were grown in, and the time the cultures were maintained in vitro up to 14 days, when they are believed to have matured to a near adult state. Using single 10-microm sections through a culture as our reference volume, we report significant effects of septotemporal position on the number of granule layer cells and the number of cells in S-phase, as estimated by short-survival (2 hours) BrdU studies. We report a declining rate of BrdU incorporation, evidence of significant structural changes within the granule cell layer, and differences in cell death between culture media over the first 14 days in vitro. We report caution with the use of BrdU cell density and changes in cell number to indirectly estimate proliferation.
Collapse
Affiliation(s)
- Matthew P Sadgrove
- Division of Clinical Neurosciences, Southampton Neurosciences Group, University of Southampton, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
46
|
Mielke JG, Comas T, Woulfe J, Monette R, Chakravarthy B, Mealing GAR. Cytoskeletal, synaptic, and nuclear protein changes associated with rat interface organotypic hippocampal slice culture development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:275-86. [PMID: 16271399 DOI: 10.1016/j.devbrainres.2005.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/27/2022]
Abstract
Although organotypic hippocampal slice cultures (OHSCs) are used to study function within the hippocampus, the effect of maintenance in vitro upon protein expression is not fully understood. Therefore, we examined developmental changes in cultures prepared from P8 rats and maintained on porous membranes between medium and atmosphere. Between 7 and 28 days following explantation, altered hippocampal morphology could not be detected despite a significant decrease in both MAP-2c and a mid-range tau isoform by 21 DIV. During the same period, lower GFAP expression was observed, and GFAP labeling suggested a migration of astrocytes to the slice-atmosphere interface. In contrast, levels of the synaptic proteins synaptophysin and PSD-95 were significantly increased, but GAP-43 was not. The preservation of myelinated axons and synapses, along with glial and endothelial cells, was confirmed by ultrastructural analysis. Furthermore, intranuclear inclusion bodies, which are associated with normal aging in vivo, were detected in the CA1 pyramidal layer in cultures older than 14 DIV. When OHSCs were maintained for approximately 3, 4, and 10 weeks, a rise and then fall in the expression of synaptophysin and, especially, PSD-95 were found, and the biphasic trend paralleled by significant changes in Schaffer collateral-evoked excitatory post-synaptic potentials from CA1 neurons. Our data not only describe changes in cytoskeletal, synaptic, and nuclear proteins related to the maintenance of interface OHSCs, but also emphasize the potential of the model for the study of age-related phenomena within the hippocampus.
Collapse
Affiliation(s)
- John G Mielke
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Rd., Building M-54, Ottawa, Ontario, Canada K1A 0R6.
| | | | | | | | | | | |
Collapse
|
47
|
Holopainen IE. Organotypic Hippocampal Slice Cultures: A Model System to Study Basic Cellular and Molecular Mechanisms of Neuronal Cell Death, Neuroprotection, and Synaptic Plasticity. Neurochem Res 2005; 30:1521-8. [PMID: 16362771 DOI: 10.1007/s11064-005-8829-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
The hippocampus has become one of the most extensively studied areas of the mammalian brain, and its proper function is of utmost importance, particularly for learning and memory. The hippocampus is the most susceptible brain region for damage, and its impaired function has been documented in many human brain diseases, e.g. hypoxia, ischemia, and epilepsy regardless of the age of the affected patients. In addition to experimental in vivo models of these disorders, the investigation of basic anatomical, physiological, and molecular aspects requires an adequate experimental in vitro model, which should meet the requirements for well-preserved representation of various cell types, and functional information processing properties in the hippocampus. In this review, the characteristics of organotypic hippocampal slice cultures (OHCs) together with the main differences between the in vivo and in vitro preparations are first briefly outlined. Thereafter, the use of OHCs in studies focusing on neuron cell death and synaptic plasticity is discussed.
Collapse
Affiliation(s)
- Irma E Holopainen
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FI-20520, Turku, Finland.
| |
Collapse
|
48
|
Lindroos MM, Soini SL, Kukko-Lukjanov TK, Korpi ER, Lovinger D, Holopainen IE. Maturation of cultured hippocampal slices results in increased excitability in granule cells. Int J Dev Neurosci 2005; 23:65-73. [PMID: 15730888 DOI: 10.1016/j.ijdevneu.2004.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 07/09/2004] [Accepted: 08/16/2004] [Indexed: 10/26/2022] Open
Abstract
The preparation of hippocampal slices results in loss of input neurons to dentate granule cells, which leads to the reorganization of their axons, the mossy fibers, and alters their functional properties in long-term cultures, but its temporal aspects in the immature hippocampus are not known. In this study, we have focused on the early phase of this plastic reorganization process by analyzing granule cell function with field potential and whole cell recordings during the in vitro maturation of hippocampal slices (from 1 to 17 days in vitro, prepared from 6 to 7-day-old rats), and their morphology using extracellular biocytin labelling technique. Acute slices from postnatal 14-22-day-old rats were analyzed to detect any differences in the functional properties of granule cells in these two preparations. In field potential recordings, small synaptically-evoked responses were detected at 2 days in vitro, and their amplitude increased during the culture time. Whole cell voltage clamp recordings revealed intensive spontaneous excitatory postsynaptic currents, and the susceptibility to stimulus-evoked bursting increased with culture time. In acutely prepared slices, neither synaptically-evoked responses in field potential recordings nor any bursting in whole cell recordings were detected. The excitatory activity was under the inhibitory control of gamma-aminobutyric acid type A receptor. Extracellularily applied biocytin labelled dentate granule cells, and revealed sprouting and aberrant targeting of mossy fibers in cultured slices. Our results suggest that reorganization of granule cell axons takes place during the early in vitro maturation of hippocampal slices, and contributes to their increased excitatory activity resembling that in the epileptic hippocampus. Cultured immature hippocampal slices could thus serve as an additional in vitro model to elucidate mechanisms of synaptic plasticity and cellular reactivity in response to external damage in the developing hippocampus.
Collapse
Affiliation(s)
- Markus M Lindroos
- Department of Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FIN-20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
49
|
Wang XM, Bausch SB. Effects of distinct classes of N-methyl-D-aspartate receptor antagonists on seizures, axonal sprouting and neuronal loss in vitro: suppression by NR2B-selective antagonists. Neuropharmacology 2005; 47:1008-20. [PMID: 15555635 DOI: 10.1016/j.neuropharm.2004.07.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 05/21/2004] [Accepted: 07/28/2004] [Indexed: 11/15/2022]
Abstract
Chronic treatment with high-affinity, competitive N-methyl-D-aspartate receptor (NMDAR) antagonists can promote axonal sprouting, induce neuronal loss and exacerbate seizures associated with temporal lobe epilepsy. Whether moderate-affinity uncompetitive and NR2B subunit-selective NMDAR antagonists elicit similar responses remains largely unexplored. We directly compared the effects of distinct classes of NMDAR antagonists on electrographic seizures, axonal sprouting and neuronal survival using electrophysiological recordings and histology in hippocampal slice cultures treated chronically with vehicle, D-APV (high-affinity competitive), Ro 25-6981 or ifenprodil (NR2B-selective), or memantine (moderate-affinity uncompetitive). Granule cell layer field potential recordings revealed multiple spontaneous electrographic seizures in vehicle-treated cultures following GABA(A) receptor blockade. Compared to vehicle, seizures were dramatically reduced in cultures treated with NR2B selective antagonists and slightly increased in cultures treated with moderate-affinity uncompetitive or high-affinity competitive antagonists. In general, compared to vehicle, cultures treated with NR2B selective antagonists exhibited less sprouting of granule cell mossy fiber axons (MFS) and more granule cell layer neurons. Cultures treated with high-affinity competitive or moderate-affinity uncompetitive NMDAR antagonists showed increased MFS and fewer granule cell layer neurons. These data reveal differential effects of distinct classes of NMDAR antagonists on seizure expression, axonal sprouting and neuronal survival and suggest an association between these responses.
Collapse
Affiliation(s)
- Xiao-Min Wang
- Department of Pharmacology, Uniformed Services University, Room C2007, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | |
Collapse
|
50
|
Yang J, Houk B, Shah J, Hauser KF, Luo Y, Smith G, Schauwecker E, Barnes GN. Genetic background regulates semaphorin gene expression and epileptogenesis in mouse brain after kainic acid status epilepticus. Neuroscience 2005; 131:853-69. [PMID: 15749340 DOI: 10.1016/j.neuroscience.2004.09.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2004] [Indexed: 10/25/2022]
Abstract
The host response to neural injury, which can include axonal sprouting and synaptic reorganization is likely to be under tight genetic regulatory control at the level of the genome and may be implicated in epileptogenesis. Despite its importance, however, the molecular basis of synaptic reorganization is unclear. We have studied the development of synaptic reorganization, semaphorin gene expression, and epileptogenesis in hippocampus of epileptogenic sensitive (FVB/NJ) and epileptogenic resistant (C57BL/6J) mice (i.e. distinct genetic backgrounds) after kainic acid-induced status epilepticus. Our results support the hypothesis that disruption of transcriptional regulation of axon guidance genes leads to a differential loss of tonic neuropilin-2 dependent activation of semaphorin 3F receptors on hippocampal neurons on distinct genetic backgrounds. This results in rearranged synaptic circuitry and thus promotes epileptogenesis. These findings may define biologic principles underlying the role of semaphorin signaling which may broadly apply to other systems undergoing neural regeneration.
Collapse
Affiliation(s)
- J Yang
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|