1
|
Mahajan NR, Mysore SP. Donut-like organization of inhibition underlies categorical neural responses in the midbrain. Nat Commun 2022; 13:1680. [PMID: 35354821 PMCID: PMC8967821 DOI: 10.1038/s41467-022-29318-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Categorical neural responses underlie various forms of selection and decision-making. Such binary-like responses promote robust signaling of the winner in the presence of input ambiguity and neural noise. Here, we show that a 'donut-like' inhibitory mechanism in which each competing option suppresses all options except itself, is highly effective at generating categorical neural responses. It surpasses motifs of feedback inhibition, recurrent excitation, and divisive normalization invoked frequently in decision-making models. We demonstrate experimentally not only that this mechanism operates in the midbrain spatial selection network in barn owls, but also that it is necessary for categorical signaling by it. The functional pattern of neural inhibition in the midbrain forms an exquisitely structured 'multi-holed' donut consistent with this network's combinatorial inhibitory function for stimulus selection. Additionally, modeling reveals a generalizable neural implementation of the donut-like motif for categorical selection. Self-sparing inhibition may, therefore, be a powerful circuit module central to categorization.
Collapse
Affiliation(s)
- Nagaraj R Mahajan
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shreesh P Mysore
- Departments of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Keating P, King AJ. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications. Front Syst Neurosci 2013; 7:123. [PMID: 24409125 PMCID: PMC3873525 DOI: 10.3389/fnsys.2013.00123] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/12/2013] [Indexed: 11/23/2022] Open
Abstract
Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing loss affecting one ear more than the other is commonly associated with otitis media with effusion, a disorder experienced by approximately 80% of children before the age of two. Asymmetric hearing may also arise in other clinical situations, such as after unilateral cochlear implantation. Here, we consider the role played by spatial cue integration in sound localization under normal acoustical conditions. We then review evidence for adaptive changes in spatial hearing following a developmental hearing loss in one ear, and show that adaptation may be achieved either by learning a new relationship between the altered cues and directions in space or by changing the way different cues are integrated in the brain. We next consider developmental plasticity as a source of vulnerability, describing maladaptive effects of asymmetric hearing loss that persist even when normal hearing is provided. We also examine the extent to which the consequences of asymmetric hearing loss depend upon its timing and duration. Although much of the experimental literature has focused on the effects of a stable unilateral hearing loss, some of the most common hearing impairments experienced by children tend to fluctuate over time. We therefore propose that there is a need to bridge this gap by investigating the effects of recurring hearing loss during development, and outline recent steps in this direction. We conclude by arguing that this work points toward a more nuanced view of developmental plasticity, in which plasticity may be selectively expressed in response to specific sensory contexts, and consider the clinical implications of this.
Collapse
Affiliation(s)
- Peter Keating
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
3
|
Huo J, Murray A, Wei D. Adaptive visual and auditory map alignment in barn owl superior colliculus and its neuromorphic implementation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2012; 23:1486-1497. [PMID: 24807931 DOI: 10.1109/tnnls.2012.2204771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Adaptation is one of the most important phenomena in biology. A young barn owl can adapt to imposed environmental changes, such as artificial visual distortion caused by wearing a prism. This adjustment process has been modeled mathematically and the model replicates the sensory map realignment of barn owl superior colliculus (SC) through axonogenesis and synaptogenesis. This allows the biological mechanism to be transferred to an artificial computing system and thereby imbue it with a new form of adaptability to the environment. The model is demonstrated in a real-time robot environment. Results of the experiments are compared with and without prism distortion of vision, and show improved adaptability for the robot. However, the computation speed of the embedded system in the robot is slow. A digital and analog mixed signal very-large-scale integration (VLSI) circuit has been fabricated to implement adaptive sensory pathway changes derived from the SC model at higher speed. VLSI experimental results are consistent with simulation results.
Collapse
|
4
|
Singheiser M, Gutfreund Y, Wagner H. The representation of sound localization cues in the barn owl's inferior colliculus. Front Neural Circuits 2012; 6:45. [PMID: 22798945 PMCID: PMC3394089 DOI: 10.3389/fncir.2012.00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/21/2012] [Indexed: 11/13/2022] Open
Abstract
The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation.
Collapse
|
5
|
King AJ, Dahmen JC, Keating P, Leach ND, Nodal FR, Bajo VM. Neural circuits underlying adaptation and learning in the perception of auditory space. Neurosci Biobehav Rev 2011; 35:2129-39. [PMID: 21414354 PMCID: PMC3198863 DOI: 10.1016/j.neubiorev.2011.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 10/25/2022]
Abstract
Sound localization mechanisms are particularly plastic during development, when the monaural and binaural acoustic cues that form the basis for spatial hearing change in value as the body grows. Recent studies have shown that the mature brain retains a surprising capacity to relearn to localize sound in the presence of substantially altered auditory spatial cues. In addition to the long-lasting changes that result from learning, behavioral and electrophysiological studies have demonstrated that auditory spatial processing can undergo rapid adjustments in response to changes in the statistics of recent stimulation, which help to maintain sensitivity over the range where most stimulus values occur. Through a combination of recording studies and methods for selectively manipulating the activity of specific neuronal populations, progress is now being made in identifying the cortical and subcortical circuits in the brain that are responsible for the dynamic coding of auditory spatial information.
Collapse
Affiliation(s)
- Andrew J King
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Netser S, Ohayon S, Gutfreund Y. Multiple Manifestations of Microstimulation in the Optic Tectum: Eye Movements, Pupil Dilations, and Sensory Priming. J Neurophysiol 2010; 104:108-18. [DOI: 10.1152/jn.01142.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well established that the optic tectum (or its mammalian homologue, the superior colliculus) is involved in directing gaze toward salient stimuli. However, salient stimuli typically induce orienting responses beyond gaze shifts. The role of the optic tectum in generating responses such as pupil dilation, galvanic responses, or covert shifts is not clear. In the present work, we studied the effects of microstimulation in the optic tectum of the barn owl ( Tyto alba) on pupil diameter and on eye shifts. Experiments were conducted in lightly anesthetized head-restrained barn owls. We report that low-level microstimulation in the deep layers of the optic tectum readily induced pupil dilation responses (PDRs), as well as small eye movements. Electrically evoked PDRs, similar to acoustically evoked PDRs, were long-lasting and habituated to repeated stimuli. We further show that microstimulation in the external nucleus of the inferior colliculus also induced PDRs. Finally, in experiments in which tectal microstimulations were coupled with acoustic stimuli, we show a tendency of the microstimulation to enhance pupil responses and eye shifts to previously habituated acoustic stimuli. The enhancement was dependent on the site of stimulation in the tectal spatial map; responses to sounds with spatial cues that matched the site of stimulation were more enhanced compared with sounds with spatial cues that did not match. These results suggest that the optic tectum is directly involved in autonomic orienting reflexes as well as in gaze shifts, highlighting the central role of the optic tectum in mediating the body responses to salient stimuli.
Collapse
Affiliation(s)
- Shai Netser
- The Department of Physiology and Biophysics, The Rappaport Faculty of Medicine and Research Institute, The Technion–Israel Institute of Technology, Haifa, Israel; and
| | - Shay Ohayon
- Computation and Neural Systems, California Institute of Technology, Pasadena, California
| | - Yoram Gutfreund
- The Department of Physiology and Biophysics, The Rappaport Faculty of Medicine and Research Institute, The Technion–Israel Institute of Technology, Haifa, Israel; and
| |
Collapse
|
7
|
Takesian AE, Kotak VC, Sanes DH. Developmental hearing loss disrupts synaptic inhibition: implications for auditory processing. FUTURE NEUROLOGY 2009; 4:331-349. [PMID: 20161214 PMCID: PMC2716048 DOI: 10.2217/fnl.09.5] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hearing loss during development leads to central deficits that persist even after the restoration of peripheral function. One key class of deficits is due to changes in central inhibitory synapses, which play a fundamental role in all aspects of auditory processing. This review focuses on the anatomical and physiological alterations of inhibitory connections at several regions within the central auditory pathway following hearing loss. Such aberrant inhibitory synaptic function may be linked to deficits in encoding binaural and spectral cues. Understanding the cellular changes that occur at inhibitory synapses following hearing loss may provide specific loci that can be targeted to improve function.
Collapse
Affiliation(s)
- Anne E Takesian
- Center for Neural Science, New York, University, NY 10003, USA, Tel.: +1 212 998 3914, Fax: +1 212 995 4011,
| | - Vibhakar C Kotak
- Center for Neural Science, New York, University, NY 10003, USA, Tel.: +1 212 998 3916, Fax: +1 212 995 4011,
| | - Dan H Sanes
- Center for Neural Science & Department of Biology, New York, University, NY 10003, USA, Tel.: +1 212 998 3924, Fax: +1 212 998 4348,
| |
Collapse
|
8
|
Huo J, Murray A. The adaptation of visual and auditory integration in the barn owl superior colliculus with Spike Timing Dependent Plasticity. Neural Netw 2008; 22:913-21. [PMID: 19084371 DOI: 10.1016/j.neunet.2008.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/20/2008] [Accepted: 10/29/2008] [Indexed: 11/24/2022]
Abstract
To localize a seen object, the superior colliculus of the barn owl integrates the visual and auditory localization cues which are accessed from the sensory system of the brain. These cues are formed as visual and auditory maps. The alignment between visual and auditory maps is very important for accurate localization in prey behavior. Blindness or prism wearing may interfere this alignment. The juvenile barn owl could adapt its auditory map to this mismatch after several weeks training. Here we investigate this process by building a computational model of auditory and visual integration in deep Superior Colliculus (SC). The adaptation of the map alignment is based on activity dependent axon developing in Inferior Colliculus (IC). This axon growing process is instructed by an inhibitory network in SC while the strength of the inhibition is adjusted by Spike Timing Dependent Plasticity (STDP). The simulation results of this model are in line with the biological experiment and support the idea that STDP is involved in the alignment of sensory maps. This model also provides a new spiking neuron based mechanism capable of eliminating the disparity in visual and auditory map integration.
Collapse
Affiliation(s)
- Juan Huo
- Doctoral Training Center, School of Informatics, The University of Edinburgh, Mayfield Road, Edinburgh, UK.
| | | |
Collapse
|
9
|
Boada MD, Woodbury CJ. Physiological Properties of Mouse Skin Sensory Neurons Recorded Intracellularly In Vivo: Temperature Effects on Somal Membrane Properties. J Neurophysiol 2007; 98:668-80. [PMID: 17537905 DOI: 10.1152/jn.00264.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent combined analyses of the structural, functional, and molecular attributes of individual skin sensory neurons using semi-intact in vitro preparations from mice have provided a wealth of novel insights into nociceptor biology. How these findings translate to more natural conditions nevertheless remains unresolved. Toward this end, intracellular recordings were obtained from 362 physiologically identified dorsal root ganglion (DRG) neurons in a new in vivo mouse preparation developed for combined structure/function analyses of individual skin sensory neurons. Recordings were conducted at thoracic levels in adult decorticate mice for comparison with in vitro findings from the same trunk region. In all, 270 neurons were recorded at DRG temperatures tightly regulated at normal core values to establish a baseline and 137 skin sensory neurons were included in detailed analyses of somal properties for comparisons with similar data obtained under reduced temperatures mirroring in vitro conditions. Recovery of Neurobiotin-labeled central projections was crucial for verifying perceived afferent identity of certain neurons. Further, profound temperature dependency was seen across diverse physiological properties. Indeed, the broad, inflected somal spikes normally viewed as diagnostic of myelinated nociceptors were found to be a product of reduced temperatures and were not present at normal core values. Moreover, greater complexity was observed peripherally in the mechanical and thermal sensitivity profile of nociceptive and nonnociceptive populations than that seen under in vitro conditions. This novel in vivo preparation therefore holds considerable promise for future analyses of nociceptor function and plasticity in normal and transgenic models of pain mechanisms.
Collapse
Affiliation(s)
- M Danilo Boada
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
10
|
Keuroghlian AS, Knudsen EI. Adaptive auditory plasticity in developing and adult animals. Prog Neurobiol 2007; 82:109-21. [PMID: 17493738 DOI: 10.1016/j.pneurobio.2007.03.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/14/2007] [Accepted: 03/28/2007] [Indexed: 11/17/2022]
Abstract
Enormous progress has been made in our understanding of adaptive plasticity in the central auditory system. Experiments on a range of species demonstrate that, in adults, the animal must attend to (i.e., respond to) a stimulus in order for plasticity to be induced, and the plasticity that is induced is specific for the acoustic feature to which the animal has attended. The requirement that an adult animal must attend to a stimulus in order for adaptive plasticity to occur suggests an essential role of neuromodulatory systems in gating plasticity in adults. Indeed, neuromodulators, particularly acetylcholine (ACh), that are associated with the processes of attention, have been shown to enable adaptive plasticity in adults. In juvenile animals, attention may facilitate plasticity, but it is not always required: during sensitive periods, mere exposure of an animal to an atypical auditory environment can result in large functional changes in certain auditory circuits. Thus, in both the developing and mature auditory systems substantial experience-dependent plasticity can occur, but the conditions under which it occurs are far more stringent in adults. We review experimental results that demonstrate experience-dependent plasticity in the central auditory representations of sound frequency, level and temporal sequence, as well as in the representations of binaural localization cues in both developing and adult animals.
Collapse
Affiliation(s)
- Alex S Keuroghlian
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305-5125, United States.
| | | |
Collapse
|
11
|
Witten IB, Bergan JF, Knudsen EI. Dynamic shifts in the owl's auditory space map predict moving sound location. Nat Neurosci 2006; 9:1439-45. [PMID: 17013379 DOI: 10.1038/nn1781] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/12/2006] [Indexed: 11/09/2022]
Abstract
The optic tectum of the barn owl contains a map of auditory space. We found that, in response to moving sounds, the locations of receptive fields that make up the map shifted toward the approaching sound. The magnitude of the receptive field shifts increased systematically with increasing stimulus velocity and, therefore, was appropriate to compensate for sensory and motor delays inherent to auditory orienting behavior. Thus, the auditory space map is not static, but shifts adaptively and dynamically in response to stimulus motion. We provide a computational model to account for these results. Because the model derives predictive responses from processes that are known to occur commonly in neural networks, we hypothesize that analogous predictive responses will be found to exist widely in the central nervous system. This hypothesis is consistent with perceptions of stimulus motion in humans for many sensory parameters.
Collapse
Affiliation(s)
- Ilana B Witten
- Department of Neurobiology, Stanford University Medical School, Stanford, California 94305, USA
| | | | | |
Collapse
|
12
|
Abstract
Auditory neurons in the owl’s external nucleus of the inferior colliculus (ICX) integrate information across frequency channels to create a map of auditory space. This study describes a powerful, sound-driven adaptation of unit responsiveness in the ICX and explores the implications of this adaptation for sensory processing. Adaptation in the ICX was analyzed by presenting lightly anesthetized owls with sequential pairs of dichotic noise bursts. Adaptation occurred in response even to weak, threshold-level sounds and remained strong for more than 100 ms after stimulus offset. Stimulation by one range of sound frequencies caused adaptation that generalized across the entire broad range of frequencies to which these units responded. Identical stimuli were used to test adaptation in the lateral shell of the central nucleus of the inferior colliculus (ICCls), which provides input directly to the ICX. Compared with ICX adaptation, adaptation in the ICCls was substantially weaker, shorter lasting, and far more frequency specific, suggesting that part of the adaptation observed in the ICX was attributable to processes resident to the ICX. The sharp tuning of ICX neurons to space, along with their broad tuning to frequency, allows ICX adaptation to preserve a representation of stimulus location, regardless of the frequency content of the sound. The ICX is known to be a site of visually guided auditory map plasticity. ICX adaptation could play a role in this cross-modal plasticity by providing a short-term memory of the representation of auditory localization cues that could be compared with later-arriving, visual–spatial information from bimodal stimuli.
Collapse
Affiliation(s)
- Yoram Gutfreund
- Department of Neurobiology, Stanford University, Stanford, California, USA.
| | | |
Collapse
|
13
|
|
14
|
Frequency-specific interaural level difference tuning predicts spatial response patterns of space-specific neurons in the barn owl inferior colliculus. J Neurosci 2003. [PMID: 12805307 DOI: 10.1523/jneurosci.23-11-04677.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Space-specific neurons in the barn owl's inferior colliculus have spatial receptive fields (RFs) because of sensitivity to interaural time difference and frequency-specific interaural level difference (ILD). These neurons are assumed to be tuned to the frequency-specific ILDs occurring at their spatial RFs, but attempts to assess this tuning with traditional narrowband stimuli have had limited success. Indeed, tuning assessed in this manner, when processed via a linear model of spectral integration, typically explains only approximately half the variance in spatial response patterns. Here we report our findings that frequency-specific ILD tuning of space-specific neurons, when assessed from responses to broadband stimuli, predicted nearly 75% of the variance in spatial responses, using a linear model of spectral integration (p < 0.0001; n = 97 neurons). Furthermore, when we tested neurons using only those frequencies we found to be spatially relevant, we saw that their responses were similar to those elicited by broadband stimuli. When we used frequencies not identified as spatially relevant, such similarity was lacking. Furthermore, spectral components that elicited high firing rates when presented as narrowband stimuli were found in several cases to be irrelevant for or detrimental to the definition of spatial RFs. Thus, neurons achieved sharp spatial tuning by selecting for ILDs of a subset of spectral components in noise, some of which were not identified using narrowband stimuli.
Collapse
|