1
|
Abstract
This review centers on the discoveries made during more than six decades of neuroscience research on the role of gamma-amino-butyric acid (GABA) as neurotransmitter. In doing so, special emphasis is directed to the significant involvement of Canadian scientists in these advances. Starting with the early studies that established GABA as an inhibitory neurotransmitter at central synapses, we summarize the results pointing at the GABA receptor as a drug target as well as more recent evidence showing that GABAA receptor signaling plays a surprisingly active role in neuronal network synchronization, both during development and in the adult brain. Finally, we briefly address the involvement of GABA in neurological conditions that encompass epileptic disorders and mental retardation.
Collapse
|
2
|
Tajiri N, Acosta S, Portillo-Gonzales GS, Aguirre D, Reyes S, Lozano D, Pabon M, Dela Peña I, Ji X, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci 2014; 8:227. [PMID: 25165432 PMCID: PMC4131212 DOI: 10.3389/fncel.2014.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 01/29/2023] Open
Abstract
Accumulating preclinical evidence suggests the use of amnion as a source of stem cells for investigations of basic science concepts related to developmental cell biology, but also for stem cells’ therapeutic applications in treating human disorders. We previously reported isolation of viable rat amniotic fluid-derived stem (AFS) cells. Subsequently, we recently reported the therapeutic benefits of intravenous transplantation of AFS cells in a rodent model of ischemic stroke. Parallel lines of investigations have provided safety and efficacy of stem cell therapy for treating stroke and other neurological disorders. This review article highlights the need for investigations of mechanisms underlying AFS cells’ therapeutic benefits and discusses lab-to-clinic translational gating items in an effort to optimize the clinical application of the cell transplantation for stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Sandra Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Gabriel S Portillo-Gonzales
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Daniela Aguirre
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Stephanny Reyes
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Diego Lozano
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Mibel Pabon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Ike Dela Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Japan
| | - Marianna A Solomita
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Ivana Antonucci
- Laboratory of Molecular Genetics, DISPUTer, School of Medicine and Health Sciences, "G. d 'Annunzio" University Chieti-Pescara, Italy
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, DISPUTer, School of Medicine and Health Sciences, "G. d 'Annunzio" University Chieti-Pescara, Italy
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| |
Collapse
|
3
|
Tajiri N, Acosta S, Glover LE, Bickford PC, Jacotte Simancas A, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats. PLoS One 2012; 7:e43779. [PMID: 22912905 PMCID: PMC3422299 DOI: 10.1371/journal.pone.0043779] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/25/2012] [Indexed: 01/11/2023] Open
Abstract
We recently reported isolation of viable rat amniotic fluid-derived stem (AFS) cells [1]. Here, we tested the therapeutic benefits of AFS cells in a rodent model of ischemic stroke. Adult male Sprague-Dawley rats received a 60-minute middle cerebral artery occlusion (MCAo). Thirty-five days later, animals exhibiting significant motor deficits received intravenous transplants of rat AFS cells or vehicle. At days 60–63 post-MCAo, significant recovery of motor and cognitive function was seen in stroke animals transplanted with AFS cells compared to vehicle-infused stroke animals. Infarct volume, as revealed by hematoxylin and eosin (H&E) staining, was significantly reduced, coupled with significant increments in the cell proliferation marker, Ki67, and the neuronal marker, MAP2, in the dentate gyrus (DG) [2] and the subventricular zone (SVZ) of AFS cell-transplanted stroke animals compared to vehicle-infused stroke animals. A significantly higher number of double-labeled Ki67/MAP2-positive cells and a similar trend towards increased Ki67/MAP2 double-labeling were observed in the DG and SVZ of AFS cell-transplanted stroke animals, respectively, compared to vehicle-infused stroke animals. This study reports the therapeutic potential of AFS cell transplantation in stroke animals, possibly via enhancement of endogenous repair mechanisms.
Collapse
Affiliation(s)
- Naoki Tajiri
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Sandra Acosta
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Loren E. Glover
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Paula C. Bickford
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Alejandra Jacotte Simancas
- Departamento de Psicobiologia y Metodologia de las Cièncias de la Salud, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marianna A. Solomita
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- Department of Biomedical Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Department of Neuroscience and Imaging, School of Advanced Studies G.d'Annunzio, Chieti University and Stem TeCh Group, Aging Research Center, Chieti- Pescara, Italy
| | - Ivana Antonucci
- Department of Biomedical Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Department of Neuroscience and Imaging, School of Advanced Studies G.d'Annunzio, Chieti University and Stem TeCh Group, Aging Research Center, Chieti- Pescara, Italy
| | - Liborio Stuppia
- Department of Biomedical Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Department of Neuroscience and Imaging, School of Advanced Studies G.d'Annunzio, Chieti University and Stem TeCh Group, Aging Research Center, Chieti- Pescara, Italy
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
4
|
Zhu PJ, Huang W, Kalikulov D, Yoo JW, Placzek AN, Stoica L, Zhou H, Bell JC, Friedlander MJ, Krnjević K, Noebels JL, Costa-Mattioli M. Suppression of PKR promotes network excitability and enhanced cognition by interferon-γ-mediated disinhibition. Cell 2012; 147:1384-96. [PMID: 22153080 DOI: 10.1016/j.cell.2011.11.029] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/06/2011] [Accepted: 11/02/2011] [Indexed: 01/20/2023]
Abstract
The double-stranded RNA-activated protein kinase (PKR) was originally identified as a sensor of virus infection, but its function in the brain remains unknown. Here, we report that the lack of PKR enhances learning and memory in several behavioral tasks while increasing network excitability. In addition, loss of PKR increases the late phase of long-lasting synaptic potentiation (L-LTP) in hippocampal slices. These effects are caused by an interferon-γ (IFN-γ)-mediated selective reduction in GABAergic synaptic action. Together, our results reveal that PKR finely tunes the network activity that must be maintained while storing a given episode during learning. Because PKR activity is altered in several neurological disorders, this kinase presents a promising new target for the treatment of cognitive dysfunction. As a first step in this direction, we show that a selective PKR inhibitor replicates the Pkr(-/-) phenotype in WT mice, enhancing long-term memory storage and L-LTP.
Collapse
Affiliation(s)
- Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Recent and remote memory recalls modulate different sets of stereotypical interlaminar correlations in Arc/Arg3.1 mRNA expression in cortical areas. Brain Res 2010; 1352:118-39. [DOI: 10.1016/j.brainres.2010.06.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 05/21/2010] [Accepted: 06/24/2010] [Indexed: 11/21/2022]
|
6
|
Gusev PA, Gubin AN. Arc/Arg3.1 mRNA global expression patterns elicited by memory recall in cerebral cortex differ for remote versus recent spatial memories. Front Integr Neurosci 2010; 4:15. [PMID: 20577636 PMCID: PMC2889723 DOI: 10.3389/fnint.2010.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/23/2010] [Indexed: 11/13/2022] Open
Abstract
The neocortex plays a critical role in the gradual formation and storage of remote declarative memories. Because the circuitry mechanisms of systems-level consolidation are not well understood, the precise cortical sites for memory storage and the nature of enduring memory correlates (mnemonic plasticity) are largely unknown. Detailed maps of neuronal activity underlying recent and remote memory recall highlight brain regions that participate in systems consolidation and constitute putative storage sites, and thus may facilitate detection of mnemonic plasticity. To localize cortical regions involved in the recall of a spatial memory task, we trained rats in a water-maze and then mapped mRNA expression patterns of a neuronal activity marker Arc/Arg3.1 (Arc) upon recall of recent (24 h after training) or remote (1 month after training) memories and compared them with swimming and naive controls. Arc gene expression was significantly more robust 24 h after training compared to 1 month after training. Arc expression diminished in the parietal, cingulate and visual areas, but select segments in the prefrontal, retrosplenial, somatosensory and motor cortical showed similar robust increases in the Arc expression. When Arc expression was compared across select segments of sensory, motor and associative regions within recent and remote memory groups, the overall magnitude and cortical laminar patterns of task-specific Arc expression were similar (stereotypical). Arc mRNA fractions expressed in the upper cortical layers (2/3, 4) increased after both recent and remote recall, while layer 6 fractions decreased only after the recent recall. The data suggest that robust recall of remote memory requires an overall smaller increase in neuronal activity within fewer cortical segments. This activity trend highlights the difficulty in detecting the storage sites and plasticity underlying remote memory. Application of the Arc maps may ameliorate this difficulty.
Collapse
Affiliation(s)
- Pavel A Gusev
- Blanchette Rockefeller Neurosciences Institute Rockville, MD, USA
| | | |
Collapse
|
7
|
Ormond J, Woodin MA. Disinhibition mediates a form of hippocampal long-term potentiation in area CA1. PLoS One 2009; 4:e7224. [PMID: 19787049 PMCID: PMC2746290 DOI: 10.1371/journal.pone.0007224] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 09/08/2009] [Indexed: 01/03/2023] Open
Abstract
The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs) followed rapidly by feedforward (disynaptic) inhibitory postsynaptic potentials (IPSPs). Long-term potentiation (LTP) of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs), required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.
Collapse
Affiliation(s)
- Jake Ormond
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (JO); (MAW)
| | - Melanie A. Woodin
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (JO); (MAW)
| |
Collapse
|
8
|
Bukanova JV, Solntseva EI, Skrebitsky VG. Cyclic nucleotides induce long-term augmentation of glutamate-activated chloride current in molluscan neurons. Cell Mol Neurobiol 2005; 25:1185-94. [PMID: 16388331 DOI: 10.1007/s10571-005-8371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
1. Literature data indicate that serotonin induces the long-term potentiation of glutamate (Glu) response in molluscan neurons. The aim of present work was to elucidate whether cyclic nucleotides can cause the same effect. 2. Experiments were carried out on isolated neurons of the edible snail (Helix pomatia) using a two-microelectrode voltage-clamp method. 3. In the majority of the cells examined, the application of Glu elicited a Cl- -current. The reversal potential (Er) of this current lied between -35 and -55 mV in different cells. 4. Picrotoxin, a blocker of Cl- -channels, suppressed this current equally on both sides of Er. Furosemide, an antagonist of both Cl- -channels and the Na+/K+/Cl- -cotransporter, had a dual effect on Glu-response: decrease in conductance, and shift of Er to negative potentials. 5. A short-term (2 min) cell treatment with 8-Br-cAMP or 8-Br-cGMP caused long-term (up to 30 min) change in Glu-response. At a holding potential of -60 mV, which was close to the resting level, an increase in Glu-activated inward current was observed. This potentiation seems to be related to the right shift of Er of Glu-activated Cl- -current rather than to the increase in conductance of Cl- -channels. The blocking effect of picrotoxin rested after 8-Br-cAMP treatment. 6. The change in the Cl- -homeostasis as a possible mechanism for the observed effect of cyclic nucleotides is discussed.
Collapse
Affiliation(s)
- Julia V Bukanova
- Brain Research Institute, Russian Academy of Medical Sciences, Per. Obukha 5, 105064, Moscow, Russia.
| | | | | |
Collapse
|
9
|
Gusev PA, Cui C, Alkon DL, Gubin AN. Topography of Arc/Arg3.1 mRNA expression in the dorsal and ventral hippocampus induced by recent and remote spatial memory recall: dissociation of CA3 and CA1 activation. J Neurosci 2005; 25:9384-97. [PMID: 16221847 PMCID: PMC6725713 DOI: 10.1523/jneurosci.0832-05.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 11/21/2022] Open
Abstract
The understanding of the mechanisms of memory retrieval and its deficits, and the detection of memory underlying neuronal plasticity, is greatly impeded by a lack of precise knowledge of the brain circuitry that underlies the functions of memory. The specific roles of anatomically distinct hippocampal subdivisions in recent and long-term memory retention and recall are essentially unknown. To address these questions, we mapped the expression of Arc/Arg 3.1 mRNA, a neuronal activity marker, in memory retention at multiple rostrocaudal levels of the dentate gyrus, CA3, CA1, subiculum, and lateral and medial entorhinal cortices after a platform search in a water-maze spatial task at 24 h and 1 month compared with swim and naive controls. We found that the entorhinohippocampal neuronal activity underlying the recall of recent and remote spatial memory has an anatomically distributed and time-dependent organization throughout both the dorsal and ventral hippocampus that is subdivision specific. We found a dissociation in the activity of the entorhinal cortex, CA3, and CA1 over a period of memory consolidation. Although CA3, the dorsal hippocampus, and the entorhinal cortex demonstrated the most persistent learning-specific signal during both recent and long-term memory recall, CA1 and the ventral hippocampus displayed the most dramatic signal decline. We determined the coordinates of activity clusters in the hippocampal subdivisions during the platform search and their dynamics over time. Our mapping data suggest that although the level of corticohippocampal interaction is similar during the retrieval of recent and remote spatial memories, the mnemonic function of the hippocampus may have changed, and the activity underlying remote spatial memory could be anatomically segregated within hippocampal subdivisions in small segments.
Collapse
Affiliation(s)
- Pavel A Gusev
- Blanchette Rockefeller Neurosciences Institute, Rockville, Maryland 20850, USA.
| | | | | | | |
Collapse
|
10
|
Solntseva EI, Bukanova YV, Borisova OV. The shift of the reversal potential of glutamate-activated chloride current in molluscan neurons caused by 8-Br-cAMP. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2005; 399:447-50. [PMID: 15717604 DOI: 10.1007/s10630-005-0008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- E I Solntseva
- Brain Research Institute, Russian Academy of Medical Sciences, per. Obukha 5, Moscow, 105064, Russia
| | | | | |
Collapse
|
11
|
Maiorov VI. The appearance of long-latency responses to a conditioned signal in the cortex is explained by strengthening of collateral connections between pyramidal neurons. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2005; 35:519-23. [PMID: 16033200 DOI: 10.1007/s11055-005-0087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Experimental analysis and computer simulation of the neurophysiological processes underlying the "stable and local electrophysiological expression of conditioned reflexes" in the cerebral cortex, a phenomenon discovered in Asratyan's laboratory in the 1960s, showed that the long-latency components of cortical evoked potentials to a conditioned signal correspond to the late phases of the responses of motor cortex neurons, which are analogous to and probably generated by the same mechanism as long-latency epileptiform reactions of neurons in the epileptogenic cortex. Late long-latency components are generated via activation of NMDA receptors in the collateral connections between pyramidal neurons. The delay in the generation of responses depends on the initial activation of GABA(A) receptors and the slow kinetics of the current through NMDA channels. The appearance of late components as a result of training is explained by increases in the efficiency of collateral excitatory connections between pyramidal neurons.
Collapse
Affiliation(s)
- V I Maiorov
- Department of Higher Nervous Activity, M. V. Lomonosov Moscow State University.
| |
Collapse
|
12
|
Maiorov VI. Local bicuculline disinhibition does not disrupt acquired coordination between the tactile input and the motor output in the motor cortex of the cat. ACTA ACUST UNITED AC 2004; 34:321-2. [PMID: 15341205 DOI: 10.1023/b:neab.0000018739.16608.de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
MESH Headings
- Animals
- Bicuculline/pharmacology
- Cats
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Evoked Potentials, Motor/drug effects
- Evoked Potentials, Motor/physiology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- GABA Antagonists/pharmacology
- Motor Cortex/cytology
- Motor Cortex/drug effects
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Neurons, Efferent/drug effects
- Neurons, Efferent/physiology
- Touch/physiology
Collapse
Affiliation(s)
- V I Maiorov
- Department of Higher Nervous Activity, M V Lomonosov Moscow State University.
| |
Collapse
|
13
|
Nelson TJ, Backlund PS, Alkon DL. Hippocampal protein-protein interactions in spatial memory. Hippocampus 2004; 14:46-57. [PMID: 15058482 DOI: 10.1002/hipo.10152] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Memory consolidation in mammalian brain is accompanied by widespread reorganization of synaptic contacts and dendritic structure. Understanding of the protein-protein interactions that underlie these structural changes has been hampered by the difficulty of studying protein-protein interactions produced in vivo by signaling, learning, and other physiological responses using current methodologies. Using a novel technique that separates interacting proteins from noninteracting proteins on the basis of their protein-target affinity, we identified 16 proteins for which protein-target binding is altered in vivo by spatial learning, including stathmin, complexin I, 14-3-3, and several structural proteins including F-actin capping protein, tubulin, GFAP, and actin. Interactions between complexin and its targets (p25alpha and Drac1-like protein) and the interaction between CapZ and tubulin were calcium-dependent. The preponderance of structural proteins and proteins involved in synapse formation and reorganization of growth cones among proteins undergoing memory-specific changes in protein-protein interactions suggests that synaptic structural reorganization is a predominant feature of the consolidation phase of memory.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanche Rockefeller Neurosciences Institute, Rockville, Maryland 20850, USA.
| | | | | |
Collapse
|
14
|
Patenaude C, Chapman CA, Bertrand S, Congar P, Lacaille JC. GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. J Physiol 2003; 553:155-67. [PMID: 12963794 PMCID: PMC2343476 DOI: 10.1113/jphysiol.2003.049015] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Repetitive stimulation of Schaffer collaterals induces activity-dependent changes in the strength of polysynaptic inhibitory postsynaptic potentials (IPSPs) in hippocampal CA1 pyramidal neurons that are dependent on stimulation parameters. In the present study, we investigated the effects of two stimulation patterns, theta-burst stimulation (TBS) and 100 Hz tetani, on pharmacologically isolated monosynaptic GABAergic responses in adult CA1 pyramidal cells. Tetanization with 100 Hz trains transiently depressed both early and late IPSPs, whereas TBS induced long-term potentiation (LTP) of early IPSPs that lasted at least 30 min. Mechanisms mediating this TBS-induced potentiation were examined using whole-cell recordings. The paired-pulse ratio of monosynaptic inhibitory postsynaptic currents (IPSCs) was not affected during LTP, suggesting that presynaptic changes in GABA release are not involved in the potentiation. Bath application of the GABAB receptor antagonist CGP55845 or the group I/II metabotropic glutamate receptor antagonist E4-CPG inhibited IPSC potentiation. Preventing postsynaptic G-protein activation or Ca2+ rise by postsynaptic injection of GDP-beta-S or BAPTA, respectively, abolished LTP, indicating a G-protein- and Ca2+-dependent induction in this LTP. Finally during paired-recordings, activation of individual interneurons by intracellular TBS elicited solely short-term increases in average unitary IPSCs in pyramidal cells. These results indicate that a stimulation paradigm mimicking the endogenous theta rhythm activates cooperative postsynaptic mechanisms dependent on GABABR, mGluR, G-proteins and intracellular Ca2+, which lead to a sustained potentiation of GABAA synaptic transmission in pyramidal cells. GABAergic synapses may therefore contribute to functional synaptic plasticity in adult hippocampus.
Collapse
Affiliation(s)
- Christian Patenaude
- Centre de Recherche en Sciences Neurologiques et Département de Physiologie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
15
|
Oh MM, Kuo AG, Wu WW, Sametsky EA, Disterhoft JF. Watermaze learning enhances excitability of CA1 pyramidal neurons. J Neurophysiol 2003; 90:2171-9. [PMID: 12815013 DOI: 10.1152/jn.01177.2002] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dorsal hippocampus is crucial for learning the hidden-platform location in the hippocampus-dependent, spatial watermaze task. We have previously demonstrated that the postburst afterhyperpolarization (AHP) of hippocampal pyramidal neurons is reduced after acquisition of the hippocampus-dependent, temporal trace eyeblink conditioning task. We report here that the AHP and one or more of its associated currents (IAHP and/or sIAHP) are reduced in dorsal hippocampal CA1 pyramidal neurons from rats that learned the watermaze task as compared with neurons from control rats. This reduction was a learning-induced phenomenon as the AHP of CA1 neurons from rats that failed to learn the hidden-platform location was similar to that of neurons from control rats. We propose that reduction of the AHP in pyramidal neurons in regions crucial for learning is a cellular mechanism of learning that is conserved across species and tasks.
Collapse
Affiliation(s)
- M Matthew Oh
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Neurofibromatosis type I (NF1) is an autosomal dominant disorder caused by mutations in the NF1 gene, leading to a variety of abnormalities in cell growth and differentiation, and to learning disabilities. The protein encoded by NF1, neurofibromin, has several biochemical functions and is expressed in a variety of different cell populations. Hence, determination of the molecular and cellular mechanisms that underlie the different NF1 symptoms is difficult. However, studies using mouse models of NF1 are beginning to unravel the mechanisms that underlie the various symptoms associated with the disease. This knowledge will aid the development of treatments for the different pathological processes associated with NF1.
Collapse
Affiliation(s)
- Rui M Costa
- Department of Neurobiology and Brain Research Institute, University of California, Los Angeles, Room 2554, 95 Young Drive South, 90095-1761, USA
| | | |
Collapse
|
17
|
Costa RM, Silva AJ. Molecular and cellular mechanisms underlying the cognitive deficits associated with neurofibromatosis 1. J Child Neurol 2002; 17:622-6; discussion 627-9, 646-51. [PMID: 12403561 DOI: 10.1177/088307380201700813] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurofibromatosis 1 is one of the most common single-gene disorders affecting neurologic function in humans. Mutations in the NF1 gene cause abnormalities in cell growth and differentiation and lead to a variety of learning disabilities. Neurofibromin has several biochemical functions, such as Ras-guanosine triphosphatase activity, adenylate cyclase modulation, and microtubule binding, all of which could be critical for brain function. We review how studies in mouse models are helping to unravel the molecular and cellular mechanisms underlying cognitive deficits in neurofibromatosis 1. These studies suggest that the learning disabilities associated with neurofibromatosis 1 are caused by excessive Ras activity that leads to increased gamma-aminobutyric acid (GABA(A)) inhibition and to decreased long-term potentiation. These findings have brought us closer than ever to the development of possible treatments for the learning disabilities associated with neurofibromatosis 1.
Collapse
Affiliation(s)
- Rui M Costa
- Department of Neurobiology, Brain Research Institute, University of California, Los Angeles 90095-1761, USA
| | | |
Collapse
|
18
|
Abstract
Enhancement of memory acquisition and recall represents an important pharmacological goal in the treatment of cognitive disorders. In addition to its involvement in pH regulation, HCO3- reabsorption and CO2 expiration, carbonic anhydrase plays a crucial role in signal processing, long-term synaptic transformation and attentional gating of memory storage. Carbonic anhydrase dysfunction impairs cognition and is associated with mental retardation, Alzheimer's disease and aging. The pharmacological profile of carbonic anhydrase has been refined and specific activators have been developed. In this article, an integrated view of the involvement of carbonic anhydrase activity in synaptic plasticity and cognition will be presented, with particular focus on attentional gating of spatial learning and memory.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blânchette Rockefeller Neurosciences Institute, West Virginia University, Johns Hopkins Academic and Research Building, Room 319, 9601 Medical Center Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|