1
|
Kajiwara R, Nakamura S, Ikeda K, Onimaru H, Yoshida A, Tsutsumi Y, Nakayama K, Mochizuki A, Dantsuji M, Nishimura A, Tachikawa S, Iijima T, Inoue T. Intrinsic properties and synaptic connectivity of Phox2b-expressing neurons in rat rostral parvocellular reticular formation. Neurosci Res 2021; 178:41-51. [PMID: 34973291 DOI: 10.1016/j.neures.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
The paired-like homeobox 2b gene (Phox2b) is critical for the development of the autonomic nervous system. We have previously demonstrated the distinct characteristics of Phox2b-expressing (Phox2b+) neurons in the reticular formation dorsal to the trigeminal motor nucleus (RdV), which are likely related to jaw movement regulation. In this study, we focused on Phox2b+ neurons in the rostral parvocellular reticular formation (rPCRt), a critical region for controlling orofacial functions, using 2-11-day-old Phox2b-EYFP rats. Most Phox2b+ rPCRt neurons were glutamatergic, but not GABAergic or glycinergic. Approximately 65 % of Phox2b+ rPCRt neurons fired at a low frequency, and approximately 24 % of Phox2b+ rPCRt neurons fired spontaneously, as opposed to Phox2b+ RdV neurons. Stimulation of the RdV evoked inward postsynaptic currents in more than 50 % of Phox2b+ rPCRt neurons, while only one Phox2b+ rPCRt neuron responded to stimulation of the nucleus of the solitary tract. Five of the 10 Phox2b+ neurons sent their axons that ramified within the trigeminal motor nucleus (MoV). Of these, the axons of the two neurons terminated within both the MoV and rPCRt. Our findings suggest that Phox2b+ rPCRt neurons have distinct electrophysiological and synaptic properties that may be involved in the motor control of feeding behavior.
Collapse
Affiliation(s)
- Risa Kajiwara
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Akiko Nishimura
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Satoshi Tachikawa
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Takehiko Iijima
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
2
|
Loi N, Ginatempo F, Doppiu C, Deriu F. Emotional Face Expressions Influence the Delay Eye-blink Classical Conditioning. Neuroscience 2021; 471:72-79. [PMID: 34332014 DOI: 10.1016/j.neuroscience.2021.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022]
Abstract
Recent evidence raised the importance of the cerebellum in emotional processes, with specific regard to negative emotions. However, its role in the processing of face emotional expressions is still unknown. This study was aimed at assessing whether face emotional expressions influence the cerebellar learning processes, using the delay eyeblink classical conditioning (EBCC) as a model. Visual stimuli composed of faces expressing happy, sad and neutral emotions were used as conditioning stimulus in forty healthy subjects to modulate the cerebellum-brainstem pathway underlying the EBCC. The same stimuli were used to explore their effects on the blink reflex (BR) and its recovery cycle (BRRC) and on the cerebellar-brain inhibition (CBI). Data analysis revealed that the learning component of the EBCC was significantly reduced following the passive view of sad faces, while the extinction phase was modulated by both sad and happy faces. By contrast, BR, BRRC and CBI were not significantly affected by the view of emotional face expressions. The present study provides first evidence that the passive viewing of faces displaying emotional expressions, are processed by the cerebellum, with no apparent involvement of the brainstem and the cerebello-cortical connection. In particular, the view of sad faces, reduces the excitability of the cerebellar circuit underlying the learning phase of the EBCC. Differently, the extinction phase was shortened by both happy and sad faces, suggesting that different neural bases underlie learning and extinction of emotions expressed by faces.
Collapse
Affiliation(s)
- Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Cristina Doppiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
3
|
Slaoui Hasnaoui M, Arsenault I, Verdier D, Obeid S, Kolta A. Functional Connectivity Between the Trigeminal Main Sensory Nucleus and the Trigeminal Motor Nucleus. Front Cell Neurosci 2020; 14:167. [PMID: 32655373 PMCID: PMC7324845 DOI: 10.3389/fncel.2020.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
The present study shows new evidence of functional connectivity between the trigeminal main sensory (NVsnpr) and motor (NVmt) nuclei in rats and mice. NVsnpr neurons projecting to NVmt are most highly concentrated in its dorsal half. Their electrical stimulation induced multiphasic excitatory synaptic responses in trigeminal MNs and evoked calcium responses mainly in the jaw-closing region of NVmt. Induction of rhythmic bursting in NVsnpr neurons by local applications of BAPTA also elicited rhythmic firing or clustering of postsynaptic potentials in trigeminal motoneurons, further emphasizing the functional relationship between these two nuclei in terms of rhythm transmission. Biocytin injections in both nuclei and calcium-imaging in one of the two nuclei during electrical stimulation of the other revealed a specific pattern of connectivity between the two nuclei, which organization seemed to critically depend on the dorsoventral location of the stimulation site within NVsnpr with the most dorsal areas of NVsnpr projecting to the dorsolateral region of NVmt and intermediate areas projecting to ventromedial NVmt. This study confirms and develops earlier experiments by exploring the physiological nature and functional topography of the connectivity between NVsnpr and NVmt that was demonstrated in the past with neuroanatomical techniques.
Collapse
Affiliation(s)
- Mohammed Slaoui Hasnaoui
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Isabel Arsenault
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Dorly Verdier
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Sami Obeid
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Arlette Kolta
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada.,Département de Stomatologie, Faculté de Médecine Dentaire, Université de Montreal, Montreal, QC, Canada
| |
Collapse
|
4
|
Maynard TM, Zohn IE, Moody SA, LaMantia AS. Suckling, Feeding, and Swallowing: Behaviors, Circuits, and Targets for Neurodevelopmental Pathology. Annu Rev Neurosci 2020; 43:315-336. [PMID: 32101484 DOI: 10.1146/annurev-neuro-100419-100636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All mammals must suckle and swallow at birth, and subsequently chew and swallow solid foods, for optimal growth and health. These initially innate behaviors depend critically upon coordinated development of the mouth, tongue, pharynx, and larynx as well as the cranial nerves that control these structures. Disrupted suckling, feeding, and swallowing from birth onward-perinatal dysphagia-is often associated with several neurodevelopmental disorders that subsequently alter complex behaviors. Apparently, a broad range of neurodevelopmental pathologic mechanisms also target oropharyngeal and cranial nerve differentiation. These aberrant mechanisms, including altered patterning, progenitor specification, and neurite growth, prefigure dysphagia and may then compromise circuits for additional behavioral capacities. Thus, perinatal dysphagia may be an early indicator of disrupted genetic and developmental programs that compromise neural circuits and yield a broad range of behavioral deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Thomas M Maynard
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016, USA;
| | - Irene E Zohn
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.,Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anthony-S LaMantia
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016, USA; .,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
5
|
Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci 2019; 30:107-164. [PMID: 30543520 DOI: 10.1515/revneuro-2017-0102] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Central pattern generators (CPGs) are generally defined as networks of neurons capable of enabling the production of central commands, specifically controlling stereotyped, rhythmic motor behaviors. Several CPGs localized in brainstem and spinal cord areas have been shown to underlie the expression of complex behaviors such as deglutition, mastication, respiration, defecation, micturition, ejaculation, and locomotion. Their pivotal roles have clearly been demonstrated although their organization and cellular properties remain incompletely characterized. In recent years, insightful findings about CPGs have been made mainly because (1) several complementary animal models were developed; (2) these models enabled a wide variety of techniques to be used and, hence, a plethora of characteristics to be discovered; and (3) organizations, functions, and cell properties across all models and species studied thus far were generally found to be well-preserved phylogenetically. This article aims at providing an overview for non-experts of the most important findings made on CPGs in in vivo animal models, in vitro preparations from invertebrate and vertebrate species as well as in primates. Data about CPG functions, adaptation, organization, and cellular properties will be summarized with a special attention paid to the network for locomotion given its advanced level of characterization compared with some of the other CPGs. Similarities and differences between these networks will also be highlighted.
Collapse
Affiliation(s)
- Inge Steuer
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
| | - Pierre A Guertin
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Laval University, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
6
|
Condamine S, Lavoie R, Verdier D, Kolta A. Functional rhythmogenic domains defined by astrocytic networks in the trigeminal main sensory nucleus. Glia 2017; 66:311-326. [DOI: 10.1002/glia.23244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Steven Condamine
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| | - Raphaël Lavoie
- Douglas Mental Health University Institute, 6875 boulevard LaSalle; Montreal Québec H4H 1R3 Canada
| | - Dorly Verdier
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| | - Arlette Kolta
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Faculté de Médecine Dentaire, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| |
Collapse
|
7
|
Nagoya K, Nakamura S, Ikeda K, Onimaru H, Yoshida A, Nakayama K, Mochizuki A, Kiyomoto M, Sato F, Kawakami K, Takahashi K, Inoue T. Distinctive features of Phox2b-expressing neurons in the rat reticular formation dorsal to the trigeminal motor nucleus. Neuroscience 2017; 358:211-226. [PMID: 28673717 DOI: 10.1016/j.neuroscience.2017.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/03/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b+) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b+ RdV neurons is still unclear. We investigated the physiological and morphological properties of Phox2b+ RdV neurons using postnatal day 2-7 transgenic rats expressing yellow fluorescent protein under the control of Phox2b. Almost all of Phox2b+ RdV neurons were glutamatergic, whereas Phox2b-negative (Phox2b-) RdV neurons consisted of a few glutamatergic, many GABAergic, and many glycinergic neurons. The majority (48/56) of Phox2b+ neurons showed low-frequency firing (LF), while most of Phox2b- neurons (35/42) exhibited high-frequency firing (HF) in response to intracellularly injected currents. All, but one, Phox2b+ neurons (55/56) did not fire spontaneously, whereas three-fourths of the Phox2b- neurons (31/42) were spontaneously active. K+ channel and persistent Na+ current blockers affected the firing of LF and HF neurons. The majority of Phox2b+ (35/46) and half of the Phox2b- neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b+ (5/12) and Phox2b- RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b+ RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b- RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication.
Collapse
Affiliation(s)
- Kouta Nagoya
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Division of Oral Rehabilitation Medicine, Department of Special Needs Dentistry, Showa University School of Dentistry, 2-2-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Keiko Ikeda
- Division of Biology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masaaki Kiyomoto
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Fumihiko Sato
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Koji Takahashi
- Division of Oral Rehabilitation Medicine, Department of Special Needs Dentistry, Showa University School of Dentistry, 2-2-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
8
|
Supratrigeminal Bilaterally Projecting Neurons Maintain Basal Tone and Enable Bilateral Phasic Activation of Jaw-Closing Muscles. J Neurosci 2017; 36:7663-75. [PMID: 27445144 DOI: 10.1523/jneurosci.0839-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Anatomical studies have identified brainstem neurons that project bilaterally to left and right oromotor pools, which could potentially mediate bilateral muscle coordination. We use retrograde lentiviruses combined with a split-intein-mediated split-Cre-recombinase system in mice to isolate, characterize, and manipulate a population of neurons projecting to both the left and right jaw-closing trigeminal motoneurons. We find that these bilaterally projecting premotor neurons (BPNs) reside primarily in the supratrigeminal nucleus (SupV) and the parvicellular and intermediate reticular regions dorsal to the facial motor nucleus. These BPNs also project to multiple midbrain and brainstem targets implicated in orofacial sensorimotor control, and consist of a mix of glutamatergic, GABAergic, and glycinergic neurons, which can drive both excitatory and inhibitory inputs to trigeminal motoneurons when optogenetically activated in slice. Silencing BPNs with tetanus toxin light chain (TeNT) increases bilateral masseter activation during chewing, an effect driven by the expression of TeNT in SupV BPNs. Acute unilateral optogenetic inhibition of SupV BPNs identifies a group of tonically active neurons that function to lower masseter muscle tone, whereas unilateral optogenetic activation of SupV BPNs is sufficient to induce bilateral masseter activation both during resting state and during chewing. These results provide evidence for SupV BPNs in tonically modulating jaw-closing muscle tone and in mediating bilateral jaw closing. SIGNIFICANCE STATEMENT We developed a method that combines retrograde lentiviruses with the split-intein-split-Cre system in mice to isolate, characterize, and manipulate neurons that project to both left and right jaw-closing motoneurons. We show that these bilaterally projecting premotor neurons (BPNs) reside primarily in the supratrigeminal nucleus and the rostral parvicellular and intermediate reticular nuclei. BPNs consist of both excitatory and inhibitory populations, and also project to multiple brainstem nuclei implicated in orofacial sensorimotor control. Manipulation of the supratrigeminal BPNs during natural jaw-closing behavior reveals a dual role for these neurons in eliciting phasic muscle activation and in maintaining basal muscle tone. The retrograde lentivirus carrying the split-intein-split-Cre system can be applied to study any neurons with bifurcating axons innervating two brain regions.
Collapse
|
9
|
De Cicco V, Barresi M, Tramonti Fantozzi MP, Cataldo E, Parisi V, Manzoni D. Oral Implant-Prostheses: New Teeth for a Brighter Brain. PLoS One 2016; 11:e0148715. [PMID: 26919258 PMCID: PMC4771091 DOI: 10.1371/journal.pone.0148715] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022] Open
Abstract
Several studies have demonstrated that chewing can be regarded as a preventive measure for cognitive impairment, whereas masticatory deficiency, associated with soft-diet feeding, is a risk factor for the development of dementia. At present the link between orofacial sensorimotor activity and cognitive functions is unknown. In subjects with unilateral molar loss we have shown asymmetries in both pupil size and masticatory muscles electromyographic (EMG) activity during clenching: the molar less side was characterized by a lower EMG activity and a smaller pupil. Since implant-prostheses, greatly reduced both the asymmetry in EMG activity and in pupil's size, trigeminal unbalance, leading to unbalance in the activity of the Locus Coeruleus (LC), may be responsible for the pupil's asymmetry. According to the findings obtained in animal models, we propose that the different activity of the right and left LC may induce an asymmetry in brain activity, thus leading to cognitive impairment. According to this hypothesis, prostheses improved the performance in a complex sensorimotor task and increased the mydriasis associated with haptic tasks. In conclusion, the present study indicates that the implant-prosthesis therapy, which reduces the unbalance of trigeminal proprioceptive afferents and the asymmetry in pupil's size, may improve arousal, boosting performance in a complex sensorimotor task.
Collapse
Affiliation(s)
- Vincenzo De Cicco
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Massimo Barresi
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | | | | | - Diego Manzoni
- Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Pilurzi G, Mercante B, Ginatempo F, Follesa P, Tolu E, Deriu F. Transcutaneous trigeminal nerve stimulation induces a long-term depression-like plasticity of the human blink reflex. Exp Brain Res 2015; 234:453-61. [PMID: 26514812 DOI: 10.1007/s00221-015-4477-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/15/2015] [Indexed: 01/17/2023]
Abstract
The beneficial effects of trigeminal nerve stimulation (TNS) on several neurological disorders are increasingly acknowledged. Hypothesized mechanisms include the modulation of excitability in networks involved by the disease, and its main site of action has been recently reported at brain stem level. Aim of this work was to test whether acute TNS modulates brain stem plasticity using the blink reflex (BR) as a model. The BR was recorded from 20 healthy volunteers before and after 20 min of cyclic transcutaneous TNS delivered bilaterally to the infraorbital nerve. Eleven subjects underwent sham-TNS administration and were compared to the real-TNS group. In 12 subjects, effects of unilateral TNS were tested. The areas of the R1 and R2 components of the BR were recorded before and after 0 (T0), 15 (T15), 30 (T30), and 45 (T45) min from TNS. In three subjects, T60 and T90 time points were also evaluated. Ipsi- and contralateral R2 areas were significantly suppressed after bilateral real-TNS at T15 (p = 0.013), T30 (p = 0.002), and T45 (p = 0.001), while R1 response appeared unaffected. The TNS-induced inhibitory effect on R2 responses lasted up to 60 min. Real- and sham-TNS protocols produced significantly different effects (p = 0.005), with sham-TNS being ineffective at any time point tested. Bilateral TNS was more effective (p = 0.009) than unilateral TNS. Acute TNS induced a bilateral long-lasting inhibition of the R2 component of the BR, which resembles a long-term depression-like effect, providing evidence of brain stem plasticity produced by transcutaneous TNS. These findings add new insight into mechanisms of TNS neuromodulation and into physiopathology of those neurological disorders where clinical benefits of TNS are recognized.
Collapse
Affiliation(s)
- Giovanna Pilurzi
- Neurological Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 10, 07100, Sassari, Italy.
| | - Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
| | - Francesca Ginatempo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, 09042, Monserrato, Italy.
| | - Eusebio Tolu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
| |
Collapse
|
11
|
Mercante B, Pilurzi G, Ginatempo F, Manca A, Follesa P, Tolu E, Deriu F. Trigeminal nerve stimulation modulates brainstem more than cortical excitability in healthy humans. Exp Brain Res 2015; 233:3301-11. [DOI: 10.1007/s00221-015-4398-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022]
|
12
|
Jiang H, Liu H, Liu G, Jin Z, Wang L, Ma J, Li H. Analysis of brain activity involved in chewing-side preference during chewing: an fMRI study. J Oral Rehabil 2014; 42:27-33. [PMID: 25159029 DOI: 10.1111/joor.12224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 11/26/2022]
Affiliation(s)
- H. Jiang
- Department of Stomatology; Chinese PLA General Hospital; Beijing China
| | - H. Liu
- Department of Stomatology; Chinese PLA General Hospital; Beijing China
| | - G. Liu
- Department of Magnetic Resonance Imaging; PLA 306 Hospital; Beijing China
| | - Z. Jin
- Department of Magnetic Resonance Imaging; PLA 306 Hospital; Beijing China
| | - L. Wang
- Department of Stomatology; Chinese PLA General Hospital; Beijing China
| | - J. Ma
- Department of Stomatology; Chinese PLA General Hospital; Beijing China
| | - H. Li
- Department of Stomatology; Chinese PLA General Hospital; Beijing China
| |
Collapse
|
13
|
Nakamura S, Nakayama K, Mochizuki A, Sato F, Haque T, Yoshida A, Inoue T. Electrophysiological and morphological properties of rat supratrigeminal premotor neurons targeting the trigeminal motor nucleus. J Neurophysiol 2014; 111:1770-82. [PMID: 24501266 DOI: 10.1152/jn.00276.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The electrophysiological and morphological characteristics of premotor neurons in the supratrigeminal region (SupV) targeting the trigeminal motor nucleus (MoV) were examined in neonatal rat brain stem slice preparations with Ca(2+) imaging, whole cell recordings, and intracellular biocytin labeling. First, we screened SupV neurons that showed a rapid rise in intracellular free Ca(2+) concentration ([Ca(2+)]i) after single-pulse electrical stimulation of the ipsilateral MoV. Subsequent whole cell recordings were generated from the screened SupV neurons, and their antidromic responses to MoV stimulation were confirmed. We divided the antidromically activated premotor neurons into two groups according to their discharge patterns during the steady state in response to 1-s depolarizing current pulses: those firing at a frequency higher (HF neurons, n = 19) or lower (LF neurons, n = 17) than 33 Hz. In addition, HF neurons had a narrower action potential and a larger afterhyperpolarization than LF neurons. Intracellular labeling revealed that the axons of all HF neurons (6/6) and half of the LF neurons (4/9) entered the MoV from its dorsomedial aspect, whereas the axons of the remaining LF neurons (5/9) entered the MoV from its dorsolateral aspect. Furthermore, the dendrites of three HF neurons penetrated into the principal sensory trigeminal nucleus (Vp), whereas the dendrites of all LF neurons were confined within the SupV. These results suggest that the types of SupV premotor neurons targeting the MoV with different firing properties have different dendritic and axonal morphologies, and these SupV neuron classes may play unique roles in diverse oral motor behaviors, such as suckling and mastication.
Collapse
Affiliation(s)
- Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan; and
| | | | | | | | | | | | | |
Collapse
|
14
|
Frisardi G, Iani C, Sau G, Frisardi F, Leornadis C, Lumbau A, Enrico P, Sirca D, Staderini EM, Chessa G. A relationship between bruxism and orofacial-dystonia? A trigeminal electrophysiological approach in a case report of pineal cavernoma. Behav Brain Funct 2013; 9:41. [PMID: 24165294 PMCID: PMC3874619 DOI: 10.1186/1744-9081-9-41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/17/2013] [Indexed: 11/10/2022] Open
Abstract
Background In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. Methods Electrophysiological studies included bilateral electrical transcranial stimulation of the trigeminal roots, analysis of the jaw jerk reflex, recovery cycle of masseter inhibitory reflex, and a magnetic resonance imaging study of the brain. Results The neuromuscular responses of the left- and right-side bilateral trigeminal motor potentials showed a high degree of symmetry in latency (1.92 ms and 1.96 ms, respectively) and amplitude (11 mV and 11.4 mV, respectively), whereas the jaw jerk reflex amplitude of the right and left masseters was 5.1 mV and 8.9 mV, respectively. The test stimulus for the recovery cycle of masseter inhibitory reflex evoked both silent periods at an interstimulus interval of 150 ms. The duration of the second silent period evoked by the test stimulus was 61 ms and 54 ms on the right and left masseters, respectively, which was greater than that evoked by the conditioning stimulus (39 ms and 35 ms, respectively). Conclusions We found evidence of activation and peripheral sensitization of the nociceptive fibers, the primary and secondary nociceptive neurons in the central nervous system, and the endogenous pain control systems (including both the inhibitory and facilitatory processes), in the tested subject. These data suggest that bruxism and central orofacial pain can coexist, but are two independent symptoms, which may explain why numerous experimental and clinical studies fail to reach unequivocal conclusions.
Collapse
|
15
|
Effects of medullary lesions on conditional pacemaker activity of neonatal rat hypoglossal motoneurons in vitro. Neurosci Res 2013; 76:42-51. [PMID: 23542043 DOI: 10.1016/j.neures.2013.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/28/2013] [Accepted: 03/17/2013] [Indexed: 11/21/2022]
Abstract
N-methyl-D-aspartate (NMDA) has been demonstrated to induce rhythmic activity in various neurons, including hypoglossal motoneurons (XIIms) and converts them to conditional pacemakers. Using whole-cell patch clamp recording in a slice preparation from neonatal rats, we confirmed that some XIIms act as conditional pacemakers, with TTX-insensitivity and a burst period that is voltage-dependent during NMDA application. Other XIIms in this study only fired tonically with NMDA application. Effects of medullary structures on conditional pacemaker XIIms were assessed using lesioned preparations. As a result, NMDA-induced rhythm (NIR) in the XIIm was observed with ventral lesions (excluding inspiratory neurons) and with dorsal lesions (excluding the swallowing center located in the nucleus of the solitary tract). The NIR was also observed with lateral lesions, but with a significantly decreased burst period. These data suggest that NMDA receptor activation selects a subset of XIIms and changes them to pacemakers whose properties can be altered by their excitability. The data also demonstrate that structures fundamental to the NIR are located within the area near the XII nucleus, indicating that the NIR is distinct from inspiratory and swallowing activities. The lateral medulla is considered to be a source of modulation of the excitability of XIIms.
Collapse
|
16
|
Response properties of temporomandibular joint mechanosensitive neurons in the trigeminal sensory complex of the rabbit. Exp Brain Res 2012; 222:113-23. [PMID: 22855309 DOI: 10.1007/s00221-012-3200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The neurophysiological properties of neurons sensitive to TMJ movement (TMJ neurons) in the trigeminal sensory complex (Vcomp) during passive movement of the isolated condyle were examined in 46 rabbits. Discharges of TMJ neurons from the rostral part of the Vcomp were recorded with a microelectrode when the isolated condyle was moved manually and with a computer-regulated mechanostimulator. A total of 443 neurons responding to mechanical stimulation of the face and oral cavity were recorded from the brainstem. Twenty-one TMJ neurons were detected rostrocaudally from the dorsal part of the trigeminal principal sensory nucleus (NVsnpr), subnucleus oralis of the trigeminal spinal nucleus, and reticular formation surrounding the trigeminal motor nucleus. Most of the TMJ neurons were located in the dorso-rostral part of the NVsnpr. Of the TMJ units recorded, 90 % were slowly adapting and 26 % had an accompanying resting discharge. The majority (86 %) of the TMJ units responded to the movement of the isolated condyle in the anterior and/or ventral directions, and half were sensitive to the condyle movement in a single direction. The discharge frequencies of TMJ units increased as the condyle displacement and constant velocity (5 mm/s) increased within a 5-mm anterior displacement of the isolated condyle. Based on these results, we conclude that sensory information is processed by TMJ neurons encoding at least joint position and displacement in the physiological range of mandibular displacement.
Collapse
|
17
|
Nonaka M, Nishimura A, Nakamura S, Nakayama K, Mochizuki A, Iijima T, Inoue T. Convergent Pre-motoneuronal Inputs to Single Trigeminal Motoneurons. J Dent Res 2012; 91:888-93. [DOI: 10.1177/0022034512453724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Because pre-motor neurons targeting trigeminal motoneurons are located in various regions, including the supratrigeminal (SupV) and intertrigeminal (IntV) regions, the principal sensory trigeminal nucleus (PrV), and the region dorsal to the PrV (dRt), a single trigeminal motoneuron may receive differential convergent inputs from these regions. We thus examined the properties of synaptic inputs from these regions to masseter motoneurons (MMNs) and digastric motoneurons (DMNs) in brainstem slice preparations obtained from P1-5 neonatal rats, using whole-cell recordings and laser photolysis of caged glutamate. Photostimulation of multiple regions within the SupV, IntV, PrV, and dRt induced post-synaptic currents (PSCs) in 14 of 19 MMNs and 18 of 26 DMNs. Furthermore, the stimulation of the lateral SupV significantly induced burst PSCs in MMNs more often than low-frequency PSCs in MMNs or burst PSCs in DMNs. Similar results were obtained in the presence of the GABAA receptor antagonist SR95531 and the glycine receptor antagonist strychnine. These results suggest that both neonatal MMNs and DMNs receive convergent glutamatergic inputs from the SupV, IntV, PrV, and dRt, and that the lateral SupV sends burst inputs predominantly to the MMNs. Such convergent pre-motoneuronal inputs to trigeminal motoneurons may contribute to the proper execution of neonatal oro-motor functions.
Collapse
Affiliation(s)
- M. Nonaka
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - A. Nishimura
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - S. Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - K. Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - A. Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Iijima
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
18
|
Morquette P, Lavoie R, Fhima MD, Lamoureux X, Verdier D, Kolta A. Generation of the masticatory central pattern and its modulation by sensory feedback. Prog Neurobiol 2012; 96:340-55. [PMID: 22342735 DOI: 10.1016/j.pneurobio.2012.01.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/16/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
The basic pattern of rhythmic jaw movements produced during mastication is generated by a neuronal network located in the brainstem and referred to as the masticatory central pattern generator (CPG). This network composed of neurons mostly associated to the trigeminal system is found between the rostral borders of the trigeminal motor nucleus and facial nucleus. This review summarizes current knowledge on the anatomical organization, the development, the connectivity and the cellular properties of these trigeminal circuits in relation to mastication. Emphasis is put on a population of rhythmogenic neurons in the dorsal part of the trigeminal sensory nucleus. These neurons have intrinsic bursting capabilities, supported by a persistent Na(+) current (I(NaP)), which are enhanced when the extracellular concentration of Ca(2+) diminishes. Presented evidence suggest that the Ca(2+) dependency of this current combined with its voltage-dependency could provide a mechanism for cortical and sensory afferent inputs to the nucleus to interact with the rhythmogenic properties of its neurons to adjust and adapt the rhythmic output. Astrocytes are postulated to contribute to this process by modulating the extracellular Ca(2+) concentration and a model is proposed to explain how functional microdomains defined by the boundaries of astrocytic syncitia may form under the influence of incoming inputs.
Collapse
Affiliation(s)
- Philippe Morquette
- Groupe de Recherche sur le Système Nerveux Central du FRSQ, Université de Montréal and Faculté de médecine dentaire, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
19
|
CASTROFLORIO T, FALLA D, WANG K, SVENSSON P, FARINA D. Effect of experimental jaw-muscle pain on the spatial distribution of surface EMG activity of the human masseter muscle during tooth clenching. J Oral Rehabil 2011; 39:81-92. [DOI: 10.1111/j.1365-2842.2011.02246.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Geis HR, Schmid S. Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle. Neurosci Res 2011; 71:114-23. [PMID: 21726589 DOI: 10.1016/j.neures.2011.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 01/24/2023]
Abstract
The mammalian startle response is controlled by glycine inhibition in the spinal cord. Evidence for additional glycine inhibition on the level of the brainstem, namely in the caudal pontine reticular nucleus (PnC), is controversial. Startle mediating PnC neurons receive fast input from sensory pathways and project to cranial and spinal motoneurons. Synaptic depression in the sensory synapses in the PnC has been indicated as underlying mechanism of short-term habituation of startle. We here performed patch-clamp recordings of PnC giant neurons in rat brain slices to test the hypothesis that the activation of glycine receptors inhibits PnC neurons and that this inhibition is involved in synaptic depression in the PnC. Glycine strongly inhibited PnC neuron activity and synaptic signalling, indicating that functional glycine receptors mediate a powerful inhibition of PnC neurons over a wide range of glycine concentrations. Strychnine reversed all glycine effects, but had no effect on PnC neurons itself. Thus, we found no evidence for a tonic glycine inhibition or for glycine activation within the primary startle pathway indicating that baseline startle reactions are unlikely to be controlled by glycine in the PnC. Most importantly, synaptic depression underlying short-term habituation was not affected by glycine or strychnine.
Collapse
|
21
|
Westberg KG, Kolta A. The trigeminal circuits responsible for chewing. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:77-98. [PMID: 21708308 DOI: 10.1016/b978-0-12-385198-7.00004-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mastication is a vital function that ensures that ingested food is broken down into pieces and prepared for digestion. This review outlines the masticatory behavior in terms of the muscle activation patterns and jaw movements and gives an overview of the organization and function of the trigeminal neuronal circuits that are known to take part in the generation and control of oro-facial motor functions. The basic pattern of rhythmic jaw movements produced during mastication is generated by a Central Pattern Generator (CPG) located in the pons and medulla. Neurons within the CPG have intrinsic properties that produce a rhythmic activity, but the output of these neurons is modified by inputs that descend from the higher centers of the brain, and by feedback from sensory receptors, in order to constantly adapt the movement to the food properties.
Collapse
Affiliation(s)
- Karl-Gunnar Westberg
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
22
|
Bernier AP, Arsenault I, Lund JP, Kolta A. Effect of the Stimulation of Sensory Inputs on the Firing of Neurons of the Trigeminal Main Sensory Nucleus in the Rat. J Neurophysiol 2010; 103:915-23. [PMID: 19955291 DOI: 10.1152/jn.91109.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mastication can be triggered by repetitive stimulation of the cortex or of sensory inputs, but is patterned by a brain stem central pattern generator (CPG). This CPG may include the dorsal part of the principal trigeminal sensory nucleus (NVsnpr), where neurons burst repetitively when the extracellular concentration of Ca2+ ([Ca2+]e) drops. We examined the effects of repetitive stimulation of sensory afferents of the trigeminal tract on activity of NVsnpr neurons recorded extracellularly in vitro under physiologic [Ca2+]e (1.6 mM). Spontaneously active cells had either a tonic ( n = 145) or a bursting ( n = 46) firing pattern. Afferent stimulation altered burst duration and/or burst frequency in bursting cells and firing frequency in most tonic cells. In 28% of the latter, the firing pattern switched to rhythmic bursting. This effect could be mimicked by local application of N-methyl-d-aspartate and blocked by APV but not DNQX. Detailed analysis showed that rhythm indices (RIs) of 35 tonic neurons that were negative (nonrhythmic) before stimulation became significantly rhythmic (RI ≥ 0.01) after stimulation. Mean and median bursting frequency of these units were 8.32 ± 0.72 (SE) Hz and 6.25 Hz (range, 2.5–17.5 Hz). In seven instances, two units were recorded simultaneously, and cross-correlation analysis showed that firing of six pairs was rhythmic and synchronized after stimulation. Optimal stimulation parameters for eliciting rhythmic bursting consisted in 500-ms trains of pulses delivered at 40–60 Hz. Together, our results show that repetitive stimulation of sensory afferents in vitro can elicit masticatory-like rhythmic bursting in NVsnpr neurons at physiological [Ca2+]e.
Collapse
Affiliation(s)
- A. P. Bernier
- Groupe de Recherche sur le Système Nerveux Central du Fonds de la Recherche en Santé du Québec, Université de Montréal
| | - I. Arsenault
- Groupe de Recherche sur le Système Nerveux Central du Fonds de la Recherche en Santé du Québec, Université de Montréal
| | - J. P. Lund
- Groupe de Recherche sur le Système Nerveux Central du Fonds de la Recherche en Santé du Québec, Université de Montréal
- Faculty of Dentistry, McGill University; and
| | - A. Kolta
- Groupe de Recherche sur le Système Nerveux Central du Fonds de la Recherche en Santé du Québec, Université de Montréal
- Faculty of Dentistry, McGill University; and
- Faculté de Médecine Dentaire, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Okamoto R, Enomoto A, Koizumi H, Tanaka S, Ishihama K, Kogo M. Long-term potentiation of intrinsic excitability in trigeminal motoneurons. Brain Res 2010; 1312:32-40. [DOI: 10.1016/j.brainres.2009.11.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
24
|
Properties of synaptic transmission from the reticular formation dorsal to the facial nucleus to trigeminal motoneurons during early postnatal development in rats. Neuroscience 2010; 166:1008-22. [PMID: 20060035 DOI: 10.1016/j.neuroscience.2009.12.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 11/30/2009] [Accepted: 12/26/2009] [Indexed: 11/20/2022]
Abstract
We previously reported that electrical stimulation of the reticular formation dorsal to the facial nucleus (RdVII) elicited excitatory masseter responses at short latencies and that RdVII neurons were antidromically activated by stimulation of the trigeminal motor nucleus (MoV), suggesting that excitatory premotor neurons targeting the MoV are likely located in the RdVII. We thus examined the properties of synaptic transmission from the RdVII to jaw-closing and jaw-opening motoneurons in horizontal brainstem preparations from developing rats using voltage-sensitive dye, patch-clamp recordings and laser photostimulation. Electrical stimulation of the RdVII evoked optical responses in the MoV. Combined bath application of the non-N-methyl-d-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (APV) reduced these optical responses, and addition of the glycine receptor antagonist strychnine and the GABA(A) receptor antagonist bicuculline further reduced the remaining responses. Electrical stimulation of the RdVII evoked postsynaptic currents (PSCs) in all 19 masseter motoneurons tested in postnatal day (P)1-4 rats, and application of CNQX and the NMDA receptor antagonist (+/-)-3(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) reduced the PSC amplitudes by more than 50%. In the presence of CNQX and CPP, the GABA(A) receptor antagonist SR95531 further reduced PSC amplitude, and addition of strychnine abolished the remaining PSCs. Photostimulation of the RdVII with caged glutamate also evoked PSCs in masseter motoneurons of P3-4 rats. In P8-11 rats, electrical stimulation of the RdVII also evoked PSCs in all 14 masseter motoneurons tested, and the effects of the antagonists on the PSCs were similar to those in P1-4 rats. On the other hand, RdVII stimulation evoked PSCs in only three of 16 digastric motoneurons tested. These results suggest that both neonatal and juvenile jaw-closing motoneurons receive strong synaptic inputs from the RdVII through activation of glutamate, glycine and GABA(A) receptors, whereas inputs from the RdVII to jaw-opening motoneurons seem to be weak.
Collapse
|
25
|
Oprisan SA. Existence and stability criteria for phase-locked modes in ring neural networks based on the spike time resetting curve method. J Theor Biol 2010; 262:232-44. [DOI: 10.1016/j.jtbi.2009.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 09/20/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
|
26
|
Kolta A, Morquette P, Lavoie R, Arsenault I, Verdier D. Modulation of rhythmogenic properties of trigeminal neurons contributing to the masticatory CPG. BREATHE, WALK AND CHEW: THE NEURAL CHALLENGE: PART I 2010; 187:137-48. [DOI: 10.1016/b978-0-444-53613-6.00009-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Kanematsu T, Fujii M, Tanaka H, Umebayashi H, Hirata M. Surface Expression of GABAA Receptors. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Central pattern generation involved in oral and respiratory control for feeding in the term infant. Curr Opin Otolaryngol Head Neck Surg 2009; 17:187-93. [PMID: 19417662 DOI: 10.1097/moo.0b013e32832b312a] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Drinking and eating are essential skills for survival and benefit from the coordination of several pattern generating networks and their musculoskeletal effectors to achieve safe swallows. Oralpharyngoesophageal motility develops during infancy and early childhood, and is influenced by various factors, including neuromuscular maturation, dietary and postural habits, arousal state, ongoing illnesses, congenital anomalies, and the effects of medical or surgical interventions. Gastroesophageal reflux is frequent in neonates and infants, and its role in neonatal morbidity including dysphagia, chronic lung disease, or apparent life-threatening events is not well understood. This review highlights recent studies aimed at understanding the development of oral feeding skills, and cross-system interactions among the brainstem, spinal, and cerebral networks involved in feeding. RECENT FINDINGS Functional linkages between suck-swallow and swallow-respiration manifest transitional forms during late gestation through the first year of life, which can be delayed or modified by sensory experience or disease processes, or both. Relevant central pattern generator (CPG) networks and their neuromuscular targets attain functional status at different rates, which ultimately influences cross-system CPG interactions. Entrainment of trigeminal primary afferents accelerates pattern genesis for the suck CPG and transition-to-oral feed in the RDS preterm infant. SUMMARY The genesis of within-system CPG control for rate and amplitude scaling matures differentially for suck, mastication, swallow, and respiration. Cross-system interactions among these CPGs represent targets of opportunity for new interventions, which optimize experience-dependent mechanisms to promote safe swallows among newborn and pediatric patients.
Collapse
|
29
|
Yoshida A, Taki I, Chang Z, Iida C, Haque T, Tomita A, Seki S, Yamamoto S, Masuda Y, Moritani M, Shigenaga Y. Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract tracing. J Comp Neurol 2009; 514:368-86. [DOI: 10.1002/cne.22013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Nakamura S, Inoue T, Nakajima K, Moritani M, Nakayama K, Tokita K, Yoshida A, Maki K. Synaptic Transmission From the Supratrigeminal Region to Jaw-Closing and Jaw-Opening Motoneurons in Developing Rats. J Neurophysiol 2008; 100:1885-96. [DOI: 10.1152/jn.01145.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The supratrigeminal region (SupV) receives abundant orofacial sensory inputs and descending inputs from the cortical masticatory area and contains premotor neurons that target the trigeminal motor nucleus (MoV). Thus it is possible that the SupV is involved in controlling jaw muscle activity via sensory inputs during mastication. We used voltage-sensitive dye, laser photostimulation, patch-clamp recordings, and intracellular biocytin labeling to investigate synaptic transmission from the SupV to jaw-closing and jaw-opening motoneurons in the MoV in brain stem slice preparations from developing rats. Electrical stimulation of the SupV evoked optical responses in the MoV. An antidromic optical response was evoked in the SupV by MoV stimulation, whereas synaptic transmission was suppressed by substitution of external Ca2+ with Mn2+. Photostimulation of the SupV with caged glutamate evoked rapid inward currents in the trigeminal motoneurons. Gramicidin-perforated and whole cell patch-clamp recordings from masseter motoneurons (MMNs) and digastric motoneurons (DMNs) revealed that glycinergic and GABAergic postsynaptic responses evoked in MMNs and DMNs by SupV stimulation were excitatory in P1–P4 neonatal rats and inhibitory in P9–P12 juvenile rats, whereas glutamatergic postsynaptic responses evoked by SupV stimulation were excitatory in both neonates and juveniles. Furthermore, the axons of biocytin-labeled SupV neurons that were antidromically activated by MoV stimulation terminated in the MoV. Our results suggest that inputs from the SupV excite MMNs and DMNs through activation of glutamate, glycine, and GABAA receptors in neonates, whereas glycinergic and GABAergic inputs from the SupV inhibit MMNs and DMNs in juveniles.
Collapse
|
31
|
McDavid S, Verdier D, Lund JP, Kolta A. Electrical properties of interneurons found within the trigeminal motor nucleus. Eur J Neurosci 2008; 28:1136-45. [DOI: 10.1111/j.1460-9568.2008.06413.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Yamamoto M, Moritani M, Chang Z, Taki I, Tomita A, Ono T, Bae YC, Shigenaga Y, Yoshida A. The somatotopic organization of trigeminal premotoneurons in the cat brainstem. Brain Res 2007; 1149:111-7. [PMID: 17407766 DOI: 10.1016/j.brainres.2007.02.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/19/2007] [Accepted: 02/20/2007] [Indexed: 11/16/2022]
Abstract
This study was performed to complement the results of prior intracellular recording and labeling studies by investigating the general distribution pattern of trigeminal premotoneurons in the cat brainstem using the retrograde tracing methods. The results of the present study reconfirmed the presence of premotoneurons in the trigeminal principal and oral nuclei following horseradish peroxidase injections into the jaw-opening (JO) or jaw-closing (JC) nucleus. Furthermore, we found that labeled cells from the JO nucleus and JC nucleus located in the reticular regions surrounding the trigeminal motor nucleus (Vmo; Vmo shell region) were arranged in a topographic fashion, while those in the parabrachial nucleus, supratrigeminal nucleus, lateral reticular formation caudal to the shell region and raphe nuclei were intermingled with each other. The labeling in the individual nuclei was bilateral with an ipsilateral predominance to each injection site, with the exception of the mesencephalic trigeminal nucleus, where the labeling was ipsilateral to the injection site in the JC nucleus. These results, combined with the data of the previous intracellular tracing studies, indicate that based on the presence of somatotopic organization, premotoneurons can be largely divided into two groups; those projecting to either the JO or the JC nucleus and those projecting to the two nuclei, and we offer the suggestion that roles of premotoneurons for jaw movements differ among the individual nuclei.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hsiao CF, Gougar K, Asai J, Chandler SH. Intrinsic membrane properties and morphological characteristics of interneurons in the rat supratrigeminal region. J Neurosci Res 2007; 85:3673-86. [PMID: 17668857 DOI: 10.1002/jnr.21442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The membrane properties and morphological features of interneurons in the supratrigeminal area (SupV) were studied in rat brain slices using whole-cell patch clamp recording techniques. We classified three morphological types of neurons as fusiform, pyramidal, and multipolar and four physiological types of neurons according to their discharge pattern in response to a 1-sec depolarizing current pulse from -80 mV. Single-spike neurons responded with a single spike, phasic neurons showed an initial burst of spikes and were silent during the remainder of the stimulus, delayed-firing (DF) neurons exhibited a slow depolarization and delay to initial spike onset, and tonic (T) neurons showed maintained a discharge throughout the stimulus pulse. In a subpopulation of neurons (10%), membrane depolarization to around -44 mV produced a rhythmic burst discharge (RB) that was associated with voltage-dependent subthreshold membrane oscillations. Both these phenomena were blocked by the sodium channel blocker riluzole at a concentration that did not affect the fast transient spike. Low doses of 4-AP, which blocks low-threshold K+ currents, transformed bursting into low-frequency tonic discharge. In contrast, bursting occurred with exposure to cadium, a calcium-channel blocker. This suggests that persistent sodium currents and low-threshold K+ currents have a role in intrinsic burst generation. Importantly, RB cells were most often associated with multipolar neurons that exhibited either a DF or a T discharge. Thus, the SupV contains a variety of physiological cell types with unique morphologies and discharge characteristics. Intrinsic bursting neurons form a unique group in this region. .
Collapse
Affiliation(s)
- Chie-Fang Hsiao
- Department of Physiological Science and the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
34
|
Kolta A, Brocard F, Verdier D, Lund JP. A review of burst generation by trigeminal main sensory neurons. Arch Oral Biol 2006; 52:325-8. [PMID: 17178100 DOI: 10.1016/j.archoralbio.2006.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 11/18/2022]
Abstract
In this paper, we present evidence that neurons in the dorsal part of the trigeminal main sensory nucleus participate in the patterning of mastication. These neurons have special membrane properties that allow them to generate rhythmical bursts of action potentials in the frequency range of natural mastication even when cut off from synaptic inputs. These properties mature during the third postnatal week in rats at the same time as mastication begins. Finally, we present evidence that a reduction on extracellular calcium concentration is an important step in the initiation of mastication.
Collapse
Affiliation(s)
- Arlette Kolta
- Faculté de médecine dentaire, Université de Montréal, Canada.
| | | | | | | |
Collapse
|
35
|
Lund JP, Kolta A. Brainstem circuits that control mastication: do they have anything to say during speech? JOURNAL OF COMMUNICATION DISORDERS 2006; 39:381-90. [PMID: 16884732 DOI: 10.1016/j.jcomdis.2006.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/12/2006] [Indexed: 05/11/2023]
Abstract
UNLABELLED Mastication results from the interaction of an intrinsic rhythmical neural pattern and sensory feedback from the mouth, muscles and joints. The pattern is matched to the physical characteristics of food, but also varies with age. There are large differences in masticatory movements among subjects. The intrinsic rhythmical pattern is generated by an assembly of neurons called a central pattern generator (CPG) located in the pons and medulla. The CPG receives inputs from higher centers of the brain, especially from the inferio-lateral region of the sensorimotor cortex and from sensory receptors. Mechanoreceptors in the lips and oral mucosa, in muscles, and in the periodontal ligaments around the roots of the teeth have particularly powerful effects on movement parameters. The central pattern generator includes a core group of neurons with intrinsic bursting properties, as well as a variety of other neurons that receive inputs from oral and muscle spindle afferents. Reorganization of subpopulations of neurons within the CPG underlies changes in movement pattern. In addition to controlling motoneurons supplying the jaw, tongue, and facial muscles, the CPG also modulates reflex circuits. It is proposed that these brainstem circuits also participate in the control of human speech. LEARNING OUTCOMES Readers will be able to: (1) describe the general location and function of the central pattern generator for mastication, (2) identify the primary nuclei involved in the central pattern generator for mastication, (3) describe the general interactions among the central pattern generators of speech, mastication, respiration, and locomotion, and (4) compare/relate the brainstem systems controlling mastication and speech.
Collapse
Affiliation(s)
- James P Lund
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Que. H3A 2B2, Canada.
| | | |
Collapse
|
36
|
Lund JP, Kolta A. Generation of the Central Masticatory Pattern and Its Modification by Sensory Feedback. Dysphagia 2006; 21:167-74. [PMID: 16897322 DOI: 10.1007/s00455-006-9027-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian mastication results from the interaction of an intrinsic rhythmical neural pattern and sensory feedback generated by the interaction of the effecter system (muscles, bones, joints, teeth, soft tissues) with food. The main variables that explain variation in the pattern of human mastication are the subjects themselves, their age, the type of food being eaten, and time during a sequence of movements. The intrinsic pattern of mastication is generated by a central pattern generator (CPG) located in the pons and medulla. The output of the CPG is modified by inputs that descend from higher centers of the brain and by feedback from sensory receptors. Intraoral touch receptors, muscle spindles in the jaw-closing muscles, and specialized mechanoreceptors in the periodontal ligament have especially powerful effects on movement parameters.
Collapse
Affiliation(s)
- James P Lund
- Faculty of Dentistry, McGill University, Montreal, Quebec, H3A 2B2, Canada.
| | | |
Collapse
|
37
|
McDavid S, Lund JP, Auclair F, Kolta A. Morphological and immunohistochemical characterization of interneurons within the rat trigeminal motor nucleus. Neuroscience 2006; 139:1049-59. [PMID: 16529876 DOI: 10.1016/j.neuroscience.2006.01.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 01/19/2006] [Accepted: 01/21/2006] [Indexed: 11/24/2022]
Abstract
Three series of experiments were carried out to characterize interneurons located within the trigeminal motor nucleus of young rats aged 5-24 days. Cholera toxin injections were made bilaterally into the masseter and, sometimes, digastric muscles to label motoneurons. In the first set of experiments, thick slices were taken from the pontine brainstem and cholera toxin-positive and cholera toxin-negative neurons located inside the trigeminal motor nucleus were filled with biocytin through whole-cell recording patch electrodes. Positively identified motoneurons (cholera toxin+) of various shapes and sizes always had a thick, unbranched axon that entered the motor root following a tight zigzag course. Many cholera toxin-negative neurons were also classified as motoneurons after biocytin filling based on this particularity of their axon. These are probably either fusimotor motoneurons or motoneurons supplying other jaw muscles. The cholera toxin-negative neurons classified as interneurons differed markedly from motoneurons in that they had thin, usually branched axons that supplied the ipsilateral reticular region surrounding the trigeminal motor nucleus (peritrigeminal area), the main trigeminal sensory nucleus, the trigeminal mesencephalic nucleus, the medial reticular formation of both sides, and the contralateral medial peritrigeminal area. Most often, their dendrites were arranged in bipolar arbors that extended beyond the borders of the trigeminal motor nucleus into the peritrigeminal area. Immunohistochemistry against glutamate, GABA and glycine was used to further document the nature and distribution of putative interneurons. Immunoreactive neurons were uniformly distributed throughout the rostro-caudal extent of the trigeminal motor nucleus. Their concentration seemed greater toward the edges of the nucleus and they were scarce in the digastric motoneuron pool. Glutamate- outnumbered GABA- and glycine-immunoreactive neurons. There was no clear segregation between the three populations. In the final experiment, 1,1'-dioctadecyl-3,3,3',3'-tetra-methylindocarbocyanine perchlorate crystals were inserted into one trigeminal motor nucleus in thick slices and allowed to diffuse for several weeks. This procedure marked commissural fibers and interneurons in the contralateral trigeminal motor nucleus. Together these results conclusively support the existence of interneurons in the trigeminal motor nucleus.
Collapse
Affiliation(s)
- S McDavid
- Centre de Recherche en Sciences Neurologiques, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
38
|
Hatanaka N, Tokuno H, Nambu A, Inoue T, Takada M. Input-output organization of jaw movement-related areas in monkey frontal cortex. J Comp Neurol 2006; 492:401-25. [PMID: 16228989 DOI: 10.1002/cne.20730] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The brain mechanisms underlying mastication are not fully understood. To address this issue, we analyzed the distribution patterns of cortico-striatal and cortico-brainstem axon terminals and the origin of thalamocortical and intracortical fibers by injecting anterograde/retrograde tracers into physiologically and morphologically defined jaw movement-related cortical areas. Four areas were identified in the macaque monkey: the primary and supplementary orofacial motor areas (MIoro and SMAoro) and the principal and deep parts of the cortical masticatory area (CMaAp and CMaAd), where intracortical microstimulation produced single twitch-like or rhythmic jaw movements, respectively. Tracer injections into these areas labeled terminals in the ipsilateral putamen in a topographic fashion (MIoro vs. SMAoro and CMaAp vs. CMaAd), in the lateral reticular formation and trigeminal sensory nuclei contralaterally (MIoro and CMaAp) or bilaterally (SMAoro) in a complex manner of segregation vs. overlap, and in the medial parabranchial and Kölliker-Fuse nuclei contralaterally (CMaAd). The MIoro and CMaAp received thalamic projections from the ventrolateral and ventroposterolateral nuclei, the SMAoro from the ventroanterior and ventrolateral nuclei, and the CMaAd from the ventroposteromedial nucleus. The MIoro, SMAoro, CMaAp, and CMaAd received intracortical projections from the ventral premotor cortex and primary somatosensory cortex, the ventral premotor cortex and rostral cingulate motor area, the ventral premotor cortex and area 7b, and various sensory areas. In addition, the MIoro and CMaAp received projections from the three other jaw movement-related areas. Our results suggest that the four jaw movement-related cortical areas may play important roles in the formation of distinctive masticatory patterns.
Collapse
Affiliation(s)
- Nobuhiko Hatanaka
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Japan
| | | | | | | | | |
Collapse
|
39
|
Takamatsu J, Inoue T, Tsuruoka M, Suganuma T, Furuya R, Kawawa T. Involvement of reticular neurons located dorsal to the facial nucleus in activation of the jaw-closing muscle in rats. Brain Res 2006; 1055:93-102. [PMID: 16087167 DOI: 10.1016/j.brainres.2005.06.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Revised: 06/27/2005] [Accepted: 06/29/2005] [Indexed: 11/18/2022]
Abstract
The location of excitatory premotor neurons for jaw-closing motoneurons was examined by the use of electrical and chemical stimulation and extracellular single-unit recording techniques in the anesthetized rat. Single-pulse electrical stimulation of the supratrigeminal region (SupV) and the reticular formation dorsal to the facial nucleus (RdVII) elicited masseter EMG response at mean (+/-SD) latencies of 2.22 +/- 0.59 ms and 3.10 +/- 1.14 ms, respectively. Microinjection (0.1-0.3 microl) of glutamate (50 mM) or kainate (0.5-100 microM) into RdVII increased masseter nerve activity in artificially ventilated and immobilized rats by 30.2 +/- 40.5% and 50.7 +/- 46.8% compared to baseline values, respectively. Forty reticular neurons were antidromically activated by stimulation of the ipsilateral trigeminal motor nucleus (MoV). Twenty neurons were found in RdVII, and the remaining 20 neurons were located in SupV, or areas adjacent to SupV or RdVII. Eleven neurons in RdVII responded to at least either passive jaw opening or light pressure applied to the teeth or tongue. Nine neurons responded to passive jaw opening. Five of the nine neurons responded to multiple stimulus categories. A monosynaptic excitatory projection from one neuron in RdVII was detected by spike-triggered averaging of the rectified masseter nerve activity. We suggest that reticular neurons in RdVII are involved in increasing masseter muscle activity and that excitatory premotor neurons for masseter motoneurons are likely located in this area. RdVII could be an important candidate for controlling activity of jaw-closing muscles via peripheral inputs.
Collapse
Affiliation(s)
- Junichi Takamatsu
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Ambrosio-Mouser C, Nadim F, Bose A. The effects of varying the timing of inputs on a neural oscillator. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2006; 5:108-139. [PMID: 21052553 PMCID: PMC2968756 DOI: 10.1137/050625795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The gastric mill network of the stomatogastric ganglion of the crab Cancer borealis is comprised of a set of neurons that require modulatory input from outside the stomatogastric ganglion and input from the pyloric network of the animal in order to oscillate. Here we study how the frequency of the gastric mill network is determined when it receives rhythmic input from two different sources but where the timing of these inputs may differ. We find that over a certain range of the time difference one of the two rhythmic inputs plays no role what so ever in determining the network frequency, while in another range, both inputs work together to determine the frequency. The existence and stability of periodic solutions to model sets of equations are obtained analytically using geometric singular perturbation theory. The results are validated through numerical simulations. Comparisons to experiments are also presented.
Collapse
Affiliation(s)
- Christina Ambrosio-Mouser
- Department of Mathematics, Medgar Evers College, Brooklyn, NY 11225 and Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102
| | - Farzan Nadim
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102 and Department of Biological Sciences, Rutgers University at Newark, Newark, NJ 07102
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102
| |
Collapse
|
41
|
Athanassiadis T, Westberg KG, Olsson KA, Kolta A. Physiological characterization, localization and synaptic inputs of bursting and nonbursting neurons in the trigeminal principal sensory nucleus of the rat. Eur J Neurosci 2005; 22:3099-110. [PMID: 16367776 DOI: 10.1111/j.1460-9568.2005.04479.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A population of neurons in the trigeminal principal sensory nucleus (NVsnpr) fire rhythmically during fictive mastication induced in the in vivo rabbit. To elucidate whether these neurons form part of the central pattern generator (CPG) for mastication, we performed intracellular recordings in brainstem slices taken from young rats. Two cell types were defined, nonbursting (63%) and bursting (37%). In response to membrane depolarization, bursting cells, which dominated in the dorsal part of the NVsnpr, fired an initial burst followed by single spikes or recurring bursts. Non-bursting neurons, scattered throughout the nucleus, fired single action potentials. Microstimulation applied to the trigeminal motor nucleus (NVmt), the reticular border zone surrounding the NVmt, the parvocellular reticular formation or the nucleus reticularis pontis caudalis (NPontc) elicited a postsynaptic potential in 81% of the neurons tested for synaptic inputs. Responses obtained were predominately excitatory and sensitive to glutamatergic antagonists DNQX and/or APV. Some inhibitory and biphasic responses were also evoked. Bicuculline methiodide or strychnine blocked the IPSPs indicating that they were mediated by GABA(A) or glycinergic receptors. About one-third of the stimulations activated both types of neurons antidromically, mostly from the masseteric motoneuron pool of NVmt and dorsal part of NPontc. In conclusion, our new findings show that some neurons in the dorsal NVsnpr display both firing properties and axonal connections which support the hypothesis that they may participate in masticatory pattern generation. Thus, the present data provide an extended basis for further studies on the organization of the masticatory CPG network.
Collapse
Affiliation(s)
- T Athanassiadis
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
42
|
Dal Bo G, Lund JP, Verdier D, Kolta A. Inputs to nucleus pontis caudalis from adjacent trigeminal areas. Eur J Neurosci 2005; 22:1987-96. [PMID: 16262637 DOI: 10.1111/j.1460-9568.2005.04371.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent studies suggest that the nucleus pontis caudalis (nPontc) plays a role in patterning mastication through interactions with the adjacent lateral tegmentum. In this study, we used in vitro intracellular recording and staining to describe the basic membrane properties and morphology of nPontc neurones and to further explore interactions with adjacent structures, using coronal sections of the brainstem of 78 rats, aged 9-28 days. Neurones were large, with dendrites that spread in all directions, and about 64% fired tonically even in the absence of synaptic inputs. Tonic neurones were predominant in the centre of the nucleus. Electrical stimulation of all regions of the nPontc produced mixed excitatory and inhibitory effects on interneurones of lateral tegmental nuclei. Focal inactivation of the dorsal nPontc with injections of tetrodotoxin also had mixed effects on the spontaneous firing of both interneurones and motoneurones but similar injections in the ventral nPontc produced mostly increases of firing. Sixty-five percent of nPontc neurones received synaptic inputs from the lateral tegmental areas and most of these (68%) were excitatory and mediated by glutamatergic receptors. Inhibitory postsynaptic potentials were mediated by GABA(A) or glycinergic receptors. Although most responses occurred at relatively long latencies (> 2 ms), they could follow relatively high-frequency stimulation (> 50 Hz). Excitatory and inhibitory connections between ipsi- and contralateral nPontc neurones were also documented, which could contribute to bilateral coordination of jaw movements. This study provides evidence that the nPontc exerts both tonic and phasic influences on the premotor components of the masticatory central pattern generator.
Collapse
Affiliation(s)
- G Dal Bo
- Centre de Recherche en Sciences Neurologiques, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
43
|
Adaption of the central masticatory pattern to the biomechanical properties of food. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ics.2005.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Verdier D, Lund JP, Kolta A. Synaptic Inputs to Trigeminal Primary Afferent Neurons Cause Firing and Modulate Intrinsic Oscillatory Activity. J Neurophysiol 2004; 92:2444-55. [PMID: 15381749 DOI: 10.1152/jn.00279.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this paper, we investigated the influence of synapses on the cell bodies of trigeminal muscle spindle afferents that lie in the trigeminal mesencephalic nucleus (NVmes), using intracellular recordings in brain stem slices of young rats. Three types of synaptic responses could be evoked by electrical stimulation of the adjacent supratrigeminal, motor, and main sensory nuclei and the intertrigeminal area: monophasic depolarizing postsynaptic potentials (PSPs), biphasic PSPs, and all or none action potentials without underlying excitatory PSPs (EPSPs). Many PSPs and spikes were abolished by bath-application of 6,7-dinitroquinoxaline (DNQX) alone or combined with d,l-2-amino-5-phosphonovaleric acid (APV), suggesting that they are mediated by non– N-methyl-d-aspartate (NMDA) and NMDA glutamatergic receptors, while some action potentials were sensitive to bicuculline, indicating involvement of GABAA receptors. A number of cells showed spontaneous membrane potential oscillations, and stimulation of synaptic inputs increased the amplitude of the oscillations for several cycles, which often triggered repetitive firing. Furthermore, the oscillatory rhythm was reset by the stimulation. Our results show that synaptic inputs to muscle primary afferent neurons in NVmes from neighboring areas are mainly excitatory and that they cause firing. In addition, the inputs synchronize intrinsic oscillations, which may lead to sustained, synchronous firing in a subpopulation of afferents. This may be of importance during rapid biting and during the mastication of very hard or tough foods.
Collapse
Affiliation(s)
- Dorly Verdier
- Centre de Recherche en Sciences Neurologiques, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | | | | |
Collapse
|
45
|
Min MY, Hsu PC, Yang HW. The physiological and morphological characteristics of interneurons caudal to the trigeminal motor nucleus in rats. Eur J Neurosci 2004; 18:2981-98. [PMID: 14656294 DOI: 10.1111/j.1460-9568.2003.03030.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we have characterized the membrane properties and morphology of interneurons which lie between the caudal pole of the trigeminal motor nucleus and the rostral border of the facial motor nucleus. Previous studies suggest that many of these interneurons may participate in the genesis of rhythmical jaw movements. Saggital brainstem slices were taken from rats aged 5-8 days. Interneurons lying caudal to the trigeminal motor nucleus were visualized using near-infrared differential interference contrast (DIC) microscopy, and were recorded from using patch pipettes filled with a K-gluconate- and biocytin-based solution. The 127 neurons recorded could be categorized into three subtypes on the basis of their responses to injection of depolarizing current pulses, namely tonic firing (type I), burst firing (type II) and spike-adaptive (type III) neurons. Type I interneurons had a higher input resistance and a lower rheobase than type II neurons. All three neuron subtypes showed 'sag' of the voltage response to injection of large-amplitude hyperpolarizing current pulses, and, in addition, also showed rectification of the voltage response to injection of depolarizing current pulses, with type II neurons showing significantly greater rectification than type I neurons. The axonal arborizations were reconstructed for 44 of 63 neurons labelled with tracer. Neurons of each subtype were found to issue axon collaterals terminating in the brainstem nuclei, including the parvocellular reticular nucleus (PCRt), the trigeminal motor nucleus (Vmot), the supratrigeminal nucleus or the trigeminal mesencephalic nucleus. Twenty-five of the 43 neurons issued collaterals which terminated in the Vmot and the other brainstem nuclei. When viewed under 100x magnification, the collaterals of some interneurons were seen to give off varicosities and end-terminations which passed close to the somata of unidentified neurons in the trigeminal motor nucleus and in the area close to the interneuron soma itself. This suggests that the interneurons may make synaptic contacts both on motoneurons and also on nearby interneurons. These results provide data on the membrane properties of trigeminal interneurons and evidence for their synaptic connections both with nearby interneurons and also with motoneurons. Thus, the interneurons examined could play roles in the shaping, and possibly also in the generation, of rhythmical signals to trigeminal motoneurons.
Collapse
Affiliation(s)
- Ming-Yuan Min
- Department of Physiology, China Medical University, Taichung 404, Taiwan
| | | | | |
Collapse
|
46
|
Abstract
The main axons of mammalian sensory neurons are usually viewed as passive transmitters of sensory information. However, the spindle afferents of jaw-closing muscles behave as if action potential traffic along their central axons is phasically regulated during rhythmic jaw movements. In this paper, we used brainstem slices containing the cell bodies, stem axons, and central axons of these sensory afferents to show that GABA applied to the descending central (caudal) axon often abolished antidromic action potentials that were elicited by electrical stimulation of the tract containing the caudal axons of the recorded cells. This effect of GABA was most often not associated with a change in membrane potential of the soma and was still present in a calcium-free medium. It was mimicked by local applications of muscimol on the axons and was blocked by bath applications of picrotoxin, suggesting activation of GABA(A) receptors located on the descending axon. Antidromic action potentials could also be blocked by electrical stimulation of local interneurons, and this effect was prevented by bath application of picrotoxin, suggesting that it results from the activation of GABA(A) receptors after the release of endogenous GABA. We suggest that blockage is caused mainly by shunting within the caudal axon and that motor command circuits use this mechanism to disconnect the rostral and caudal compartments of the central axon, which allows the two parts of the neuron to perform different functions during movement.
Collapse
|
47
|
Inoue M, Nozawa-Inoue K, Donga R, Yamada Y. Convergence of selected inputs from sensory afferents to trigeminal premotor neurons with possible projections to masseter motoneurons in the rabbit. Brain Res 2002; 957:183-91. [PMID: 12443994 DOI: 10.1016/s0006-8993(02)03662-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peripheral input convergence on trigeminal premotor neurons in the vicinity of trigeminal motor nucleus has been investigated. Thirty neurons were identified by their antidromic responses to microstimulation of the masseteric subnucleus of trigeminal motor nucleus (NVmot-mass). Peripheral receptive fields were found in the buccal mucosae, periodontal ligaments, palate, tongue and vibrissae for 16 neurons located in the intertrigeminal area (NVint), supratrigeminal area (NVs), main sensory trigeminal nucleus (NVsnpr) and subnucleus gamma of the oral nucleus of the spinal trigeminal tract (NVspo-gamma). Eleven neurons in the NVint, NVs and NVspo-gamma responded to passive jaw opening: nine neurons were activated and two were inhibited. None of the neurons responded to both the orofacial mechanical stimulation and passive jaw opening. Forty-six percent of neurons (13 out of 28 tested) received inputs from the inferior alveolar nerve (IAN) and 53% of neurons (8 out of 15 tested) received inputs from the infraorbital nerve (ION). Out of 15 neurons tested for inputs from the IAN and ION, 7 neurons in the NVsnpr and NVspo-gamma received input from both. Sixteen percent of neurons (4 out of 25) received inputs from the masseteric nerve (MassN). None of the neurons with inputs from IAN and/or ION also received inputs from the MassN. We suggest that trigeminal premotor interneurons with projections to the NVmot-mass fall into two broad categories, those with inputs from the IAN and/or ION and those with inputs from the MassN, possibly muscle spindle afferents, and no neuron receiving inputs from both.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan.
| | | | | | | |
Collapse
|
48
|
Enomoto A, Kogo M, Koizumi H, Ishihama K, Yamanishi T. Localization of premotoneurons for an NMDA-induced repetitive rhythmical activity to TMNs. Neuroreport 2002; 13:2303-7. [PMID: 12488816 DOI: 10.1097/00001756-200212030-00027] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The localization or characteristics of the premotoneurons for trigeminal rhythmical activity have not been clarified. We investigated the localization of premotoneurons generating an NMDA-induced repetitive rhythmical activity to trigeminal motoneurons (TMNs). The minimal circuitry for this rhythmical activity was determined using a fragmented slice preparation of the isolated brain stem from neonatal rats (0-3 days old). We recorded rhythmical neural activities from TMNs using whole and fragmented brainstem slices preparation including the trigeminal motor nucleus in the presence of the excitatory amino acid agonist NMA and the GABAA receptor antagonist, bicuculline methiodide (BIC). TMNs receive projections from premotoneurons for an NMDA-induced rhythmical activity, which can be located in the area 300 microm surrounding the trigeminal motor nucleus. NMA (20 microM) and BIC (10 microM) induced repetitive rhythmical activities on TMNs.
Collapse
Affiliation(s)
- Akifumi Enomoto
- First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry. 1-8 Yamadaoka, Suita, Osaka 565-0871 Japan
| | | | | | | | | |
Collapse
|