1
|
Dedek A, Topcu E, Dedek C, McDermott JS, Krajewski JL, Tsai EC, Hildebrand ME. Heterogeneity of synaptic NMDA receptor responses within individual lamina I pain-processing neurons across sex in rats and humans. J Physiol 2024; 602:5309-5327. [PMID: 39316518 DOI: 10.1113/jp285521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Excitatory glutamatergic NMDA receptors (NMDARs) are key regulators of spinal pain processing, and yet the biophysical properties of NMDARs in dorsal horn nociceptive neurons remain poorly understood. Despite the clinical implications, it is unknown whether the molecular and functional properties of synaptic NMDAR responses are conserved between males and females or translate from rodents to humans. To address these translational gaps, we systematically compared individual and averaged excitatory synaptic responses from lamina I pain-processing neurons of adult Sprague-Dawley rats and human organ donors, including both sexes. By combining patch-clamp recordings of outward miniature excitatory postsynaptic currents with non-biased data analyses, we uncovered a wide range of decay constants of excitatory synaptic events within individual lamina I neurons. Decay constants of synaptic responses were distributed in a continuum from 1-20 ms to greater than 1000 ms, suggesting that individual lamina I neurons contain AMPA receptor (AMPAR)-only as well as GluN2A-, GluN2B- and GluN2D-NMDAR-dominated synaptic events. This intraneuronal heterogeneity in AMPAR- and NMDAR-mediated decay kinetics was observed across sex and species. However, we discovered an increased relative contribution of GluN2A-dominated NMDAR responses at human lamina I synapses compared with rodent synapses, suggesting a species difference relevant to NMDAR subunit-targeting therapeutic approaches. The conserved heterogeneity in decay rates of excitatory synaptic events within individual lamina I pain-processing neurons may enable synapse-specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. KEY POINTS: Synaptic NMDA receptors (NMDARs) in spinal dorsal horn nociceptive neurons are key regulators of pain processing, but it is unknown whether their functional properties are conserved between males and females or translate from rodents to humans. In this study, we compared individual excitatory synaptic responses from lamina I pain-processing neurons of male and female adult Sprague-Dawley rats and human organ donors. Individual lamina I neurons from male and female rats and humans contain AMPA receptor-only as well as GluN2A, GluN2B- and GluN2D-NMDAR-dominated synaptic events. This may enable synapse-specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. Human lamina I synapses have an increased relative contribution of GluN2A-dominated NMDAR responses compared with rodent synapses. These results uncover a species difference relevant to NMDAR subunit-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Annemarie Dedek
- Department of Neuroscience, Carleton University, Ontario, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ontario, Canada
- School of Pharmacy, University of Waterloo, Ontario, Canada
| | - Emine Topcu
- Department of Neuroscience, Carleton University, Ontario, Canada
| | | | - Jeff S McDermott
- Lilly Research Laboratories, Indianapolis, Indiana, United States
| | | | - Eve C Tsai
- Neuroscience Program, Ottawa Hospital Research Institute, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ontario, Canada
| | - Michael E Hildebrand
- Department of Neuroscience, Carleton University, Ontario, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ontario, Canada
| |
Collapse
|
2
|
Dedek A, Hildebrand ME. Characterizing Functional Contributions of Specific GluN2 Subunits to Individual Postsynaptic NMDAR Responses Using Biophysical Parameters. Methods Mol Biol 2024; 2799:257-267. [PMID: 38727912 DOI: 10.1007/978-1-0716-3830-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The NMDAR is a heterotetramer composed of two GluN1 subunits and two GluN2 and/or GluN3 subunits, with the GluN2 subunits exhibiting significant diversity in their structure and function. Recent studies have highlighted the importance of characterizing the specific roles of each GluN2 subunit across central nervous system regions and developmental stages, as well as their unique contributions to NMDAR-mediated signaling and plasticity. Understanding the distinct functions of GluN2 subunits is critical for the development of targeted therapeutic strategies for NMDAR-related disorders. However, measuring the functional contribution of individual GluN2 subtypes in ex vivo slices is challenging. Conventionally, pharmacological or genetic approaches are used, but, in many cases, this is not possible or is restricted to population-level NMDAR responses. Here, we describe a technique for using biophysical properties of miniature synaptic NMDAR responses as a proxy to measure the functional contribution of specific GluN2-NMDAR subunits to individual synapses within a neuron.
Collapse
Affiliation(s)
- Annemarie Dedek
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael E Hildebrand
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Rojic-Becker D, Portero-Tresserra M, Martí-Nicolovius M, Vale-Martínez A, Guillazo-Blanch G. Caloric restriction modulates the monoaminergic and glutamatergic systems in the hippocampus, and attenuates age-dependent spatial memory decline. Neurobiol Learn Mem 2019; 166:107107. [DOI: 10.1016/j.nlm.2019.107107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
|
4
|
Berihu BA, Asfeha GG, Welderufael AL, Debeb YG, Zelelow YB, Beyene HA. Toxic effect of khat ( Catha edulis) on memory: Systematic review and meta-analysis. J Neurosci Rural Pract 2019; 8:30-37. [PMID: 28149078 PMCID: PMC5225718 DOI: 10.4103/0976-3147.193524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND People use khat (Catha edulis) for its pleasant stimulant effect of physical activity, consciousness, motor, and mental functions. Although there are reports assessing the effect of khat on memory, there was no study based on formal systematic review and meta-analysis. OBJECTIVE We have therefore conducted this meta-analysis to determine the level of evidence for the effect of khat (C. edulis Forsk) on memory discrepancy. METHODS MEDLINE, Cochrane Library, PubMed, Academic Search Complete, SPORTDiscus, ScienceDirect, Scopus, Web of Science, and Google Scholar were searched to retrieve the papers for this review. Keywords utilized across database search were khat, cat, chat, long-term memory, short-term memory, memory deficit, randomized control trial, and cross-sectional survey. The search was limited to studies in humans and rodents; published in English language. RESULT Finding of various studies included in our meta-analysis showed that the effect of acute, and subchronic exposure to khat showed that short-term memory appears to be affected depending on the duration of exposure. However, does not have any effect on long-term memory. CONCLUSION Although a number of studies regarding the current topic are limited, the evidenced showed that khat (C. edulis) induced memory discrepancy.
Collapse
Affiliation(s)
- Birhane Alem Berihu
- Department of Anatomy and Histology, Institute of Bio-Medical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Gebrekidan Gebregzabher Asfeha
- Department of Biochemistry and Molecular Biology, Institute of Bio-Medical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Abadi Leul Welderufael
- Department of Pediatrics and Gynecology, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Yared Godefa Debeb
- Department of Physiology, Institute of Bio-Medical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Yibrah Berhe Zelelow
- Department of Pediatrics and Gynecology, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hafte Assefa Beyene
- Department of Anatomy and Histology, Institute of Bio-Medical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
5
|
Radin DP, Zhong S, Purcell R, Lippa A. Acute ampakine treatment ameliorates age-related deficits in long-term potentiation. Biomed Pharmacother 2016; 84:806-809. [DOI: 10.1016/j.biopha.2016.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 01/24/2023] Open
|
6
|
Kimani ST, Patel NB, Kioy PG. Memory deficits associated with khat (Catha edulis) use in rodents. Metab Brain Dis 2016; 31:45-52. [PMID: 26423676 DOI: 10.1007/s11011-015-9738-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/21/2015] [Indexed: 11/25/2022]
Abstract
Khat products and chewing practices are common in East Africa, Middle East for centuries with concomitant socio-economic and public health repercussions. We assessed memory deficits associated with khat use in rodents. Young male CBA mice, 5-7 weeks old (n = 20), weighing 25-35 g were used. Mice were treated with either 40, 120 or 360 mg/kg body weight (bw) methanolic khat extract, or 0.5 ml saline for 10 days. Spatial acquisition, reversal and reference memory were assessed using modified Morris Water maze (MMWM). Mice treated with 40 mg/kg khat extract had longer (t4 = 4.12 p = 0.015) and t4 = 2.28 p = 0.065) escape latency on first and second day during reversal relative to the baseline. Under 120 mg/kg khat dose, the escape latency was shorter (t4 = -2.49 p = 0.05) vs (t3 = -2.5 p = 0.05) on third and fourth day. Further, treatment with 360 mg/kg khat extract resulted in significantly longer time (49.13, 33.5, 40.2 and 35.75) vs. (23.5 s), compared to baseline. Mice treated with khat or control preferred the target quadrant post acquisition while differential pattern was seen during reversal phase. Mice treated with 40 or 120 mg/kg khat showed significant preference for target quadrant. Substantial time (19.9) was spent in the old target compared to the new (16.9 s) by animals treated with highest dose however, the difference was not significant. There is a biological plausibility that chronic khat use may induce memory deficits and impair cognitive flexibility. The differential patterns of memory deficits may reflect the differences in dose effect as well as time dependent impairment.
Collapse
Affiliation(s)
- S T Kimani
- School of Nursing Sciences, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya.
| | - N B Patel
- Department of Medical Physiology, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya
| | - P G Kioy
- Department of Medical Physiology, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya
| |
Collapse
|
7
|
O'Leary H, Bernard PB, Castano AM, Benke TA. Enhanced long term potentiation and decreased AMPA receptor desensitization in the acute period following a single kainate induced early life seizure. Neurobiol Dis 2015; 87:134-44. [PMID: 26706598 DOI: 10.1016/j.nbd.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/17/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
Abstract
Neonatal seizures are associated with long term disabilities including epilepsy and cognitive deficits. Using a neonatal seizure rat model that does not develop epilepsy, but develops a phenotype consistent with other models of intellectual disability (ID) and autism spectrum disorders (ASD), we sought to isolate the acute effects of a single episode of early life seizure on hippocampal CA1 synaptic development and plasticity. We have previously shown chronic changes in glutamatergic synapses, loss of long term potentiation (LTP) and enhanced long term depression (LTD), in the adult male rat ~50days following kainic acid (KA) induced early life seizure (KA-ELS) in post-natal (P) 7day old male Sprague-Dawley rats. In the present work, we examined the electrophysiological properties and expression levels of glutamate receptors in the acute period, 2 and 7days, post KA-ELS. Our results show for the first time enhanced LTP 7days after KA-ELS, but no change 2days post KA-ELS. Additionally, we report that ionotropic α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid type glutamate receptor (AMPAR) desensitization is decreased in the same time frame, with no changes in AMPAR expression, phosphorylation, or membrane insertion. Inappropriate enhancement of the synaptic connections in the acute period after the seizure could alter the normal patterning of synaptic development in the hippocampus during this critical period and contribute to learning deficits. Thus, this study demonstrates a novel mechanism by which KA-ELS alters early network properties that potentially lead to adverse outcomes.
Collapse
Affiliation(s)
- Heather O'Leary
- Department of Pediatrics, University of Colorado, School of Medicine, 80045, USA
| | - Paul B Bernard
- Department of Pediatrics, University of Colorado, School of Medicine, 80045, USA
| | - Anna M Castano
- Department of Pediatrics, University of Colorado, School of Medicine, 80045, USA
| | - Tim A Benke
- Department of Pediatrics, University of Colorado, School of Medicine, 80045, USA; Department of Neurology, University of Colorado, School of Medicine, 80045, USA; Department of Pharmacology, University of Colorado, School of Medicine, 80045, USA; Department of Otolaryngology, University of Colorado, School of Medicine, 80045, USA; Neuroscience Graduate Program, University of Colorado, School of Medicine, 80045, USA.
| |
Collapse
|
8
|
Kasabov N, Schliebs R, Kojima H. Probabilistic Computational Neurogenetic Modeling: From Cognitive Systems to Alzheimer's Disease. ACTA ACUST UNITED AC 2011. [DOI: 10.1109/tamd.2011.2159839] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Late phase of long-term potentiation induced by co-application of N-methyl-d-aspartic acid and the antagonist of NR2B-containing N-methyl-d-aspartic acid receptors in rat hippocampus. Neuroscience 2009; 159:127-35. [DOI: 10.1016/j.neuroscience.2008.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/06/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022]
|
10
|
Costa L, Santangelo F, Li Volsi G, Ciranna L. Modulation of AMPA receptor-mediated ion current by pituitary adenylate cyclase-activating polypeptide (PACAP) in CA1 pyramidal neurons from rat hippocampus. Hippocampus 2009; 19:99-109. [PMID: 18727050 DOI: 10.1002/hipo.20488] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a neurotrophic and neuromodulatory peptide, was recently shown to enhance NMDA receptor-mediated currents in the hippocampus (Macdonald, et al. 2005. J Neurosci 25:11374-11384). To check if PACAP might also modulate AMPA receptor function, we tested its effects on AMPA receptor-mediated synaptic currents on CA1 pyramidal neurons, using the patch clamp technique on hippocampal slices. In the presence of the NMDA antagonist D-AP5, PACAP (10 nM) reduced the amplitude of excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by stimulation of Schaffer collaterals. Following a paired-pulse stimulation protocol, the paired-pulse ratio was unaffected in most neurons, suggesting that the AMPA-mediated EPSC was modulated by PACAP mainly at a postsynaptic level. PACAP also modulated the currents induced on CA1 pyramidal neurons by applications of either glutamate or AMPA. The effects of PACAP were dose-dependent: at a 0.5 nM dose, PACAP increased AMPA-mediated current; such effect was blocked by PACAP 6-38, a selective antagonist of PAC1 receptors. The enhancement of AMPA-mediated current by PACAP 0.5 nM was abolished when cAMPS-Rp, a PKA inhibitor, was added to the intracellular solution. At a 10 nM concentration, PACAP reduced AMPA-mediated current; such effect was not blocked by PACAP 6-38. The inhibitory effect of 10 nM PACAP was mimicked by Bay 55-9837 (a selective agonist of VPAC2 receptors), persisted in the presence of intracellular BAPTA and was abolished by intracellular cAMPS-Rp. Stimulation-evoked EPSCs in CA1 neurons were significantly reduced following application of the PAC1 antagonist PACAP 6-38; this result indicates that PAC1 receptors in the CA1 region are tonically activated by endogenous PACAP and enhance CA3-CA1 synaptic transmission. Our results show that PACAP differentially modulates AMPA receptor-mediated current in CA1 pyramidal neurons by activation of PAC1 and VPAC2 receptors, both involving the cAMP/PKA pathway; the functional significance will be discussed in light of the multiple effects exerted by PACAP on the CA3-CA1 synapse at different levels.
Collapse
Affiliation(s)
- L Costa
- Dipartimento di Scienze Fisiologiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | | | |
Collapse
|
11
|
Bouteiller JMC, Baudry M, Allam SL, Greget RJ, Bischoff S, Berger TW. MODELING GLUTAMATERGIC SYNAPSES: INSIGHTS INTO MECHANISMS REGULATING SYNAPTIC EFFICACY. J Integr Neurosci 2008; 7:185-97. [PMID: 18763719 DOI: 10.1142/s0219635208001770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/25/2008] [Indexed: 11/18/2022] Open
|
12
|
Patten SA, Ali DW. AMPA receptors associated with zebrafish Mauthner cells switch subunits during development. J Physiol 2007; 581:1043-56. [PMID: 17412769 PMCID: PMC2170824 DOI: 10.1113/jphysiol.2007.129999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamate AMPA receptors (AMPARs) are major excitatory receptors in the vertebrate CNS. In many biological systems there is a developmental speeding in AMPAR kinetics, which occurs either because of a switch in AMPAR subunits or a change in synaptic morphology. We studied the development of AMPAR-mediated miniature excitatory postsynaptic currents (AMPAR-mEPSCs) in zebrafish Mauthner cells (M-cells) to determine the reasons underlying the speeding of AMPA mEPSCs in this preparation. We recorded AMPAR-mEPSCs in zebrafish ranging in age from 33 h postfertilization (hpf) to 72 hpf. We found that the glutamate waveform in the synaptic cleft did not change during development, suggesting that synaptic morphology played little role in shaping the mEPSC. The current-voltage (I-V) relationship was linear at 33 hpf and outwardly rectified in older animals, while AMPAR decay kinetics were slower at positive potentials, compared with negative potentials. The relative change in tau with depolarization was found to be greater at 48 hpf than at 33 hpf. AMPARs in 33 hpf fish had a conductance of approximately 9 pS, and in older fish approximately 15 pS. Finally, the desensitization blocker, cyclothiazide, increased tau by approximately 4-fold in 48 hpf preparations, but only 1.5-fold in 33 hpf fish. These results are consistent with the hypothesis that the major mechanism underlying the developmental speeding in AMPAR kinetics in zebrafish CNS is a switch in receptor subunits. To our knowledge this is the first study to suggest that AMPARs change subunits during development in fish.
Collapse
Affiliation(s)
| | - Declan W Ali
- Department of Biological Sciences, University of AlbertaEdmonton, Alberta, Canada, T6G 2E9
- Centre for Neuroscience, Biological Sciences Building, University of AlbertaEdmonton, Alberta, Canada, T6G 2E9
| |
Collapse
|
13
|
Lynch G, Rex CS, Gall CM. LTP consolidation: Substrates, explanatory power, and functional significance. Neuropharmacology 2007; 52:12-23. [PMID: 16949110 DOI: 10.1016/j.neuropharm.2006.07.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/05/2006] [Accepted: 07/17/2006] [Indexed: 12/18/2022]
Abstract
Long-term potentiation (LTP) resembles memory in that it is initially unstable and then, over about 30 min, becomes increasingly resistant to disruption. Here we present an hypothesis to account for this initial consolidation effect and consider implications that follow from it. Anatomical studies indicate that LTP is accompanied by changes in spine morphology and therefore likely involves cytoskeletal changes. Accordingly, theta bursts initiate calpain-mediated proteolysis of the actin cross-linking protein spectrin and trigger actin polymerization in spine heads, two effects indicative of cytoskeletal reorganization. Polymerization occurs within 2 min, has the same threshold as LTP, is dependent on integrins, and becomes resistant to disruption over 30 min. We propose that the stabilization of the new cytoskeletal organization, and thus of a new spine morphology, underlies the initial phase of LTP consolidation. This hypothesis helps explain the diverse array of proteins and signaling cascades implicated in LTP, as well as the often-contradictory results about contributions of particular molecules. It also provides a novel explanation for why LTP is potently modulated by factors likely to be released during theta trains (e.g., BDNF). Finally, building on evidence that normal patterns of activity reverse LTP, we suggest that consolidation provides a delay that allows brain networks to sculpt newly formed memories.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, Gillespie Neuroscience Research Facility, University of California, Irvine, CA 92697-4292, USA.
| | | | | |
Collapse
|
14
|
Khakhalin AS, Frolov AA. Joint application of independent component analysis and non-stationary fluctuation analysis for studying the mechanisms of the early phase of long-term potentiation in the rat hippocampus. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2006; 36:429-39. [PMID: 16645754 DOI: 10.1007/s11055-006-0036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 10/04/2004] [Indexed: 05/08/2023]
Abstract
Interest in studies of synaptic plasticity have led to the development of specific methods for analyzing evoked postsynaptic currents: quantum analysis, component analysis, non-stationary fluctuation analysis, etc. However, the use and interpretation of these methods are not always consistent, which leads to the acquisition of contradictory results from similar experiments. In the present study, simulations were used to analyze the influences of the heterogeneity of the shapes of postsynaptic currents on the results obtained by non-stationary fluctuation analysis. Assessment of postsynaptic channel conductivity was found to depend on the number of synapses involved in generating the response. It is hypothesized that the increase in the assessment of AMPA channel conductivity reported in the literature in conditions of long-term potentiation may be related to changes in the synaptic composition of postsynaptic currents. The hypothesis was tested using a new method for independent component analysis. Studies using the simulation showed that the joint application of this method and non-stationary fluctuation analysis avoids errors of this type. The procedures developed here were applied to data obtained from physiological experiments; the results of this exercise provided general support for the hypothesis.
Collapse
Affiliation(s)
- A S Khakhalin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow.
| | | |
Collapse
|
15
|
Kwon OB, Longart M, Vullhorst D, Hoffman DA, Buonanno A. Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J Neurosci 2006; 25:9378-83. [PMID: 16221846 PMCID: PMC6725708 DOI: 10.1523/jneurosci.2100-05.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuregulin-1 (NRG-1) has been identified genetically as a schizophrenia susceptibility gene, but its function in the adult brain is unknown. Here, we show that NRG-1beta does not affect basal synaptic transmission but reverses long-term potentiation (LTP) at hippocampal Schaffer collateral-->CA1 synapses in an activity- and time-dependent manner. Depotentiation by NRG-1beta is blocked by two structurally distinct and selective ErbB receptor tyrosine kinase inhibitors. Moreover, ErbB receptor inhibition increases LTP at potentiated synapses and blocks LTP reversal by theta-pulse stimuli. NRG-1beta selectively reduces AMPA, not NMDA, receptor EPSCs and has no effect on paired-pulse facilitation ratios. Live imaging of hippocampal neurons transfected with receptors fused to superecliptic green fluorescent protein, as well as quantitative analysis of native receptors, show that NRG-1beta stimulates the internalization of surface glutamate receptor 1-containing AMPA receptors. This novel regulation of LTP by NRG-1 has important implications for the modulation of synaptic homeostasis and schizophrenia.
Collapse
Affiliation(s)
- Oh-Bin Kwon
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-3714, USA
| | | | | | | | | |
Collapse
|
16
|
Suppiramaniam V, Vaithianathan T, Manivannan K, Dhanasekaran M, Parameshwaran K, Bahr BA. Modulatory effects of dextran sulfate and fucoidan on binding and channel properties of AMPA receptors isolated from rat brain. Synapse 2006; 60:456-64. [PMID: 16897725 DOI: 10.1002/syn.20319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous work showed that the glycosaminoglycan (GAG) dextran sulfate (500 kDa) altered the binding and channel properties of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. The current study compared the effects of dextran sulfate with another GAG, fucoidan (100-180 kDa), to determine whether GAG-mediated changes in high-affinity binding of AMPA receptors have a concomitant influence on specific channel properties. Dextran sulfate was more potent in inhibiting high-affinity AMPA binding to solubilized receptors (EC(50) of 7 nM) compared to fucoidan (EC(50) of 124 nM). Similarly, dextran sulfate was more potent in modulating the channel properties of purified and reconstituted AMPA receptors. Dextran sulfate, at 1 mug/ml (2 nM), produced a three to fourfold increase in open channel probability and a threefold increase in mean burst duration of channel activity elicited by 283 nM AMPA. The mean open time was increased by two to threefold and closed times were decreased by two to eightfold. Fucoidan produced similar effects at a concentration many times higher than that of dextran sulfate. Dextran sulfate and fucoidan had no effect on the single channel conductance or the ability of a specific antagonist to block AMPA channels. The effects of GAGs on multichannel patches showed an interactive channel gating behavior resulting in macroscopic currents with long lived open channel life times. These findings suggest that GAG components of proteoglycans can interact with and alter the binding affinity of AMPA receptors and modulate their functional properties.
Collapse
Affiliation(s)
- Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Alabama 36849, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Oh-Nishi A, Saji M, Furudate SI, Suzuki N. Dopamine D(2)-like receptor function is converted from excitatory to inhibitory by thyroxine in the developmental hippocampus. J Neuroendocrinol 2005; 17:836-45. [PMID: 16280031 DOI: 10.1111/j.1365-2826.2005.01381.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanism by which a lack of thyroid hormone in the early development of the brain causes permanent mental retardation in cretins is currently unknown. On the other hand, an abnormality in dopamine-related brain function is believed to underlie some forms of mental illness. In this study, we demonstrate that although the activation of a dopaminergic D(2)-like receptor inhibited glutamatergic transmission in the hippocampal slices of normal adult rats, indicating the inhibitory action of the D(2)-like receptor on glutamatergic transmission, it markedly enhanced glutamatergic transmission both in a mutant hypothyroid rat with a missense mutation in thyroglobulin and in hypothyroid rats treated with methylmercaptoimidazole (MMI), indicating the excitatory action of the D(2)-like receptor on glutamatergic transmission. Paired pulse facilitation of field excitatory postsynaptic potentials was reduced by the activation of the D(2)-like receptors from MMI-induced hypothyroid rats, suggesting a presynaptic locus of the excitatory action of the D(2)-like receptors. In normal rats, the excitatory D(2)-like dopamine receptors were observed in the developing stages and were completely replaced by normal inhibitory responses up to adulthood. Furthermore, the continuous supplement of thyroxine from birth exerted a normalising effect on the abnormal excitatory property of D(2)-like dopamine receptors in the hippocampal slices of MMI-treated hypothyroid rats. From these results, it is suggested that thyroxine may play a crucial role in reversing the excitatory property of D(2)-like dopaminergic receptors in the immature brain to an inhibitory one in the mature brain. Moreover, we suggest that the abnormal excitatory property of D(2)-like dopaminergic receptors may develop in response to a lack of thyroxine and may contribute to some central nervous system deficits, including cognitive dysfunctions accompanied by hypothyroidism.
Collapse
Affiliation(s)
- A Oh-Nishi
- Division of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara-shi, Kanagawa, Japan
| | | | | | | |
Collapse
|
18
|
Lin B, Kramár EA, Bi X, Brucher FA, Gall CM, Lynch G. Theta stimulation polymerizes actin in dendritic spines of hippocampus. J Neurosci 2005; 25:2062-9. [PMID: 15728846 PMCID: PMC6726058 DOI: 10.1523/jneurosci.4283-04.2005] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that the endurance of long-term potentiation (LTP) depends on structural changes entailing reorganization of the spine actin cytoskeleton. The present study used a new technique involving intracellular and extracellular application of rhodamine-phalloidin to conventional hippocampal slices to test whether induction of LTP by naturalistic patterns of afferent activity selectively increases actin polymerization in juvenile to young adult spines. Rhodamine-phalloidin, which selectively binds to polymerized actin, was detected in perikarya and proximal dendrites of CA1 pyramidal cells that received low-frequency afferent activity but was essentially absent in spines and fine dendritic processes. Theta pattern stimulation induced LTP and caused a large (threefold), reliable increase in labeled spines and spine-like puncta in the proximal dendritic zone containing potentiated synapses. The spines frequently occurred in the absence of labeling to other structures but were also found in association with fluorescent dendritic processes. These effects were replicated (>10-fold increase in labeled spines) using extracellular applications of rhodamine-phalloidin. Increases in labeling appeared within 2 min, were completely blocked by treatments that prevent LTP induction, and occurred in slices prepared from young adult rats. These results indicate that near-threshold conditions for inducing stable potentiation cause the rapid polymerization of actin in mature spines and suggest that the effect is both sufficiently discrete to satisfy the synapse-specificity rule of LTP as well as rapid enough to participate in the initial stages of LTP consolidation.
Collapse
Affiliation(s)
- Bin Lin
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92617-1695, USA
| | | | | | | | | | | |
Collapse
|
19
|
Massicotte G, Baudry M. Brain plasticity and remodeling of AMPA receptor properties by calcium-dependent enzymes. GENETIC ENGINEERING 2004; 26:239-54. [PMID: 15387300 DOI: 10.1007/978-0-306-48573-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two experimental models of synaptic plasticity that have been studied extensively in the last 25 years, as they may represent basic mechanisms to store certain types of information in neuronal networks. In several brain regions, these two forms of synaptic plasticity require dendritic depolarization, and the amplitude and duration of the depolarization-induced calcium signal are crucial parameters for the generation of either LTP or LTD. The rise in calcium concentration mediated by activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent processes that could convert the induction signal into long-lasting changes in synaptic structure and function. According to several lines of experimental evidence, alterations in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. The question of which type(s) of receptor changes constitutes the basis for the expression of synaptic plasticity is still very much open. Here, we review data relevant to the issue of selective modulation of AMPA receptor properties occurring after learning and memory, environmental enrichment, and synaptic plasticity. We also discuss potential cellular mechanisms whereby calcium-dependent enzymes might regulate AMPA receptor properties during LTP and LTD, focusing on protein kinases, proteases and lipases.
Collapse
Affiliation(s)
- Guy Massicotte
- Départment de chimie-biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | |
Collapse
|
20
|
Li R, Dozmorov M, Hellberg F, Tian Y, Jilderos B, Wigström H. Characterization of NMDA induced depression in rat hippocampus: involvement of AMPA and NMDA receptors. Neurosci Lett 2004; 357:87-90. [PMID: 15036581 DOI: 10.1016/j.neulet.2003.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 11/05/2003] [Indexed: 12/01/2022]
Abstract
The involvement of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) vs. N-methyl-d-aspartate (NMDA) receptor mediated changes in NMDA-induced long-term depression (LTD) was assessed by monitoring isolated AMPA, isolated NMDA and composite field excitatory postsynaptic potentials (EPSP) in the CA1 area of acute rat hippocampal slices. Application of NMDA (20-50 microM) for 3-5 min led to LTD of both AMPA and NMDA receptor mediated EPSPs with near equal changes of the responses. However, AMPA EPSPs displayed a faster initial recovery than NMDA EPSPs. In addition, during the first 15-25 min after NMDA application, there was a superimposed potentiation of the later, but not early, part of AMPA EPSPs, implying a prolongation of waveform. In contrast, the NMDA EPSP waveform remained unaltered throughout the experiments. While it has been maintained that NMDA-induced depression is equivalent to stimulus-induced LTD, our results reveal additional complexity, suggesting a multitude of changes, most likely at the postsynaptic receptor level.
Collapse
Affiliation(s)
- Rui Li
- Department of Medical Biophysics, Göteborg University, Box 433, SE 405 30 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
21
|
Cammarota M, Bevilaqua LRM, Bonini JS, Rossatto JI, Medina JH, Izquierdo N. Hippocampal glutamate receptors in fear memory consolidation. Neurotox Res 2004; 6:205-12. [PMID: 15325959 DOI: 10.1007/bf03033222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is thought that activity-dependent changes in synaptic efficacy driven by biochemical pathways responsive to the action of the excitatory neurotransmitter glutamate are critical components of the mechanisms responsible for memory formation. In particular, the early activation of the NMDA (rNMDA) and AMPA (rAMPA) subtypes of ionotropic glutamate receptors has been demonstrated to be a necessary event for the acquisition of several types of memory. In the rat, consolidation of the long-term memory for a one-trial, step-down inhibitory avoidance task is blocked by antagonists of the rNMDA and rAMPA infused into the CA1 region of the dorsal hippocampus early after training and is associated with a rapid and reversible increase in the total number of [3H]AMPA binding sites. The learning-induced increase in [[3H]AMPA is accompanied by translocation of the GluR1 subunit of the rAMPA to the post-synaptic terminal together with its phosphorylation at Ser831. In addition, learning of the mentioned fear-motivated task induces the activation and rNMDA-dependent translocation of CaMKII to the post-synaptic density. Inhibition of this protein kinase as well as blockade of the rNMDA abolishes both the learning-induced translocation of GluR1 and its phosphorylation. Our data suggest that learning of an avoidance task enhances hippocampal rAMPA signaling through rNMDA and CaMKII-dependent mechanisms.
Collapse
Affiliation(s)
- Martín Cammarota
- Centro de Memória, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600--Anexo, Porto Alegre, 90035-003, RS, Brasil.
| | | | | | | | | | | |
Collapse
|
22
|
Lin B, Arai AC, Lynch G, Gall CM. Integrins regulate NMDA receptor-mediated synaptic currents. J Neurophysiol 2003; 89:2874-8. [PMID: 12740418 DOI: 10.1152/jn.00783.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synapses contain high concentrations of integrins, adhesion receptors known to influence the operation of neighboring transmembrane proteins. Evidence that integrins are important for consolidation of long-term potentiation suggests that these adhesion proteins may modulate activities of synaptic glutamate receptors. The present study provides a first test of the possibility that integrins modulate synaptic N-methyl-d-aspartate (NMDA)-type glutamate receptor activities. Excitatory postsynaptic currents (EPSCs) were recorded with whole cell clamp from hippocampal slices in which AMPA-type glutamate receptors and GABA(A) receptors were pharmacologically blocked. Microperfusion of the peptide integrin ligand gly-arg-gly-asp-ser-pro (GRGDSP) caused an approximately twofold increase in the amplitude and duration of NMDA receptor-gated synaptic currents. Control peptides had no effect. Paired-pulse facilitation was unchanged, indicating that the ligand did not modify neurotransmitter release probabilities. Infusion of the Src kinase antagonist PP2 but not the control drug 4-amino-7-phenylpyrazolo[3,4-d]pyrimidine eliminated the enhancing effect of GRGDSP. Integrins regulate Src kinases that are known to phosphorylate NMDA receptors. It is concluded that integrins act through this route to exert potent modulatory effects on the operation of NMDA receptors.
Collapse
Affiliation(s)
- Bin Lin
- Department of Psychiatry and Human Behavior, University of California, Irvine 92612-1695, USA.
| | | | | | | |
Collapse
|