1
|
Andrew RD, Hartings JA, Ayata C, Brennan KC, Dawson-Scully KD, Farkas E, Herreras O, Kirov SA, Müller M, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Shuttleworth CW, Ullah G, Dreier JP. The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention. Neurocrit Care 2022; 37:83-101. [PMID: 35257321 PMCID: PMC9259543 DOI: 10.1007/s12028-021-01431-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.
Collapse
Affiliation(s)
- R. David Andrew
- grid.410356.50000 0004 1936 8331Queen’s University, Kingston, ON Canada
| | - Jed A. Hartings
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH USA
| | - Cenk Ayata
- grid.38142.3c000000041936754XHarvard Medical School, Harvard University, Boston, MA USA
| | - K. C. Brennan
- grid.223827.e0000 0001 2193 0096The University of Utah, Salt Lake City, UT USA
| | | | - Eszter Farkas
- grid.9008.10000 0001 1016 96251HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, and the Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Oscar Herreras
- grid.419043.b0000 0001 2177 5516Instituto de Neurobiologia Ramon Y Cajal (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Sergei. A. Kirov
- grid.410427.40000 0001 2284 9329Medical College of Georgia, Augusta, GA USA
| | - Michael Müller
- grid.411984.10000 0001 0482 5331University of Göttingen, University Medical Center Göttingen, Göttingen, Germany
| | - Nikita Ollen-Bittle
- grid.39381.300000 0004 1936 8884University of Western Ontario, London, ON Canada
| | - Clemens Reiffurth
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| | - Omer Revah
- grid.168010.e0000000419368956School of Medicine, Stanford University, Stanford, CA USA
| | | | | | - Ghanim Ullah
- grid.170693.a0000 0001 2353 285XUniversity of South Florida, Tampa, FL USA
| | - Jens P. Dreier
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| |
Collapse
|
2
|
Lu YL, Scharfman HE. New Insights and Methods for Recording and Imaging Spontaneous Spreading Depolarizations and Seizure-Like Events in Mouse Hippocampal Slices. Front Cell Neurosci 2021; 15:761423. [PMID: 34899190 PMCID: PMC8663723 DOI: 10.3389/fncel.2021.761423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Spreading depolarization (SD) is a sudden, large, and synchronous depolarization of principal cells which also involves interneurons and astrocytes. It is followed by depression of neuronal activity, and it slowly propagates across brain regions like cortex or hippocampus. SD is considered to be mechanistically relevant to migraine, epilepsy, and traumatic brain injury (TBI), but there are many questions about its basic neurophysiology and spread. Research into SD in hippocampus using slices is often used to gain insight and SD is usually triggered by a focal stimulus with or without an altered extracellular buffer. Here, we optimize an in vitro experimental model allowing us to record SD without focal stimulation, which we call spontaneous. This method uses only an altered extracellular buffer containing 0 mM Mg2+ and 5 mM K+ and makes it possible for simultaneous patch and extracellular recording in a submerged chamber plus intrinsic optical imaging in slices of either sex. We also add methods for quantification and show the quantified optical signal is much more complex than imaging alone would suggest. In brief, acute hippocampal slices were prepared with a chamber holding a submerged slice but with flow of artificial cerebrospinal fluid (aCSF) above and below, which we call interface-like. As soon as slices were placed in the chamber, aCSF with 0 Mg2+/5 K+ was used. Most mouse slices developed SD and did so in the first hour of 0 Mg2+/5 K+ aCSF exposure. In addition, prolonged bursts we call seizure-like events (SLEs) occurred, and the interactions between SD and SLEs suggest potentially important relationships. Differences between rats and mice in different chambers are described. Regarding optical imaging, SD originated in CA3 and the pattern of spread to CA1 and the dentate gyrus was similar in some ways to prior studies but also showed interesting differences. In summary, the methods are easy to use, provide new opportunities to study SD, new insights, and are inexpensive. They support previous suggestions that SD is diverse, and also suggest that participation by the dentate gyrus merits greater attention.
Collapse
Affiliation(s)
- Yi-Ling Lu
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Health, New York, NY, United States
- Department of Psychiatry, New York University Langone Health, New York, NY, United States
| |
Collapse
|
3
|
Raimondo JV, Heinemann U, de Curtis M, Goodkin HP, Dulla CG, Janigro D, Ikeda A, Lin CCK, Jiruska P, Galanopoulou AS, Bernard C. Methodological standards for in vitro models of epilepsy and epileptic seizures. A TASK1-WG4 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017; 58 Suppl 4:40-52. [PMID: 29105075 DOI: 10.1111/epi.13901] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
In vitro preparations are a powerful tool to explore the mechanisms and processes underlying epileptogenesis and ictogenesis. In this review, we critically review the numerous in vitro methodologies utilized in epilepsy research. We provide support for the inclusion of detailed descriptions of techniques, including often ignored parameters with unpredictable yet significant effects on study reproducibility and outcomes. In addition, we explore how recent developments in brain slice preparation relate to their use as models of epileptic activity.
Collapse
Affiliation(s)
- Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Uwe Heinemann
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marco de Curtis
- Epilepsy and Experimental Neurophysiology Unit, The Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Howard P Goodkin
- Departments of Neurology and Pediatrics, University of Virginia, Charlottesville, Virginia, U.S.A
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, U.S.A
| | - Damir Janigro
- Flocel Inc., Cleveland, Ohio, U.S.A.,Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Chou-Ching K Lin
- Department of Neurology, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, New York, U.S.A
| | - Christophe Bernard
- Inserm, Institut de Neurosciences des Systemes UMRS 1106, Aix Marseille University, Marseille, France
| |
Collapse
|
4
|
Cortical Temperature Change: A Tool for Modulating Brain States? eNeuro 2016; 3:eN-COM-0096-16. [PMID: 27390773 PMCID: PMC4917734 DOI: 10.1523/eneuro.0096-16.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022] Open
|
5
|
Saghazadeh A, Mahmoudi M, Meysamie A, Gharedaghi M, Zamponi GW, Rezaei N. Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis. Nutr Rev 2015; 73:760-79. [DOI: 10.1093/nutrit/nuv026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
6
|
In vitro seizure like events and changes in ionic concentration. J Neurosci Methods 2015; 260:33-44. [PMID: 26300181 DOI: 10.1016/j.jneumeth.2015.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND In vivo, seizure like events are associated with increases in extracellular K(+) concentration, decreases in extracellular Ca(2+) concentration, diphasic changes in extracellular sodium, chloride, and proton concentration, as well as changes of extracellular space size. These changes point to mechanisms underlying the induction, spread and termination of seizure like events. METHODS We investigated the potential role of alterations of the ionic environment on the induction of seizure like events-considering a review of the literature and own experimental work in animal and human slices. RESULTS Increasing extracellular K(+) concentration, lowering extracellular Mg(2+) concentration, or lowering extracellular Ca(2+) concentration can induce seizure like events. In human tissue from epileptic patients, elevation of K(+) concentration induces seizure like events in the dentate gyrus and subiculum. A combination of elevated K(+) concentration and 4-AP or bicuculline can induce seizure like events in neocortical tissue. CONCLUSIONS These protocols provide insight into the mechanisms involved in seizure initiation, spread and termination. Moreover, pharmacological studies as well as studies on mechanisms underlying pharmacoresistance are feasible.
Collapse
|
7
|
Karus C, Mondragão MA, Ziemens D, Rose CR. Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity. Glia 2015; 63:936-57. [PMID: 25639699 DOI: 10.1002/glia.22793] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
Abstract
Influx of sodium ions into active neurons is a highly energy-expensive process which must be strictly limited. Astrocytes could play an important role herein because they take up glutamate and potassium from the extracellular space, thereby dampening neuronal excitation. Here, we performed sodium imaging in mouse hippocampal slices combined with field potential and whole-cell patch-clamp recordings and measurement of extracellular potassium ([K(+)]o). Network activity was induced by Mg(2+)-free, bicuculline-containing saline, during which neurons showed recurring epileptiform bursting, accompanied by transient increases in [K(+)]o and astrocyte depolarizations. During bursts, neurons displayed sodium increases by up to 22 mM. Astrocyte sodium concentration increased by up to 8.5 mM, which could be followed by an undershoot below baseline. Network sodium oscillations were dependent on action potentials and activation of ionotropic glutamate receptors. Inhibition of glutamate uptake caused acceleration, followed by cessation of electrical activity, irreversible sodium increases, and swelling of neurons. The gliotoxin NaFAc (sodium-fluoroacetate) resulted in elevation of astrocyte sodium concentration and reduced glial uptake of glutamate and potassium uptake through Na(+) /K(+)-ATPase. Moreover, NaFAc extended epileptiform bursts, caused elevation of neuronal sodium, and dramatically prolonged accompanying sodium signals, most likely because of the decreased clearance of glutamate and potassium by astrocytes. Our experiments establish that recurrent neuronal bursting evokes sodium transients in neurons and astrocytes and confirm the essential role of glutamate transporters for network activity. They suggest that astrocytes restrict discharge duration and show that an intact astrocyte metabolism is critical for the neurons' capacity to recover from sodium loads during synchronized activity.
Collapse
Affiliation(s)
- Claudia Karus
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | | | | | | |
Collapse
|
8
|
Grosser S, Hollnagel JO, Gilling KE, Bartsch JC, Heinemann U, Behr J. Gating of hippocampal output by β-adrenergic receptor activation in the pilocarpine model of epilepsy. Neuroscience 2014; 286:325-37. [PMID: 25498224 DOI: 10.1016/j.neuroscience.2014.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 11/29/2022]
Abstract
Norepinephrine acting via β-adrenergic receptors (β-ARs) plays an important role in hippocampal plasticity including the subiculum which is the principal target of CA1 pyramidal cells and which controls information transfer from the hippocampus to other brain regions including the neighboring presubiculum and the entorhinal cortex (EC). Subicular pyramidal cells are classified as regular- (RS) and burst-spiking (BS) cells. Activation of β-ARs at CA1-subiculum synapses induces long-term potentiation (LTP) in burst- but not in RS cells (Wójtowicz et al., 2010). To elucidate seizure-associated disturbances in the norepinephrine-dependent modulation of hippocampal output, we investigated the functional consequences of the β-AR-dependent synaptic plasticity at CA1-subiculum synapses for the transfer of hippocampal output to the parahippocampal region in the pilocarpine model of temporal lobe epilepsy. Using single-cell and multi-channel field recordings in slices, we studied β-AR-mediated changes in the functional connectivity between CA1, the subiculum and its target-structures. We confirm that application of the β-adrenergic agonist isoproterenol induces LTP in subicular BS- but not RS cells. Due to the distinct spatial distribution of RS- and BS cells in the proximo-to-distal axis of the subiculum, in field recordings, LTP was significantly stronger in the distal than in the proximal subiculum. In pilocarpine-treated animals, β-AR-mediated LTP was strongly reduced in the distal subiculum. The attenuated LTP was associated with a disturbed polysynaptic transmission from the CA1, via the subiculum to the presubiculum, but with a preserved transmission to the medial EC. Our findings suggest that synaptic plasticity may influence target-related information flow and that such regulation is disturbed in pilocarpine-treated epileptic rats.
Collapse
Affiliation(s)
- S Grosser
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany
| | - J-O Hollnagel
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany
| | - K E Gilling
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany
| | - J C Bartsch
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany
| | - U Heinemann
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany
| | - J Behr
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Medical School Brandenburg - Campus Neuruppin, Neuruppin, Germany.
| |
Collapse
|
9
|
Salar S, Maslarova A, Lippmann K, Nichtweiss J, Weissberg I, Sheintuch L, Kunz WS, Shorer Z, Friedman A, Heinemann U. Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia 2014; 55:1255-63. [PMID: 24995798 DOI: 10.1111/epi.12713] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We tested the hypothesis that interstitial albumin can contribute to pharmacoresistance, which is common among patients with focal epilepsies. These patients often present with an open blood-brain barrier (BBB), resulting in diffusion of drug-binding albumin into the brain interstitial space. METHODS Seizure-like events (SLEs) induced by 100 μm 4-aminopyridine (4-AP) were monitored using extracellular field potential recordings from acute rat entorhinal cortex-hippocampus slices. Effects of standard antiepileptic drugs (phenytoin, valproic acid, carbamazepine, and phenobarbital) were studied in the presence of albumin applied acutely or by intraventricular injection. Unbound antiepileptic drugs (AEDs) were detected by ultrafiltration and high-performance liquid chromatography (HPLC). RESULTS Contrary to the absence of albumin, conventional AEDs failed to suppress SLEs in the rat entorhinal cortex in the presence of albumin. This effect was partially caused by buffering of phenytoin and carbamazepine (CBZ) by albumin. Increasing CBZ concentration from 50 μm to 100 μm resulted in block of SLEs. In slices obtained from animals that were pretreated with intraventricular albumin application 24 h prior to experiment, CBZ suppressed SLEs similar to control slices. We also found that application of serum-like electrolytes transformed SLEs into late recurrent discharges (LRDs), which were no longer responding to CBZ. SIGNIFICANCE A dysfunctional BBB with acute extravasation of serum albumin into the brain's interstitial space could contribute to pharmacoresistance. In such instances, choice of an AED with low albumin binding affinity may help in seizure control.
Collapse
Affiliation(s)
- Seda Salar
- Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pusic KM, Pusic AD, Kemme J, Kraig RP. Spreading depression requires microglia and is decreased by their M2a polarization from environmental enrichment. Glia 2014; 62:1176-94. [PMID: 24723305 PMCID: PMC4081540 DOI: 10.1002/glia.22672] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022]
Abstract
Microglia play an important role in fine-tuning neuronal activity. In part, this involves their production of tumor necrosis factor-alpha (TNFα), which increases neuronal excitability. Excessive synaptic activity is necessary to initiate spreading depression (SD). Increased microglial production of proinflammatory cytokines promotes initiation of SD, which, when recurrent, may play a role in conversion of episodic to high frequency and chronic migraine. Previous work shows that this potentiation of SD occurs through increased microglial production of TNFα and reactive oxygen species, both of which are associated with an M1-skewed microglial population. Hence, we explored the role of microglia and their M1 polarization in SD initiation. Selective ablation of microglia from rat hippocampal slice cultures confirmed that microglia are essential for initiation of SD. Application of minocycline to dampen M1 signaling led to increased SD threshold. In addition, we found that SD threshold was increased in rats exposed to environmental enrichment. These rats had increased neocortical levels of interleukin-11 (IL-11), which decreases TNFα signaling and polarized microglia to an M2a-dominant phenotype. M2a microglia reduce proinflammatory signaling and increase production of anti-inflammatory cytokines, and therefore may protect against SD. Nasal administration of IL-11 to mimic effects of environmental enrichment likewise increased M2a polarization and increased SD threshold, an effect also seen in vitro. Similarly, application of conditioned medium from M2a polarized primary microglia to slice cultures also increased SD threshold. Thus, microglia and their polarization state play an essential role in SD initiation, and perhaps by extension migraine with aura and migraine.
Collapse
Affiliation(s)
- Kae M. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
| | - Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jordan Kemme
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard P. Kraig
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
A method for visually guided whole-cell recordings in brain slices exhibiting spontaneous rhythmic activity. J Neurosci Methods 2013; 212:64-71. [DOI: 10.1016/j.jneumeth.2012.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
|
12
|
Samoilova M, Weisspapir M, Abdelmalik P, Velumian AA, Carlen PL. Chronicin vitroketosis is neuroprotective but not anti-convulsant. J Neurochem 2010; 113:826-35. [DOI: 10.1111/j.1471-4159.2010.06645.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Decker J, Wójtowicz A, Haq RU, Braunewell KH, Heinemann U, Behrens C. C-type natriuretic peptide decreases hippocampal network oscillations in adult rats in vitro. Neuroscience 2009; 164:1764-75. [DOI: 10.1016/j.neuroscience.2009.09.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
|
14
|
An approach for reliably investigating hippocampal sharp wave-ripples in vitro. PLoS One 2009; 4:e6925. [PMID: 19738897 PMCID: PMC2732900 DOI: 10.1371/journal.pone.0006925] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/17/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Among the various hippocampal network patterns, sharp wave-ripples (SPW-R) are currently the mechanistically least understood. Although accurate information on synaptic interactions between the participating neurons is essential for comprehensive understanding of the network function during complex activities like SPW-R, such knowledge is currently notably scarce. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate an in vitro approach to SPW-R that offers a simple experimental tool allowing detailed analysis of mechanisms governing the sharp wave-state of the hippocampus. We combine interface storage of slices with modifications of a conventional submerged recording system and established in vitro SPW-R comparable to their in vivo counterpart. We show that slice storage in the interface chamber close to physiological temperature is the required condition to preserve network integrity that is necessary for the generation of SPW-R. Moreover, we demonstrate the utility of our method for studying synaptic and network properties of SPW-R, using electrophysiological and imaging methods that can only be applied in the submerged system. CONCLUSIONS/SIGNIFICANCE The approach presented here demonstrates a reliable and experimentally simple strategy for studying hippocampal sharp wave-ripples. Given its utility and easy application we expect our model to foster the generation of new insight into the network physiology underlying SPW-R.
Collapse
|
15
|
El-Hassar L, Esclapez M, Bernard C. Hyperexcitability of the CA1 hippocampal region during epileptogenesis. Epilepsia 2007; 48 Suppl 5:131-9. [PMID: 17910593 DOI: 10.1111/j.1528-1167.2007.01301.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Temporal Lobe Epilepsy (TLE) is often preceded by a latent (seizure-free) period during which complex network reorganizations occur. In experimental epilepsy, network hyperexcitability is already present during the latent period, suggesting a modification of information processing. The purpose of this study was to assess the input/output relationship in the hippocampal CA1 region during epileptogenesis. Field recordings in strata pyramidale and radiatum were used to measure the output of CA1 pyramidal cells as a function of the synaptic inputs they receive following the stimulation of Shaffer collaterals in slices obtained from sham and pilocarpine-treated animals during the latent and chronic periods. We show that there is a transient increase of the input and output field responses during the latent period as compared to sham and epileptic animals. The coupling between excitatory inputs and cell firing was also increased during the latent period. This increase persisted in epileptic animals, although to a lesser extent. We also confirm that paired-pulse facilitation occurs before the chronic phase. The present data further support the view that hyperexcitability is present at an early stage of epileptogenesis. Network output is more facilitated during the latent than during the chronic period. Hyperexcitability may participate to epileptogenesis, but it is not sufficient in itself to produce seizures.
Collapse
Affiliation(s)
- Lynda El-Hassar
- INMED-INSERM U29, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
16
|
Buchheim K, Wessel O, Siegmund H, Schuchmann S, Meierkord H. Processes and components participating in the generation of intrinsic optical signal changes in vitro. Eur J Neurosci 2005; 22:125-32. [PMID: 16029202 DOI: 10.1111/j.1460-9568.2005.04203.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Imaging of intrinsic optical signals has become an important tool in the neurosciences. To better understand processes underlying changes in intrinsic optical signals, we studied electrical stimulation at varying strengths in hippocampal slices of adult Wistar rats. Following serial stimulation we observed an increase in light transmittance in all tested slices. During antidromic stimulation at minimum stimulation strength the increase in light transmittance was 75 +/- 8% (P < 0.05), and during orthodromic minimum stimulation 19.6 +/- 5.6% (P < 0.001) in the stratum pyramidale of the CA1-region. During orthodromic stimulation no significant difference between submaximum, maximum and supramaximum stimulation was found, indicating saturation. In contrast, submaximum antidromic stimulation yielded 56.2 +/- 12% (P < 0.05) of maximum stimulation strength, indicating recruitment. In a further set of experiments serial stimulation was carried out under glial blockade with fluoroacetate (FAC) or blockage of mitochondrial function. Amplitude and slope of the intrinsic optical signal significantly decreased in the presence of FAC (amplitude: 36 +/- 6%, P < 0.01; slope: 37 +/- 11% as compared with baseline conditions, P < 0.05). This suggests a glial participation in signal generation. Rotenone, an inhibitor of mitochondrial complex I, yielded decreased amplitudes of the intrinsic optical signal (27 +/- 7% after 40 min, P < 0.01). Our data indicate that the intrinsic optical signal change reflects type and strength of neuronal activation and point to glia and mitochondria as important participants in signal generation.
Collapse
Affiliation(s)
- Katharina Buchheim
- Neurologische Klinik und Poliklinik, Charité- Universitätsmedizin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
17
|
Thomas AM, Corona-Morales AA, Ferraguti F, Capogna M. Sprouting of mossy fibers and presynaptic inhibition by group II metabotropic glutamate receptors in pilocarpine-treated rat hippocampal slice cultures. Neuroscience 2005; 131:303-20. [PMID: 15708475 DOI: 10.1016/j.neuroscience.2004.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2004] [Indexed: 11/20/2022]
Abstract
Mossy fibre sprouting (MFS) is a phenomenon observed in the epileptic hippocampus. We have studied MFS, in 7, 14 and 21 day in vitro (DIV) organotypic slice cultures, or in slice cultures treated with pilocarpine (0.5 mM) or pilocarpine and atropine (0.1 mM or 0.5 mM) for 48-72 h at 5 DIV and tested at 21 DIV. Acute application of pilocarpine directly activated hilar neurons and elicited epileptic-like discharges in CA3 pyramids and mossy cells of 5-8 DIV cultures, without causing substantial cell death, as assessed by lactate dehydrogenase measurements. Timm staining revealed increases in MFS in chronic pilocarpine-treated cultures, which was prevented by prior application of atropine. Extracellular synaptic responses were recorded in the granule cell layer and elicited by antidromic mossy fibre stimulation. The GABA(A) antagonist 6-imino-3-(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid (1 microM) induced a greater increase in the coastline bursting index in pilocarpine-treated cultures than in 21 DIV controls. However, there was no significant increase in the frequency of spontaneous or miniature synaptic events recorded in granule cells from pilocarpine-treated cultures. Granule cells were filled with biocytin and morphometric analysis revealed that the length of axon collaterals in the granule and molecular layer was longer in pilocarpine-treated cultures than in 21 DIV controls. Dual recordings between granule cells and between granule and hilar neurons showed that pilocarpine-treated cultures had a larger proportion of monosynaptic and polysynaptic connections. The group II metabotropic glutamate receptor (mGluR) agonist LY354740 (0.5 microM) suppressed excitatory but not inhibitory monosynaptic currents. LY354740 also inhibited antidromically evoked action currents in granule cells from pilocarpine- and to a lesser extent in pilocarpine and atropine-treated cultures, suggesting that group II mGluRs can reside along the axon and suppress action potential invasion. We provide direct evidence for the development of functional MFS and suggest a novel, axonal mechanism by which presynaptic group II mGluRs can inhibit selected synapses.
Collapse
Affiliation(s)
- A M Thomas
- Medical Research Council, Anatomical Neuropharmacology Unit, Mansfield Road, Oxford OX1 3TH, UK
| | | | | | | |
Collapse
|
18
|
Ruusuvuori E, Li H, Huttu K, Palva JM, Smirnov S, Rivera C, Kaila K, Voipio J. Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 2004; 24:2699-707. [PMID: 15028762 PMCID: PMC6729533 DOI: 10.1523/jneurosci.5176-03.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Identification of the molecular mechanisms that enable synchronous firing of CA1 pyramidal neurons is central to the understanding of the functional properties of this major hippocampal output pathway. Using microfluorescence measurements of intraneuronal pH, in situ hybridization, as well as intracellular, extracellular, and K+-sensitive microelectrode recordings, we show now that the capability for synchronous gamma-frequency (20-80 Hz) firing in response to high-frequency stimulation (HFS) emerges abruptly in the rat hippocampus at approximately postnatal day 12. This was attributable to a steep developmental upregulation of intrapyramidal carbonic anhydrase isoform VII, which acts as a key molecule in the generation of HFS-induced tonic GABAergic excitation. These results point to a crucial role for the developmental expression of intrapyramidal carbonic anhydrase VII activity in shaping integrative functions, long-term plasticity and susceptibility to epileptogenesis.
Collapse
Affiliation(s)
- Eva Ruusuvuori
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|