1
|
White O, Dehouck V, Boulanger N, Dierick F, Babič J, Goswami N, Buisseret F. Resonance tuning of rhythmic movements is disrupted at short time scales: A centrifuge study. iScience 2024; 27:109618. [PMID: 38650981 PMCID: PMC11033689 DOI: 10.1016/j.isci.2024.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The human body exploits its neural mechanisms to optimize actions. Rhythmic movements are optimal when their frequency is close to the natural frequency of the system. In a pendulum, gravity modulates this spontaneous frequency. Participants unconsciously adjust their natural pace when cyclically moving the arm in altered gravity. However, the timescale of this adaptation is unexplored. Participants performed cyclic movements before, during, and after fast transitions between hypergravity levels (1g-3g and 3g-1g) induced by a human centrifuge. Movement periods were modulated with the average value of gravity during transitions. However, while participants increased movement pace on a cycle basis when gravity increased (1g-3g), they did not decrease pace when gravity decreased (3g-1g). We highlight asymmetric effects in the spontaneous adjustment of movement dynamics on short timescales, suggesting the involvement of cognitive factors, beyond standard dynamical models.
Collapse
Affiliation(s)
- Olivier White
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, 21000 Dijon, France
| | - Victor Dehouck
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, 21000 Dijon, France
| | - Nicolas Boulanger
- Service de Physique de l’Univers, Champs et Gravitation, UMONS Research Institute for Complex Systems, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
| | - Frédéric Dierick
- CeREF-Technique, Chaussée de Binche 159, 7000 Mons, Belgium
- Laboratoire d’Analyse du Mouvement et de la Posture (LAMP), Centre National de Rééducation Fonctionnelle et de Réadaptation—Rehazenter, Rue André Vésale 1, 2674 Luxembourg, Luxembourg
- Faculté des Sciences de la Motricité, UCLouvain, Place Pierre de Coubertin 2, 1348 Louvain-la-Neuve, Belgium
| | - Jan Babič
- Laboratory for Neuromechanics, and Biorobotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Slovenia and also with the Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Fabien Buisseret
- CeREF-Technique, Chaussée de Binche 159, 7000 Mons, Belgium
- Service de Physique Nucléaire et Subnucléaire, UMONS Research Institute for Complex Systems, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
| |
Collapse
|
2
|
Guillaud E, Leconte V, Doat E, Guehl D, Cazalets JR. Sensorimotor adaptation of locomotor synergies to gravitational constraint. NPJ Microgravity 2024; 10:5. [PMID: 38212311 PMCID: PMC10784505 DOI: 10.1038/s41526-024-00350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
This study investigates the impact of gravity on lower limb muscle coordination during pedaling. It explores how pedaling behaviors, kinematics, and muscle activation patterns dynamically adapts to changes in gravity and resistance levels. The experiment was conducted in parabolic flights, simulating microgravity, hypergravity (1.8 g), and normogravity conditions. Participants pedaled on an ergometer with varying resistances. The goal was to identify potential changes in muscle synergies and activation strategies under different gravitational contexts. Results indicate that pedaling cadence adjusted naturally in response to both gravity and resistance changes. Cadence increased with higher gravity and decreased with higher resistance levels. Muscular activities were characterized by two synergies representing pull and push phases of pedaling. The timing of synergy activation was influenced by gravity, with a delay in activation observed in microgravity compared to other conditions. Despite these changes, the velocity profile of pedaling remained stable across gravity conditions. The findings strongly suggest that the CNS dynamically manages the shift in body weight by finely tuning muscular coordination, thereby ensuring the maintenance of a stable motor output. Furthermore, electromyography analysis suggest that neuromuscular discharge frequencies were not affected by gravity changes. This implies that the types of muscle fibers recruited during exercise in modified gravity are similar to those used in normogravity. This research has contributed to a better understanding of how the human locomotor system responds to varying gravitational conditions, shedding light on the potential mechanisms underlying astronauts' gait changes upon returning from space missions.
Collapse
Affiliation(s)
- Etienne Guillaud
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| | - Vincent Leconte
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Emilie Doat
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Dominique Guehl
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | | |
Collapse
|
3
|
Stahn AC, Bucher D, Zu Eulenburg P, Denise P, Smith N, Pagnini F, White O. Paving the way to better understand the effects of prolonged spaceflight on operational performance and its neural bases. NPJ Microgravity 2023; 9:59. [PMID: 37524737 PMCID: PMC10390562 DOI: 10.1038/s41526-023-00295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
Space exploration objectives will soon move from low Earth orbit to distant destinations like Moon and Mars. The present work provides an up-to-date roadmap that identifies critical research gaps related to human behavior and performance in altered gravity and space. The roadmap summarizes (1) key neurobehavioral challenges associated with spaceflight, (2) the need to consider sex as a biological variable, (3) the use of integrative omics technologies to elucidate mechanisms underlying changes in the brain and behavior, and (4) the importance of understanding the neural representation of gravity throughout the brain and its multisensory processing. We then highlight the need for a variety of target-specific countermeasures, and a personalized administration schedule as two critical strategies for mitigating potentially adverse effects of spaceflight on the central nervous system and performance. We conclude with a summary of key priorities for the roadmaps of current and future space programs and stress the importance of new collaborative strategies across agencies and researchers for fostering an integrative cross- and transdisciplinary approach from cells, molecules to neural circuits and cognitive performance. Finally, we highlight that space research in neurocognitive science goes beyond monitoring and mitigating risks in astronauts but could also have significant benefits for the population on Earth.
Collapse
Affiliation(s)
- A C Stahn
- Unit of Experimental Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Berlin, Germany.
| | - D Bucher
- IZN-Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - P Zu Eulenburg
- Institute for Neuroradiology & German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University Munich, Munich, Germany
| | - P Denise
- Normandie Univ. UNICAEN, INSERM, COMETE, CYCERON, Caen, France
| | - N Smith
- Protective Security and Resilience Centre, Coventry University, Coventry, United Kingdom
| | - F Pagnini
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - O White
- Université de Bourgogne INSERM-U1093 Cognition, Action, and Sensorimotor Plasticity, Dijon, France.
| |
Collapse
|
4
|
Diaz-Artiles A, Wang Y, Davis MM, Abbott R, Keller N, Kennedy DM. The Influence of Altered-Gravity on Bimanual Coordination: Retention and Transfer. Front Physiol 2022; 12:794705. [PMID: 35069255 PMCID: PMC8777123 DOI: 10.3389/fphys.2021.794705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Many of the activities associated with spaceflight require individuals to coordinate actions between the limbs (e.g., controlling a rover, landing a spacecraft). However, research investigating the influence of gravity on bimanual coordination has been limited. The current experiment was designed to determine an individual's ability to adapt to altered-gravity when performing a complex bimanual force coordination task, and to identify constraints that influence coordination dynamics in altered-gravity. A tilt table was used to simulate gravity on Earth [90° head-up tilt (HUT)] and microgravity [6° head-down tilt (HDT)]. Right limb dominant participants (N = 12) were required to produce 1:1 in-phase and 1:2 multi-frequency force patterns. Lissajous information was provided to guide performance. Participants performed 14, 20 s trials at 90° HUT (Earth). Following a 30-min rest period, participants performed, for each coordination pattern, two retention trials (Earth) followed by two transfer trials in simulated microgravity (6° HDT). Results indicated that participants were able to transfer their training performance during the Earth condition to the microgravity condition with no additional training. No differences between gravity conditions for measures associated with timing (interpeak interval ratio, phase angle slope ratio) were observed. However, despite the effective timing of the force pulses, there were differences in measures associated with force production (peak force, STD of peak force mean force). The results of this study suggest that Lissajous displays may help counteract manual control decrements observed during microgravity. Future work should continue to explore constraints that can facilitate or interfere with bimanual control performance in altered-gravity environments.
Collapse
Affiliation(s)
- Ana Diaz-Artiles
- Bioastronautics and Human Performance Lab, Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States
| | - Yiyu Wang
- Neuromuscular Coordination Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Madison M. Davis
- Neuromuscular Coordination Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Renee Abbott
- Bioastronautics and Human Performance Lab, Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States
| | - Nathan Keller
- Bioastronautics and Human Performance Lab, Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States
| | - Deanna M. Kennedy
- Neuromuscular Coordination Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Rannaud Monany D, Barbiero M, Lebon F, Babič J, Blohm G, Nozaki D, White O. Motor imagery helps updating internal models during microgravity exposure. J Neurophysiol 2022; 127:434-443. [PMID: 34986019 DOI: 10.1152/jn.00214.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skilled movements result from a mixture of feedforward and feedback mechanisms conceptualized by internal models. These mechanisms subserve both motor execution and motor imagery. Current research suggests that imagery allows updating feedforward mechanisms, leading to better performance in familiar contexts. Does this still hold in radically new contexts? Here, we test this ability by asking participants to imagine swinging arm movements around shoulder in normal gravity condition and in microgravity in which studies showed that movements slow down. We timed several cycles of actual and imagined arm pendular movements in three groups of subjects during parabolic flight campaign. The first, control, group remained on the ground. The second group was exposed to microgravity but did not imagine movements inflight. The third group was exposed to microgravity and imagined movements inflight. All groups performed and imagined the movements before and after the flight. We predicted that a mere exposure to microgravity would induce changes in imagined movement duration. We found this held true for the group who imagined the movements, suggesting an update of internal representations of gravity. However, we did not find a similar effect in the group exposed to microgravity despite the fact participants lived the same gravitational variations as the first group. Overall, these results suggest that motor imagery contributes to update internal representations of movement in unfamiliar environments, while a mere exposure proved to be insufficient.
Collapse
Affiliation(s)
- Dylan Rannaud Monany
- Cognition, Action, and Sensorimotor Plasticity, University of Burgundy, Dijon, France
| | - Marie Barbiero
- Cognition, Action, and Sensorimotor Plasticity, University of Burgundy, Dijon, France.,Centre National d'Etudes Spatiales, University of Burgundy, Dijon, France
| | - Florent Lebon
- Cognition, Action, and Sensorimotor Plasticity, University of Burgundy, Dijon, France
| | - Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Daichi Nozaki
- Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Olivier White
- Cognition, Action, and Sensorimotor Plasticity, University of Burgundy, Dijon, France
| |
Collapse
|
6
|
Jamšek M, Kunavar T, Blohm G, Nozaki D, Papaxanthis C, White O, Babič J. Effects of Simulated Microgravity and Hypergravity Conditions on Arm Movements in Normogravity. Front Neural Circuits 2021; 15:750176. [PMID: 34970122 PMCID: PMC8712641 DOI: 10.3389/fncir.2021.750176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
The human sensorimotor control has evolved in the Earth's environment where all movement is influenced by the gravitational force. Changes in this environmental force can severely impact the performance of arm movements which can be detrimental in completing certain tasks such as piloting or controlling complex vehicles. For this reason, subjects that are required to perform such tasks undergo extensive training procedures in order to minimize the chances of failure. We investigated whether local gravity simulation of altered gravitational conditions on the arm would lead to changes in kinematic parameters comparable to the full-body experience of microgravity and hypergravity onboard a parabolic flight. To see if this would be a feasible approach for on-ground training of arm reaching movements in altered gravity conditions we developed a robotic device that was able to apply forces at the wrist in order to simulate micro- or hypergravity conditions for the arm while subjects performed pointing movements on a touch screen. We analyzed and compared the results of several kinematic parameters along with muscle activity using this system with data of the same subjects being fully exposed to microgravity and hypergravity conditions on a parabolic flight. Both in our simulation and in-flight, we observed a significant increase in movement durations in microgravity conditions and increased velocities in hypergravity for upward movements. Additionally, we noted a reduced accuracy of pointing both in-flight and in our simulation. These promising results suggest, that locally simulated altered gravity can elicit similar changes in some movement characteristics for arm reaching movements. This could potentially be exploited as a means of developing devices such as exoskeletons to aid in training individuals prior to undertaking tasks in changed gravitational conditions.
Collapse
Affiliation(s)
- Marko Jamšek
- Laboratory for Neuromechanics and Biorobotics, Jožef Stefan Institute, Department of Automatics, Biocybernetics and Robotics, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tjaša Kunavar
- Laboratory for Neuromechanics and Biorobotics, Jožef Stefan Institute, Department of Automatics, Biocybernetics and Robotics, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Daichi Nozaki
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Olivier White
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Jožef Stefan Institute, Department of Automatics, Biocybernetics and Robotics, Ljubljana, Slovenia
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Gravano S, Lacquaniti F, Zago M. Mental imagery of object motion in weightlessness. NPJ Microgravity 2021; 7:50. [PMID: 34862387 PMCID: PMC8642442 DOI: 10.1038/s41526-021-00179-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Mental imagery represents a potential countermeasure for sensorimotor and cognitive dysfunctions due to spaceflight. It might help train people to deal with conditions unique to spaceflight. Thus, dynamic interactions with the inertial motion of weightless objects are only experienced in weightlessness but can be simulated on Earth using mental imagery. Such training might overcome the problem of calibrating fine-grained hand forces and estimating the spatiotemporal parameters of the resulting object motion. Here, a group of astronauts grasped an imaginary ball, threw it against the ceiling or the front wall, and caught it after the bounce, during pre-flight, in-flight, and post-flight experiments. They varied the throwing speed across trials and imagined that the ball moved under Earth's gravity or weightlessness. We found that the astronauts were able to reproduce qualitative differences between inertial and gravitational motion already on ground, and further adapted their behavior during spaceflight. Thus, they adjusted the throwing speed and the catching time, equivalent to the duration of virtual ball motion, as a function of the imaginary 0 g condition versus the imaginary 1 g condition. Arm kinematics of the frontal throws further revealed a differential processing of imagined gravity level in terms of the spatial features of the arm and virtual ball trajectories. We suggest that protocols of this kind may facilitate sensorimotor adaptation and help tuning vestibular plasticity in-flight, since mental imagery of gravitational motion is known to engage the vestibular cortex.
Collapse
Affiliation(s)
- Silvio Gravano
- grid.417778.a0000 0001 0692 3437Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine and Center of Space BioMedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy. .,Department of Systems Medicine and Center of Space BioMedicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy. .,Department of Civil Engineering and Computer Science Engineering & Center of Space BioMedicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
8
|
Rousseau C, Barbiero M, Pozzo T, Papaxanthis C, White O. Actual and Imagined Movements Reveal a Dual Role of the Insular Cortex for Motor Control. Cereb Cortex 2021; 31:2586-2594. [PMID: 33300566 DOI: 10.1093/cercor/bhaa376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 11/14/2022] Open
Abstract
Movements rely on a mixture of feedforward and feedback mechanisms. With experience, the brain builds internal representations of actions in different contexts. Many factors are taken into account in this process among which is the immutable presence of gravity. Any displacement of a massive body in the gravitational field generates forces and torques that must be predicted and compensated by appropriate motor commands. The insular cortex is a key brain area for graviception. However, no attempt has been made to address whether the same internal representation of gravity is shared between feedforward and feedback mechanisms. Here, participants either mentally simulated (only feedforward) or performed (feedforward and feedback) vertical movements of the hand. We found that the posterior part of the insular cortex was engaged when feedback was processed. The anterior insula, however, was activated only in mental simulation of the action. A psychophysical experiment demonstrates participants' ability to integrate the effects of gravity. Our results point toward a dual internal representation of gravity within the insula. We discuss the conceptual link between these two dualities.
Collapse
Affiliation(s)
- Célia Rousseau
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Marie Barbiero
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France.,Centre National d'Etudes Spatiales (CNES), 75001, Paris, France
| | - Thierry Pozzo
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France.,IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, Ferrara, Italy
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Olivier White
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
9
|
White O, Gaveau J, Bringoux L, Crevecoeur F. The gravitational imprint on sensorimotor planning and control. J Neurophysiol 2020; 124:4-19. [PMID: 32348686 DOI: 10.1152/jn.00381.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans excel at learning complex tasks, and elite performers such as musicians or athletes develop motor skills that defy biomechanical constraints. All actions require the movement of massive bodies. Of particular interest in the process of sensorimotor learning and control is the impact of gravitational forces on the body. Indeed, efficient control and accurate internal representations of the body configuration in space depend on our ability to feel and anticipate the action of gravity. Here we review studies on perception and sensorimotor control in both normal and altered gravity. Behavioral and modeling studies together suggested that the nervous system develops efficient strategies to take advantage of gravitational forces across a wide variety of tasks. However, when the body was exposed to altered gravity, the rate and amount of adaptation exhibited substantial variation from one experiment to another and sometimes led to partial adjustment only. Overall, these results support the hypothesis that the brain uses a multimodal and flexible representation of the effect of gravity on our body and movements. Future work is necessary to better characterize the nature of this internal representation and the extent to which it can adapt to novel contexts.
Collapse
Affiliation(s)
- O White
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - J Gaveau
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - L Bringoux
- Institut des Sciences du Mouvement, CNRS, Aix Marseille Université, Marseille, France
| | - F Crevecoeur
- Institute of Communication and Information Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Belgium.,Institute of Neuroscience (IoNS), UCLouvain, Belgium
| |
Collapse
|
10
|
The effects of varying gravito-inertial stressors on grip strength and hemodynamic responses in men and women. Eur J Appl Physiol 2019; 119:951-960. [PMID: 30730002 PMCID: PMC6422992 DOI: 10.1007/s00421-019-04084-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/19/2019] [Indexed: 12/16/2022]
Abstract
Purpose The body behaves as a global system with many interconnected subsystems. While the effects of a gravitational change on body responses have been extensively studied in isolation, we are not aware of any study that has examined these two types of body responses concurrently. Here, we examined how the cognitive and cardiovascular systems respond during application of varying gravito-inertial stressors in men and women. Methods Ten men and nine women underwent three 5-min centrifugation sessions (2.4 g at the feet, 1.5 g at the heart) in which participants rhythmically moved a hand-held object for 20 s. Grip force and hemodynamic responses were continuously measured during centrifugation and rest periods. Result Men optimized the modulation between grip force and the destabilizing load force, but not women. Exposure to artificial gravity induced higher heart rate and mean arterial pressure in both sexes compared to baseline. However, during artificial gravity exposure, only women decreased heart rate across sessions. Interestingly, we found that finishers of the protocol (mostly men) and Non-finishers (mostly women) exhibited divergent patterns of hemodynamic responses. Conclusion We speculate that the lack of grip force adaptation reported in women could be linked to the challenged hemodynamic responses during artificial gravity. By deriving a simple model to predict failure to complete the protocol, we found that mean arterial pressure—and not sex of the participant—was the most relevant factor. As artificial gravity is being proposed as a countermeasure in long-term manned missions, the observed effects in grip force adaptation and hemodynamic responses during varying gravito-inertial stressors application are particularly important.
Collapse
|
11
|
Hasson CJ, Goodman SE. Learning to shape virtual patient locomotor patterns: internal representations adapt to exploit interactive dynamics. J Neurophysiol 2019; 121:321-335. [PMID: 30403561 PMCID: PMC6383669 DOI: 10.1152/jn.00408.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022] Open
Abstract
This work aimed to understand the sensorimotor processes used by humans when learning how to manipulate a virtual model of locomotor dynamics. Prior research shows that when interacting with novel dynamics humans develop internal models that map neural commands to limb motion and vice versa. Whether this can be extrapolated to locomotor rehabilitation, a continuous and rhythmic activity that involves dynamically complex interactions, is unknown. In this case, humans could default to model-free strategies. These competing hypotheses were tested with a novel interactive locomotor simulator that reproduced the dynamics of hemiparetic gait. A group of 16 healthy subjects practiced using a small robotic manipulandum to alter the gait of a virtual patient (VP) that had an asymmetric locomotor pattern modeled after stroke survivors. The point of interaction was the ankle of the VP's affected leg, and the goal was to make the VP's gait symmetric. Internal model formation was probed with unexpected force channels and null force fields. Generalization was assessed by changing the target locomotor pattern and comparing outcomes with a second group of 10 naive subjects who did not practice the initial symmetric target pattern. Results supported the internal model hypothesis with aftereffects and generalization of manipulation skill. Internal models demonstrated refinements that capitalized on the natural pendular dynamics of human locomotion. This work shows that despite the complex interactive dynamics involved in shaping locomotor patterns, humans nevertheless develop and use internal models that are refined with experience. NEW & NOTEWORTHY This study aimed to understand how humans manipulate the physics of locomotion, a common task for physical therapists during locomotor rehabilitation. To achieve this aim, a novel locomotor simulator was developed that allowed participants to feel like they were manipulating the leg of a miniature virtual stroke survivor walking on a treadmill. As participants practiced improving the simulated patient's gait, they developed generalizable internal models that capitalized on the natural pendular dynamics of locomotion.
Collapse
Affiliation(s)
- Christopher J Hasson
- Neuromotor Systems Laboratory, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University , Boston, Massachusetts
- Department of Bioengineering, Northeastern University , Boston, Massachusetts
- Department of Biology, Northeastern University , Boston, Massachusetts
| | - Sarah E Goodman
- Department of Bioengineering, Northeastern University , Boston, Massachusetts
| |
Collapse
|
12
|
Avrin G, Siegler IA, Makarov M, Rodriguez-Ayerbe P. The self-organization of ball bouncing. BIOLOGICAL CYBERNETICS 2018; 112:509-522. [PMID: 30140951 DOI: 10.1007/s00422-018-0776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
The hybrid rhythmic ball-bouncing task considered in this study requires a participant to hit a ball in a virtual environment by moving a paddle in the real environment. It allows for investigation of the online visual control of action in humans. Changes in gravity acceleration in the virtual environment affect the ball dynamics and modify the ball-paddle system limit cycle. These changes are shown to be accurately reproduced through simulation by a model integrating continuous information-movement couplings between the ball trajectory and the paddle trajectory, giving rise to a resonance-tuning phenomenon. On the contrary, the tested models integrating only intermittent sensorimotor couplings were unable to replicate the observed human behavior. Results suggest that the visual control of action is achieved online, in a prospective way. Human rhythmic motor control would benefit from the timing and phase control emerging from the low-level continuous coupling between the central pattern generator and the visual perception of the ball trajectory. This control strategy, which precludes the need for internal clock and explicit environmental representation, is also able to explain the empirical result that the bounces tend to converge toward a passive stability regime during human ball bouncing.
Collapse
Affiliation(s)
- Guillaume Avrin
- Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec- CNRS- Univ. Paris-Sud, Université Paris-Saclay, 91192, Gif-sur-Yvette, France.
- CIAMS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France.
- CIAMS, Université d'Orléans, 45067, Orléans, France.
| | - Isabelle A Siegler
- CIAMS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
| | - Maria Makarov
- Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec- CNRS- Univ. Paris-Sud, Université Paris-Saclay, 91192, Gif-sur-Yvette, France
| | - Pedro Rodriguez-Ayerbe
- Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec- CNRS- Univ. Paris-Sud, Université Paris-Saclay, 91192, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Opsomer L, Théate V, Lefèvre P, Thonnard JL. Dexterous Manipulation During Rhythmic Arm Movements in Mars, Moon, and Micro-Gravity. Front Physiol 2018; 9:938. [PMID: 30065666 PMCID: PMC6056656 DOI: 10.3389/fphys.2018.00938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
Predicting the consequences of one’s own movements can be challenging when confronted with completely novel environmental dynamics, such as microgravity in space. The absence of gravitational force disrupts internal models of the central nervous system (CNS) that have been tuned to the dynamics of a constant 1-g environment since birth. In the context of object manipulation, inadequate internal models produce prediction uncertainty evidenced by increases in the grip force (GF) safety margin that ensures a stable grip during unpredicted load perturbations. This margin decreases with practice in a novel environment. However, it is not clear how the CNS might react to a reduced, but non-zero, gravitational field, and if adaptation to reduced gravity might be beneficial for subsequent microgravity exposure. That is, we wondered if a transfer of learning can occur across various reduced-gravity environments. In this study, we investigated the kinematics and dynamics of vertical arm oscillations during parabolic flight maneuvers that simulate Mars gravity, Moon gravity, and microgravity, in that order. While the ratio of and the correlation between GF and load force (LF) evolved progressively with practice in Mars gravity, these parameters stabilized much quicker to subsequently presented Moon and microgravity conditions. These data suggest that prior short-term adaptation to one reduced-gravity field facilitates the CNS’s ability to update its internal model during exposure to other reduced gravity fields.
Collapse
Affiliation(s)
- Laurent Opsomer
- System and Cognition Division, Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Mathematical Engineering Department, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Vincent Théate
- System and Cognition Division, Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Mathematical Engineering Department, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Philippe Lefèvre
- System and Cognition Division, Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Mathematical Engineering Department, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Louis Thonnard
- System and Cognition Division, Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Mathematical Engineering Department, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Cliniques Universitaires Saint-Luc, Physical and Rehabilitation Medicine Department, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
White O, Thonnard JL, Lefèvre P, Hermsdörfer J. Grip Force Adjustments Reflect Prediction of Dynamic Consequences in Varying Gravitoinertial Fields. Front Physiol 2018. [PMID: 29527176 PMCID: PMC5829530 DOI: 10.3389/fphys.2018.00131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Humans have a remarkable ability to adjust the way they manipulate tools through a genuine regulation of grip force according to the task. However, rapid changes in the dynamical context may challenge this skill, as shown in many experimental approaches. Most experiments adopt perturbation paradigms that affect only one sensory modality. We hypothesize that very fast adaptation can occur if coherent information from multiple sensory modalities is provided to the central nervous system. Here, we test whether participants can switch between different and never experienced dynamical environments induced by centrifugation of the body. Seven participants lifted an object four times in a row successively in 1, 1.5, 2, 2.5, 2, 1.5, and 1 g. We continuously measured grip force, load force and the gravitoinertial acceleration that was aligned with body axis (perceived gravity). Participants adopted stereotyped grasping movements immediately upon entry in a new environment and needed only one trial to adapt grip forces to a stable performance in each new gravity environment. This result was underlined by good correlations between grip and load forces in the first trial. Participants predictively applied larger grip forces when they expected increasing gravity steps. They also decreased grip force when they expected decreasing gravity steps, but not as much as they could, indicating imperfect anticipation in that condition. The participants' performance could rather be explained by a combination of successful scaling of grip force according to gravity changes and a separate safety factor. The data suggest that in highly unfamiliar dynamic environments, grip force regulation is characterized by a combination of a successful anticipation of the experienced environmental condition, a safety factor reflecting strategic response to uncertainties about the environment and rapid feedback mechanisms to optimize performance under constant conditions.
Collapse
Affiliation(s)
- Olivier White
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Jean-Louis Thonnard
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Physical and Rehabilitation Medicine Department, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Philippe Lefèvre
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joachim Hermsdörfer
- Department of Sport and Health Sciences, Institute of Human Movement Science, Technische Universität München, Munich, Germany
| |
Collapse
|
15
|
Barbiero M, Rousseau C, Papaxanthis C, White O. Coherent Multimodal Sensory Information Allows Switching between Gravitoinertial Contexts. Front Physiol 2017; 8:290. [PMID: 28553233 PMCID: PMC5425486 DOI: 10.3389/fphys.2017.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022] Open
Abstract
Whether the central nervous system is capable to switch between contexts critically depends on experimental details. Motor control studies regularly adopt robotic devices to perturb the dynamics of a certain task. Other approaches investigate motor control by altering the gravitoinertial context itself as in parabolic flights and human centrifuges. In contrast to conventional robotic experiments, where only the hand is perturbed, these gravitoinertial or immersive settings coherently plunge participants into new environments. However, radically different they are, perfect adaptation of motor responses are commonly reported. In object manipulation tasks, this translates into a good matching of the grasping force or grip force to the destabilizing load force. One possible bias in these protocols is the predictability of the forthcoming dynamics. Here we test whether the successful switching and adaptation processes observed in immersive environments are a consequence of the fact that participants can predict the perturbation schedule. We used a short arm human centrifuge to decouple the effects of space and time on the dynamics of an object manipulation task by adding an unnatural explicit position-dependent force. We created different dynamical contexts by asking 20 participants to move the object at three different paces. These contextual sessions were interleaved such that we could simulate concurrent learning. We assessed adaptation by measuring how grip force was adjusted to this unnatural load force. We found that the motor system can switch between new unusual dynamical contexts, as reported by surprisingly well-adjusted grip forces, and that this capacity is not a mere consequence of the ability to predict the time course of the upcoming dynamics. We posit that a coherent flow of multimodal sensory information born in a homogeneous milieu allows switching between dynamical contexts.
Collapse
Affiliation(s)
- Marie Barbiero
- Université de Bourgogne Franche-Comté, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France.,Institut National de Santé et de Recherche Médicale, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France
| | - Célia Rousseau
- Université de Bourgogne Franche-Comté, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France.,Institut National de Santé et de Recherche Médicale, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France
| | - Charalambos Papaxanthis
- Université de Bourgogne Franche-Comté, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France.,Institut National de Santé et de Recherche Médicale, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France
| | - Olivier White
- Université de Bourgogne Franche-Comté, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France.,Institut National de Santé et de Recherche Médicale, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France
| |
Collapse
|
16
|
Jörges B, López-Moliner J. Gravity as a Strong Prior: Implications for Perception and Action. Front Hum Neurosci 2017; 11:203. [PMID: 28503140 PMCID: PMC5408029 DOI: 10.3389/fnhum.2017.00203] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022] Open
Abstract
In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called “strong prior”. As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities.
Collapse
Affiliation(s)
- Björn Jörges
- Department of Cognition, Development and Psychology of Education, Faculty of Psychology, Universitat de BarcelonaCatalonia, Spain.,Institut de Neurociències, Universitat de BarcelonaCatalonia, Spain
| | - Joan López-Moliner
- Department of Cognition, Development and Psychology of Education, Faculty of Psychology, Universitat de BarcelonaCatalonia, Spain.,Institut de Neurociències, Universitat de BarcelonaCatalonia, Spain
| |
Collapse
|
17
|
Towards human exploration of space: the THESEUS review series on neurophysiology research priorities. NPJ Microgravity 2016; 2:16023. [PMID: 28725734 PMCID: PMC5515521 DOI: 10.1038/npjmgrav.2016.23] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 11/08/2022] Open
Abstract
The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.
Collapse
|
18
|
Rousseau C, Fautrelle L, Papaxanthis C, Fadiga L, Pozzo T, White O. Direction-dependent activation of the insular cortex during vertical and horizontal hand movements. Neuroscience 2016; 325:10-9. [PMID: 27001175 DOI: 10.1016/j.neuroscience.2016.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
The planning of any motor action requires a complex multisensory processing by the brain. Gravity - immutable on Earth - has been shown to be a key input to these mechanisms. Seminal fMRI studies performed during visual perception of falling objects and self-motion demonstrated that humans represent the action of gravity in parts of the cortical vestibular system; in particular, the insular cortex and the cerebellum. However, little is known as to whether a specific neural network is engaged when processing non-visual signals relevant to gravity. We asked participants to perform vertical and horizontal hand movements without visual control, while lying in a 3T-MRI scanner. We highlighted brain regions activated in the processing of vertical movements, for which the effects of gravity changed during execution. Precisely, the left insula was activated in vertical movements and not in horizontal movements. Moreover, the network identified by contrasting vertical and horizontal movements overlapped with neural correlates previously associated to the processing of simulated self-motion and visual perception of the vertical direction. Interestingly, we found that the insular cortex activity is direction-dependent which suggests that this brain region processes the effects of gravity on the moving limbs through non-visual signals.
Collapse
Affiliation(s)
- C Rousseau
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, F-21078 Dijon, France; Institut National de Santé et de Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, BP 27877, F-21078 Dijon, France
| | - L Fautrelle
- EA 2931, Centre de Recherches sur le Sport et le Mouvement, Campus Universitaire Paris Ouest Nanterre La Défense, UFR STAPS Bât S., 200 avenue de la République, 92000 Nanterre, France; Université de Paris Ouest Nanterre la Défense, UFR STAPS, 92000 Nanterre, France
| | - C Papaxanthis
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, F-21078 Dijon, France; Institut National de Santé et de Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, BP 27877, F-21078 Dijon, France.
| | - L Fadiga
- IIT@UNIFE Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Italy; Section of Human Physiology, Università di Ferrara, Ferrara 44121, Italy
| | - T Pozzo
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, F-21078 Dijon, France; Institut National de Santé et de Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, BP 27877, F-21078 Dijon, France; Institut Universitaire de France (IUF), Paris, France; IIT@UNIFE Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Italy
| | - O White
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, F-21078 Dijon, France; Institut National de Santé et de Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, BP 27877, F-21078 Dijon, France
| |
Collapse
|
19
|
Rhythmic arm movements are less affected than discrete ones after a stroke. Exp Brain Res 2016; 234:1403-17. [DOI: 10.1007/s00221-015-4543-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
|
20
|
White O. The brain adjusts grip forces differently according to gravity and inertia: a parabolic flight experiment. Front Integr Neurosci 2015; 9:7. [PMID: 25717293 PMCID: PMC4324077 DOI: 10.3389/fnint.2015.00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/21/2015] [Indexed: 11/17/2022] Open
Abstract
In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force (GF), normal to the finger/object contact, in anticipation of the expected tangential load force (LF), resulting from the combination of the gravitational and the inertial forces. In many contexts, GF and LF are linearly coupled. A few studies have examined how we adjust the parameters–gain and offset–of this linear relationship. However, the question remains open as to how the brain adjusts GF regardless of whether LF is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of LF by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust GF, the brain is sensitive to how LFs are produced at the fingertips. This provides clear evidence that the analysis of the origin of LF is performed centrally, and not only at the periphery.
Collapse
Affiliation(s)
- Olivier White
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne Dijon, France ; Unit 1093, Cognition, Action, and Sensorimotor Plasticity, Institut National de la Santé et de la Recherche Médicale (INSERM) Dijon, France
| |
Collapse
|
21
|
Sylos-Labini F, Ivanenko YP, Cappellini G, Portone A, MacLellan MJ, Lacquaniti F. Changes of gait kinematics in different simulators of reduced gravity. J Mot Behav 2013; 45:495-505. [PMID: 24079466 DOI: 10.1080/00222895.2013.833080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gravity reduction affects the energetics and natural speed of walking and running. But, it is less clear how segmental coordination is altered. Various devices have been developed in the past to study locomotion in simulated reduced gravity. However, most of these devices unload only the body center of mass. The authors reduced the effective gravity acting on the stance or swing leg to 0.16g using different simulators. Locomotion under these conditions was associated with a reduction in the foot velocity and significant changes in angular motion. Moreover, when simulated reduced gravity directly affected the swing limb, it resulted in significantly slower swing and longer foot excursions, suggesting an important role of the swing phase dynamics in shaping locomotor patterns.
Collapse
|
22
|
Rinderknecht MD, Delaloye FA, Crespi A, Ronsse R, Ijspeert AJ. Assistance using adaptive oscillators: robustness to errors in the identification of the limb parameters. IEEE Int Conf Rehabil Robot 2012; 2011:5975351. [PMID: 22275555 DOI: 10.1109/icorr.2011.5975351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper provides a robustness analysis of the method we recently developed for rhythmic movement assistance using adaptive oscillators. An adaptive oscillator is a mathematical tool capable of extracting high-level features (i.e. amplitude, frequency, offset) of a quasi-sinusoidal measured movement, a rhythmic flexion-extension of the elbow in this case. By the use of a simple inverse dynamical model, the system can predict the torque produced by a human participant, such that a fraction of this estimated torque is fed back through a series elastic actuator to provide movement assistance. This paper objectives are twofold. First, we introduce a new 1 DOF assistive device developed in our lab. Second, we derive model-based predictions and conduct experimental validations to measure the variations in movement frequency as a function of the open parameters of the inverse dynamical model. As such, the paper provides an estimation of the robustness of our method due to model approximations. As main result, the paper reveals that the movement frequency is particularly robust to errors in the estimation of the damping coefficient. This is of high interest for the applicability of our approach, this parameter being in general the most difficult to identify.
Collapse
Affiliation(s)
- Mike Domenik Rinderknecht
- Biorobotics Laboratory; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
23
|
Ronsse R, Lenzi T, Vitiello N, Koopman B, van Asseldonk E, De Rossi SMM, van den Kieboom J, van der Kooij H, Carrozza MC, Ijspeert AJ. Oscillator-based assistance of cyclical movements: model-based and model-free approaches. Med Biol Eng Comput 2011; 49:1173-85. [PMID: 21881902 DOI: 10.1007/s11517-011-0816-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/30/2011] [Indexed: 12/28/2022]
Abstract
In this article, we propose a new method for providing assistance during cyclical movements. This method is trajectory-free, in the sense that it provides user assistance irrespective of the performed movement, and requires no other sensing than the assisting robot's own encoders. The approach is based on adaptive oscillators, i.e., mathematical tools that are capable of learning the high level features (frequency, envelope, etc.) of a periodic input signal. Here we present two experiments that we recently conducted to validate our approach: a simple sinusoidal movement of the elbow, that we designed as a proof-of-concept, and a walking experiment. In both cases, we collected evidence illustrating that our approach indeed assisted healthy subjects during movement execution. Owing to the intrinsic periodicity of daily life movements involving the lower-limbs, we postulate that our approach holds promise for the design of innovative rehabilitation and assistance protocols for the lower-limb, requiring little to no user-specific calibration.
Collapse
Affiliation(s)
- Renaud Ronsse
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Levy-Tzedek S, Ben Tov M, Karniel A. Rhythmic movements are larger and faster but with the same frequency on removal of visual feedback. J Neurophysiol 2011; 106:2120-6. [PMID: 21813746 DOI: 10.1152/jn.00266.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain controls rhythmic movement through neural circuits combining visual information with proprioceptive information from the limbs. Although rhythmic movements are fundamental to everyday activities the specific details of the responsible control mechanisms remain elusive. We tested 39 young adults who performed flexion/extension movements of the forearm. We provided them with explicit knowledge of the amplitude and the speed of their movements, whereas frequency information was only implicitly available. In a series of 3 experiments, we demonstrate a tighter control of frequency compared with amplitude or speed. We found that in the absence of visual feedback, movements had larger amplitude and higher peak speed while maintaining the same frequency as when visual feedback was available; this was the case even when participants were aware of performing overly large and fast movements. Finally, when participants were asked to modulate continuously movement frequency, but not amplitude, we found the local coefficient of variability of movement frequency to be lower than that of amplitude. We suggest that a misperception of the generated amplitude in the absence of visual feedback, coupled with a highly accurate perception of generated frequency, leads to the performance of larger and faster movements with the same frequency when visual feedback is not available. Relatively low local coefficient of variability of frequency in a task that calls for continuous change in movement frequency suggests that we tend to operate at a constant frequency at the expense of variation in amplitude and peak speed.
Collapse
Affiliation(s)
- S Levy-Tzedek
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheba, Israel.
| | | | | |
Collapse
|
25
|
Labini FS, Ivanenko YP, Cappellini G, Gravano S, Lacquaniti F. Smooth changes in the EMG patterns during gait transitions under body weight unloading. J Neurophysiol 2011; 106:1525-36. [PMID: 21697441 DOI: 10.1152/jn.00160.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During gradual speed changes, humans exhibit a sudden discontinuous switch from walking to running at a specific speed, and it has been suggested that different gaits may be associated with different functioning of neuronal networks. In this study we recorded the EMG activity of leg muscles at slow increments and decrements in treadmill belt speed and at different levels of body weight unloading. In contrast to normal walking at 1 g, at lower levels of simulated gravity (<0.4 g) the transition between walking and running was generally gradual, without systematic abrupt changes in either intensity or timing of EMG patterns. This phenomenon depended to a limited extent on the gravity simulation technique, although the exact level of the appearance of smooth transitions (0.4-0.6 g) tended to be lower for the vertical than for the tilted body weight support system. Furthermore, simulations performed with a half-center oscillator neuromechanical model showed that the abruptness of motor patterns at gait transitions at 1 g could be predicted from the distinct parameters anchored already in the normal range of walking and running speeds, whereas at low gravity levels the parameters of the model were similar for the two human gaits. A lack of discontinuous changes in the pattern of speed-dependent locomotor characteristics in a hypogravity environment is consistent with the idea of a continuous shift in the state of a given set of central pattern generators, rather than the activation of a separate set of central pattern generators for each distinct gait.
Collapse
Affiliation(s)
- Francesca Sylos Labini
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 306 via Ardeatina, 00179 Rome, Italy
| | | | | | | | | |
Collapse
|
26
|
Gaveau J, Paizis C, Berret B, Pozzo T, Papaxanthis C. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning. J Neurophysiol 2011; 106:620-9. [PMID: 21562193 DOI: 10.1152/jn.00081.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After an exposure to weightlessness, the central nervous system operates under new dynamic and sensory contexts. To find optimal solutions for rapid adaptation, cosmonauts have to decide whether parameters from the world or their body have changed and to estimate their properties. Here, we investigated sensorimotor adaptation after a spaceflight of 10 days. Five cosmonauts performed forward point-to-point arm movements in the sagittal plane 40 days before and 24 and 72 h after the spaceflight. We found that, whereas the shape of hand velocity profiles remained unaffected after the spaceflight, hand path curvature significantly increased 1 day after landing and returned to the preflight level on the third day. Control experiments, carried out by 10 subjects under normal gravity conditions, showed that loading the arm with varying loads (from 0.3 to 1.350 kg) did not affect path curvature. Therefore, changes in path curvature after spaceflight cannot be the outcome of a control process based on the subjective feeling that arm inertia was increased. By performing optimal control simulations, we found that arm kinematics after exposure to microgravity corresponded to a planning process that overestimated the gravity level and optimized movements in a hypergravity environment (∼1.4 g). With time and practice, the sensorimotor system was recalibrated to Earth's gravity conditions, and cosmonauts progressively generated accurate estimations of the body state, gravity level, and sensory consequences of the motor commands (72 h). These observations provide novel insights into how the central nervous system evaluates body (inertia) and environmental (gravity) states during sensorimotor adaptation of point-to-point arm movements after an exposure to weightlessness.
Collapse
|
27
|
Crevecoeur F, McIntyre J, Thonnard JL, Lefèvre P. Movement Stability Under Uncertain Internal Models of Dynamics. J Neurophysiol 2010; 104:1301-13. [DOI: 10.1152/jn.00315.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sensory noise and feedback delay are potential sources of instability and variability for the on-line control of movement. It is commonly assumed that predictions based on internal models allow the CNS to anticipate the consequences of motor actions and protect the movements from uncertainty and instability. However, during motor learning and exposure to unknown dynamics, these predictions can be inaccurate. Therefore a distinct strategy is necessary to preserve movement stability. This study tests the hypothesis that in such situations, subjects adapt the speed and accuracy constraints on the movement, yielding a control policy that is less prone to undesirable variability in the outcome. This hypothesis was tested by asking subjects to hold a manipulandum in precision grip and to perform single-joint, discrete arm rotations during short-term exposure to weightlessness (0 g), where the internal models of the limb dynamics must be updated. Measurements of grip force adjustments indicated that the internal predictions were altered during early exposure to the 0 g condition. Indeed, the grip force/load force coupling reflected that the grip force was less finely tuned to the load-force variations at the beginning of the exposure to the novel gravitational condition. During this learning period, movements were slower with asymmetric velocity profiles and target undershooting. This effect was compared with theoretical results obtained in the context of optimal feedback control, where changing the movement objective can be directly tested by adjusting the cost parameters. The effect on the simulated movements quantitatively supported the hypothesis of a change in cost function during early exposure to a novel environment. The modified optimization criterion reduces the trial-to-trial variability in spite of the fact that noise affects the internal prediction. These observations support the idea that the CNS adjusts the movement objective to stabilize the movement when internal models are uncertain.
Collapse
Affiliation(s)
- F. Crevecoeur
- Center for Systems Engineering and Applied Mechanics, Université catholique de Louvain, Louvain-la-Neuve
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; and
| | - J. McIntyre
- Centre d'Etudes de la Sensorimotricité, Centre National de la Recherche Scientifique–Université Paris Descartes, Paris, France
| | - J.-L. Thonnard
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; and
| | - P. Lefèvre
- Center for Systems Engineering and Applied Mechanics, Université catholique de Louvain, Louvain-la-Neuve
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; and
| |
Collapse
|
28
|
Ronsse R, Sternad D, Lefèvre P. A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput 2009; 21:1335-70. [PMID: 19018700 DOI: 10.1162/neco.2008.03-08-720] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Current research on discrete and rhythmic movements differs in both experimental procedures and theory, despite the ubiquitous overlap between discrete and rhythmic components in everyday behaviors. Models of rhythmic movements usually use oscillatory systems mimicking central pattern generators (CPGs). In contrast, models of discrete movements often employ optimization principles, thereby reflecting the higher-level cortical resources involved in the generation of such movements. This letter proposes a unified model for the generation of both rhythmic and discrete movements. We show that a physiologically motivated model of a CPG can not only generate simple rhythmic movements with only a small set of parameters, but can also produce discrete movements if the CPG is fed with an exponentially decaying phasic input. We further show that a particular coupling between two of these units can reproduce main findings on in-phase and antiphase stability. Finally, we propose an integrated model of combined rhythmic and discrete movements for the two hands. These movement classes are sequentially addressed in this letter with increasing model complexity. The model variations are discussed in relation to the degree of recruitment of the higher-level cortical resources, necessary for such movements.
Collapse
Affiliation(s)
- Renaud Ronsse
- Department of Electrical Engineering and Computer Science, Montefiore Institute, Université de Liège, B-4000 Liège, Belgium.
| | | | | |
Collapse
|
29
|
Furuya S, Osu R, Kinoshita H. Effective utilization of gravity during arm downswing in keystrokes by expert pianists. Neuroscience 2009; 164:822-31. [PMID: 19698766 DOI: 10.1016/j.neuroscience.2009.08.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 08/08/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
The present study investigated a skill-level-dependent interaction between gravity and muscular force when striking piano keys. Kinetic analysis of the arm during the downswing motion performed by expert and novice piano players was made using an inverse dynamic technique. The corresponding activities of the elbow agonist and antagonist muscles were simultaneously recorded using electromyography (EMG). Muscular torque at the elbow joint was computed while excluding the effects of gravitational and motion-dependent interaction torques. During descending the forearm to strike the keys, the experts kept the activation of the triceps (movement agonist) muscle close to the resting level, and decreased anti-gravity activity of the biceps muscle across all loudness levels. This suggested that elbow extension torque was produced by gravity without the contribution of agonist muscular work. For the novices, on the other hand, a distinct activity in the triceps muscle appeared during the middle of the downswing, and its amount and duration were increased with increasing loudness. Therefore, for the novices, agonist muscular force was the predominant contributor to the acceleration of elbow extension during the downswing. We concluded that a balance shift from muscular force dependency to gravity dependency for the generation of a target joint torque occurs with long-term piano training. This shift would support the notion of non-muscular force utilization for improving physiological efficiency of limb movement with respect to the effective use of gravity.
Collapse
Affiliation(s)
- S Furuya
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 5600043, Japan; Research Center for Human Media, Kwansei Gakuin University, Sanda, Hyogo 6691337, Japan.
| | | | | |
Collapse
|
30
|
Crevecoeur F, Thonnard JL, Lefèvre P. Optimal Integration of Gravity in Trajectory Planning of Vertical Pointing Movements. J Neurophysiol 2009; 102:786-96. [DOI: 10.1152/jn.00113.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The planning and control of motor actions requires knowledge of the dynamics of the controlled limb to generate the appropriate muscular commands and achieve the desired goal. Such planning and control imply that the CNS must be able to deal with forces and constraints acting on the limb, such as the omnipresent force of gravity. The present study investigates the effect of hypergravity induced by parabolic flights on the trajectory of vertical pointing movements to test the hypothesis that motor commands are optimized with respect to the effect of gravity on the limb. Subjects performed vertical pointing movements in normal gravity and hypergravity. We use a model based on optimal control to identify the role played by gravity in the optimal arm trajectory with minimal motor costs. First, the simulations in normal gravity reproduce the asymmetry in the velocity profiles (the velocity reaches its maximum before half of the movement duration), which typically characterizes the vertical pointing movements performed on Earth, whereas the horizontal movements present symmetrical velocity profiles. Second, according to the simulations, the optimal trajectory in hypergravity should present an increase in the peak acceleration and peak velocity despite the increase in the arm weight. In agreement with these predictions, the subjects performed faster movements in hypergravity with significant increases in the peak acceleration and peak velocity, which were accompanied by a significant decrease in the movement duration. This suggests that movement kinematics change in response to an increase in gravity, which is consistent with the hypothesis that motor commands are optimized and the action of gravity on the limb is taken into account. The results provide evidence for an internal representation of gravity in the central planning process and further suggest that an adaptation to altered dynamics can be understood as a reoptimization process.
Collapse
|
31
|
Forward models of inertial loads in weightlessness. Neuroscience 2009; 161:589-98. [PMID: 19303921 DOI: 10.1016/j.neuroscience.2009.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/25/2009] [Accepted: 03/09/2009] [Indexed: 02/05/2023]
Abstract
In this experiment, we investigated whether the CNS uses internal forward models of inertial loads to maintain the stability of a precision grip when manipulating objects in the absence of gravity. The micro-gravity condition causes profound changes in the profile of tangential constraints at the finger-object interface. In order to assess the ability to predict the micro-gravity-specific variation of inertial loads, we analyzed the grip force adjustments that occurred when naive subjects held an object in a precision grip and performed point-to-point movements under the weightless condition induced by parabolic flight. Such movements typically presented static and dynamic phases, which permitted distinction between a static component of the grip force (measured before the movement) and a dynamic component of the grip force (measured during the movement). The static component tended to gradually decrease across the parabolas, whereas the dynamic component was rapidly modulated with the micro-gravity-specific inertial loads. In addition, the amplitude of the modulation significantly correlated with the amplitude of the tangential constraints for the dynamic component. These results strongly support the hypothesis that the internal representation of arm and object dynamics adapts to new gravitational contexts. In addition, the difference in time scales of adaptation of static and dynamic components suggests that they can be processed independently. The prediction of self-induced variation of inertial loads permits fine modulation of grip force, which ensures a stable grip during manipulation of an object in a new environment.
Collapse
|