1
|
Idoux E, Tagliabue M, Beraneck M. No Gain No Pain: Relations Between Vestibulo-Ocular Reflexes and Motion Sickness in Mice. Front Neurol 2018; 9:918. [PMID: 30483206 PMCID: PMC6240678 DOI: 10.3389/fneur.2018.00918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 01/07/2023] Open
Abstract
Motion sickness occurs when the vestibular system is subjected to conflicting sensory information or overstimulation. Despite the lack of knowledge about the actual underlying mechanisms, several drugs, among which scopolamine, are known to prevent or alleviate the symptoms. Here, we aim at better understanding how motion sickness affects the vestibular system, as well as how scopolamine prevents motion sickness at the behavioral and cellular levels. We induced motion sickness in adult mice and tested the vestibulo-ocular responses to specific stimulations of the semi-circular canals and of the otoliths, with or without scopolamine, as well as the effects of scopolamine and muscarine on central vestibular neurons recorded on brainstem slices. We found that both motion sickness and scopolamine decrease the efficacy of the vestibulo-ocular reflexes and propose that this decrease in efficacy might be a protective mechanism to prevent later occurrences of motion sickness. To test this hypothesis, we used a behavioral paradigm based on visuo-vestibular interactions which reduces the efficacy of the vestibulo-ocular reflexes. This paradigm also offers protection against motion sickness, without requiring any drug. At the cellular level, we find that depending on the neuron, scopolamine can have opposite effects on the polarization level and firing frequency, indicating the presence of at least two types of muscarinic receptors in the medial vestibular nucleus. The present results set the basis for future studies of motion sickness counter-measures in the mouse model and offers translational perspectives for improving the treatment of affected patients.
Collapse
Affiliation(s)
- Erwin Idoux
- Center for Neurophysics, Physiology, Pathology, CNRS UMR 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Centre National D'Etudes Spatiales, Paris, France
| | - Michele Tagliabue
- Center for Neurophysics, Physiology, Pathology, CNRS UMR 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Beraneck
- Center for Neurophysics, Physiology, Pathology, CNRS UMR 8119, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
2
|
Comparisons of Neuronal and Excitatory Network Properties between the Rat Brainstem Nuclei that Participate in Vertical and Horizontal Gaze Holding. eNeuro 2017; 4:eN-NWR-0180-17. [PMID: 28966973 PMCID: PMC5616193 DOI: 10.1523/eneuro.0180-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Gaze holding is primarily controlled by neural structures including the prepositus hypoglossi nucleus (PHN) for horizontal gaze and the interstitial nucleus of Cajal (INC) for vertical and torsional gaze. In contrast to the accumulating findings of the PHN, there is no report regarding the membrane properties of INC neurons or the local networks in the INC. In this study, to verify whether the neural structure of the INC is similar to that of the PHN, we investigated the neuronal and network properties of the INC using whole-cell recordings in rat brainstem slices. Three types of afterhyperpolarization (AHP) profiles and five firing patterns observed in PHN neurons were also observed in INC neurons. However, the overall distributions based on the AHP profile and the firing patterns of INC neurons were different from those of PHN neurons. The application of burst stimulation to a nearby site of a recorded INC neuron induced an increase in the frequency of spontaneous EPSCs. The duration of the increased EPSC frequency of INC neurons was not significantly different from that of PHN neurons. The percent of duration reduction induced by a Ca2+-permeable AMPA (CP-AMPA) receptor antagonist was significantly smaller in the INC than in the PHN. These findings suggest that local excitatory networks that activate sustained EPSC responses also exist in the INC, but their activation mechanisms including the contribution of CP-AMPA receptors differ between the INC and the PHN.
Collapse
|
3
|
Saito Y, Yanagawa Y. Distinct response properties of rat prepositus hypoglossi nucleus neurons classified on the basis of firing patterns. Neurosci Res 2017; 121:18-28. [PMID: 28288866 DOI: 10.1016/j.neures.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/20/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022]
Abstract
Neurons in the prepositus hypoglossi nucleus (PHN), which is involved in controlling horizontal gaze, show distinct firing patterns in response to depolarizing current pulses. Although the firing patterns are commonly used to classify neuron types, whether the classified PHN neurons show differences in voltage response properties when stimulated with various types of current inputs remains unclear. In this study, we investigated the response properties of PHN neurons to various current stimuli using whole-cell recordings in rat brainstem slices. In response to pulse currents, neurons that exhibited oscillatory firing (OSC type) showed greater gain than other types, and neurons with a low firing rate (LFR type) showed strong overshooting firing responses to ramp currents. In response to triangular ramp currents, the late-spiking type and the LFR type showed a marked hysteretic frequency-current relationship. In response to sinusoidal currents, the gain was larger in the OSC type than in the other types, although the gain and phase of all types of neurons were similarly modulated by an increase in the input frequency. These findings suggest that distinct neuron types show distinct response properties, depending on the type of stimulus. These neuron types may represent the functionally different populations in the PHN.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Department of Neurophysiology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
4
|
Saito Y, Zhang Y, Yanagawa Y. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model. Eur J Neurosci 2015; 41:1036-48. [PMID: 25808645 DOI: 10.1111/ejn.12878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 11/28/2022]
Abstract
Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan; Department of Neurophysiology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | | | | |
Collapse
|
5
|
Magnani C, Economo MN, White JA, Moore LE. Nonlinear properties of medial entorhinal cortex neurons reveal frequency selectivity during multi-sinusoidal stimulation. Front Cell Neurosci 2014; 8:239. [PMID: 25191226 PMCID: PMC4137241 DOI: 10.3389/fncel.2014.00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 11/21/2022] Open
Abstract
The neurons in layer II of the medial entorhinal cortex are part of the grid cell network involved in the representation of space. Many of these neurons are likely to be stellate cells with specific oscillatory and firing properties important for their function. A fundamental understanding of the nonlinear basis of these oscillatory properties is critical for the development of theories of grid cell firing. In order to evaluate the behavior of stellate neurons, measurements of their quadratic responses were used to estimate a second order Volterra kernel. This paper uses an operator theory, termed quadratic sinusoidal analysis (QSA), which quantitatively determines that the quadratic response accounts for a major part of the nonlinearity observed at membrane potential levels characteristic of normal synaptic events. Practically, neurons were probed with multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic function in the frequency domain. We have shown that the frequency content of the stimulation plays an important role in the characteristics of the nonlinear response, which can distort the linear response as well. Stimulations with enhanced low frequency amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear analysis was also applied to spike frequencies and it was shown that the nonlinear response of subthreshold membrane potential at resonance frequencies near the threshold is similar to the nonlinear response of spike trains.
Collapse
Affiliation(s)
| | - Michael N Economo
- Department of Bioengineering, Brain Institute, University of Utah Salt Lake City, UT, USA
| | - John A White
- Department of Bioengineering, Brain Institute, University of Utah Salt Lake City, UT, USA
| | - Lee E Moore
- CNRS UMR 8257, Université Paris Descartes Paris, France
| |
Collapse
|
6
|
Bauer JA, Lambert KM, White JA. The past, present, and future of real-time control in cellular electrophysiology. IEEE Trans Biomed Eng 2014; 61:1448-56. [PMID: 24710815 DOI: 10.1109/tbme.2014.2314619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For over 60 years, real-time control has been an important technique in the study of excitable cells. Two such control-based technologies are reviewed here. First, voltage-clamp methods revolutionized the study of excitable cells. In this family of techniques, membrane potential is controlled, allowing one to parameterize a powerful class of models that describe the voltage-current relationship of cell membranes simply, flexibly, and accurately. Second, dynamic-clamp methods allow the addition of new, "virtual" membrane mechanisms to living cells. Dynamic clamp allows researchers unprecedented ways of testing computationally based hypotheses in biological preparations. The review ends with predictions of how control-based technologies will be improved and adapted for new uses in the near future.
Collapse
|
7
|
Vestibular integrator neurons have quadratic functions due to voltage dependent conductances. J Comput Neurosci 2013; 35:243-59. [DOI: 10.1007/s10827-013-0451-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 02/13/2013] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
|
8
|
Beraneck M, Idoux E. Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis. Front Neurol 2012; 3:25. [PMID: 22403570 PMCID: PMC3289128 DOI: 10.3389/fneur.2012.00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/09/2012] [Indexed: 12/29/2022] Open
Abstract
The sensorimotor transformations performed by central vestibular neurons constantly adapt as the animal faces conflicting sensory information or sustains injuries. To ensure the homeostasis of vestibular-related functions, neural changes could in part rely on the regulation of 2° VN intrinsic properties. Here we review evidence that demonstrates modulation and plasticity of central vestibular neurons’ intrinsic properties. We first present the partition of Rodents’ vestibular neurons into distinct subtypes, namely type A and type B. Then, we focus on the respective properties of each type, their putative roles in vestibular functions, fast control by neuromodulators and persistent modifications following a lesion. The intrinsic properties of central vestibular neurons can be swiftly modulated by a wealth of neuromodulators to adapt rapidly to temporary changes of ecophysiological surroundings. To illustrate how intrinsic excitability can be rapidly modified in physiological conditions and therefore be therapeutic targets, we present the modulation of vestibular reflexes in relation to the variations of the neuromodulatory inputs during the sleep/wake cycle. On the other hand, intrinsic properties can also be slowly, yet permanently, modified in response to major perturbations, e.g., after unilateral labyrinthectomy (UL). We revisit the experimental evidence, which demonstrates that drastic alterations of the central vestibular neurons’ intrinsic properties occur following UL, with a slow time course, more on par with the compensation of dynamic deficits than static ones. Data are interpreted in the framework of distributed processes that progress from global, large-scale coping mechanisms (e.g., changes in behavioral strategies) to local, small-scale ones (e.g., changes in intrinsic properties). Within this framework, the compensation of dynamic deficits improves over time as deeper modifications are engraved within the finer parts of the vestibular-related networks. Finally, we offer perspectives and working hypotheses to pave the way for future research aimed at understanding the modulation and plasticity of central vestibular neurons’ intrinsic properties.
Collapse
Affiliation(s)
- Mathieu Beraneck
- Centre d'Etude de la SensoriMotricité, CNRS UMR 8194, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | | |
Collapse
|
9
|
Idoux E, Mertz J. Control of local intracellular calcium concentration with dynamic-clamp controlled 2-photon uncaging. PLoS One 2011; 6:e28685. [PMID: 22216105 PMCID: PMC3247215 DOI: 10.1371/journal.pone.0028685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/13/2011] [Indexed: 11/18/2022] Open
Abstract
The variations of the intracellular concentration of calcium ion ([Ca(2+)](i)) are at the heart of intracellular signaling, and their imaging is therefore of enormous interest. However, passive [Ca(2+)](i) imaging provides no control over these variations, meaning that a full exploration of the functional consequences of [Ca(2+)](i) changes is difficult to attain. The tools designed so far to modify [Ca(2+)](i), even qualitatively, suffer drawbacks that undermine their widespread use. Here, we describe an electro-optical technique to quantitatively set [Ca(2+)](i), in real time and with sub-cellular resolution, using two-photon Ca(2+) uncaging and dynamic-clamp. We experimentally demonstrate, on neurons from acute olfactory bulb slices of Long Evans rats, various capabilities of this technique previously difficult to achieve, such as the independent control of the membrane potential and [Ca(2+)](i) variations, the functional knocking-in of user-defined virtual voltage-dependent Ca(2+) channels, and the standardization of [Ca(2+)](i) patterns across different cells. Our goal is to lay the groundwork for this technique and establish it as a new and versatile tool for the study of cell signaling.
Collapse
Affiliation(s)
- Erwin Idoux
- Biomedical Engineering Department, Boston University, Boston, Massachusetts, USA.
| | | |
Collapse
|
10
|
Quadratic sinusoidal analysis of voltage clamped neurons. J Comput Neurosci 2011; 31:595-607. [PMID: 21499740 DOI: 10.1007/s10827-011-0325-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 02/28/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Nonlinear biophysical properties of individual neurons are known to play a major role in the nervous system, especially those active at subthreshold membrane potentials that integrate synaptic inputs during action potential initiation. Previous electrophysiological studies have made use of a piecewise linear characterization of voltage clamped neurons, which consists of a sequence of linear admittances computed at different voltage levels. In this paper, a fundamentally new theory is developed in two stages. First, analytical equations are derived for a multi-sinusoidal voltage clamp of a Hodgkin-Huxley type model to reveal the quadratic response at the ionic channel level. Second, the resulting behavior is generalized to a novel Hermitian neural operator, which uses an algebraic formulation capturing the entire quadratic behavior of a voltage clamped neuron. In addition, this operator can also be used for a nonlinear identification analysis directly applicable to experimental measurements. In this case, a Hermitian matrix of interactions is built with paired frequency probing measurements performed at specific harmonic and interactive output frequencies. More importantly, eigenanalysis of the neural operator provides a concise signature of the voltage dependent conductances determined by their particular distribution on the dendritic and somatic membrane regions of neurons. Finally, the theory is concretely illustrated by an analysis of an experimentally measured vestibular neuron, providing a remarkably compact description of the quadratic responses involved in the nonlinear processing underlying the control of eye position during head rotation, namely the neural integrator.
Collapse
|
11
|
Eugène D, Idoux E, Beraneck M, Moore LE, Vidal PP. Intrinsic membrane properties of central vestibular neurons in rodents. Exp Brain Res 2011; 210:423-36. [PMID: 21331527 DOI: 10.1007/s00221-011-2569-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/18/2011] [Indexed: 11/29/2022]
Abstract
Numerous studies in rodents have shown that the functional efficacy of several neurotransmitter receptors and the intrinsic membrane excitability of central vestibular neurons, as well as the organization of synaptic connections within and between vestibular nuclei can be modified during postnatal development, after a lesion of peripheral vestibular organs or in vestibular-deficient mutant animals. This review mainly focuses on the intrinsic membrane properties of neurons of the medial vestibular nuclei of rodents, their postnatal maturation, and changes following experimental or congenital alterations in vestibular inputs. It also presents the concomitant modifications in the distribution of these neurons into different neuron types, which has been based on their membrane properties in relation to their anatomical, biochemical, or functional properties. The main points discussed in this review are that (1) the intrinsic membrane properties can be used to distinguish between two dominant types of neurons, (2) the system remains plastic throughout the whole life of the animal, and finally, (3) the intracellular calcium concentration has a major effect on the intrinsic membrane properties of central vestibular neurons.
Collapse
Affiliation(s)
- Daniel Eugène
- Centre d'Etudes de la SensoriMotricité (CESeM), UMR 8194, CNRS, Université Paris Descartes, Paris cedex 06, France
| | | | | | | | | |
Collapse
|
12
|
Rössert C, Straka H, Glasauer S, Moore LE. Frequency-Domain Analysis of Intrinsic Neuronal Properties using High-Resistant Electrodes. Front Neurosci 2009; 3:64. [PMID: 20582288 PMCID: PMC2858610 DOI: 10.3389/neuro.17.002.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 08/01/2009] [Indexed: 12/01/2022] Open
Abstract
Intrinsic cellular properties of neurons in culture or slices are usually studied by the whole cell clamp method using low-resistant patch pipettes. These electrodes allow detailed analyses with standard electrophysiological methods such as current- or voltage-clamp. However, in these preparations large parts of the network and dendritic structures may be removed, thus preventing an adequate study of synaptic signal processing. Therefore, intact in vivo preparations or isolated in vitro whole brains have been used in which intracellular recordings are usually made with sharp, high-resistant electrodes to optimize the impalement of neurons. The general non-linear resistance properties of these electrodes, however, severely limit accurate quantitative studies of membrane dynamics especially needed for precise modelling. Therefore, we have developed a frequency-domain analysis of membrane properties that uses a Piece-wise Non-linear Electrode Compensation (PNEC) method. The technique was tested in second-order vestibular neurons and abducens motoneurons of isolated frog whole brain preparations using sharp potassium chloride- or potassium acetate-filled electrodes. All recordings were performed without online electrode compensation. The properties of each electrode were determined separately after the neuronal recordings and were used in the frequency-domain analysis of the combined measurement of electrode and cell. This allowed detailed analysis of membrane properties in the frequency-domain with high-resistant electrodes and provided quantitative data that can be further used to model channel kinetics. Thus, sharp electrodes can be used for the characterization of intrinsic properties and synaptic inputs of neurons in intact brains.
Collapse
Affiliation(s)
- Christian Rössert
- Institute for Clinical Neurosciences, Ludwig-Maximilians-Universität München Munich, Germany
| | | | | | | |
Collapse
|