1
|
Dapino A, Davoine F, Curti S. D-type K+ current rules the function of electrically coupled neurons in a species-specific fashion. J Gen Physiol 2023; 155:e202313353. [PMID: 37378665 PMCID: PMC10308032 DOI: 10.1085/jgp.202313353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Electrical synapses supported by gap junctions are known to form networks of electrically coupled neurons in many regions of the mammalian brain, where they play relevant functional roles. Yet, how electrical coupling supports sophisticated network operations and the contribution of the intrinsic electrophysiological properties of neurons to these operations remain incompletely understood. Here, a comparative analysis of electrically coupled mesencephalic trigeminal (MesV) neurons uncovered remarkable difference in the operation of these networks in highly related species. While spiking of MesV neurons might support the recruitment of coupled cells in rats, this rarely occurs in mice. Using whole-cell recordings, we determined that the higher efficacy in postsynaptic recruitment in rat's MesV neurons does not result from coupling strength of larger magnitude, but instead from the higher excitability of coupled neurons. Consistently, MesV neurons from rats present a lower rheobase, more hyperpolarized threshold, as well as a higher ability to generate repetitive discharges, in comparison to their counterparts from mice. This difference in neuronal excitability results from a significantly higher magnitude of the D-type K+ current (ID) in MesV neurons from mice, indicating that the magnitude of this current gates the recruitment of postsynaptic-coupled neurons. Since MesV neurons are primary afferents critically involved in the organization of orofacial behaviors, activation of a coupled partner could support lateral excitation, which by amplifying sensory inputs may significantly contribute to information processing and the organization of motor outputs.
Collapse
Affiliation(s)
- Antonella Dapino
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Federico Davoine
- Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Sebastian Curti
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Zhang LM, Chen L, Zhao YF, Duan WM, Zhong LM, Liu MW. Identification of key potassium channel genes of temporal lobe epilepsy by bioinformatics analyses and experimental verification. Front Neurol 2023; 14:1175007. [PMID: 37483435 PMCID: PMC10361730 DOI: 10.3389/fneur.2023.1175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
One of the most prevalent types of epilepsy is temporal lobe epilepsy (TLE), which has unknown etiological factors and drug resistance. The detailed mechanisms underlying potassium channels in human TLE have not yet been elucidated. Hence, this study aimed to mine potassium channel genes linked to TLE using a bioinformatic approach. The results found that Four key TLE-related potassium channel genes (TERKPCGs) were identified: potassium voltage-gated channel subfamily E member (KCNA) 1, KCNA2, potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11), and KCNS1. A protein-protein interaction (PPI) network was constructed to analyze the relationship between TERKPCGs and other key module genes. The results of gene set enrichment analysis (GSEA) for a single gene indicated that the four TERKPCGs were highly linked to the cation channel, potassium channel, respiratory chain, and oxidative phosphorylation. The mRNA-TF network was established using four mRNAs and 113 predicted transcription factors. A ceRNA network containing seven miRNAs, two mRNAs, and 244 lncRNAs was constructed based on the TERKPCGs. Three common small-molecule drugs (enflurane, promethazine, and miconazole) target KCNA1, KCNA2, and KCNS1. Ten small-molecule drugs (glimepiride, diazoxide, levosimendan, and thiamylal et al.) were retrieved for KCNJ11. Compared to normal mice, the expression of KCNA1, KCNA2, KCNJ11, and KCNS1 was downregulated in the brain tissue of the epilepsy mouse model at both the transcriptional and translational levels, which was consistent with the trend of human data from the public database. The results indicated that key potassium channel genes linked to TLE were identified based on bioinformatics analysis to investigate the potential significance of potassium channel genes in the development and treatment of TLE.
Collapse
Affiliation(s)
- Lin-ming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Yi-fei Zhao
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Wei-mei Duan
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Lian-mei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Ming-wei Liu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Housley SN, Nardelli P, Powers RK, Rich MM, Cope TC. Chronic defects in intraspinal mechanisms of spike encoding by spinal motoneurons following chemotherapy. Exp Neurol 2020; 331:113354. [PMID: 32511953 PMCID: PMC7937189 DOI: 10.1016/j.expneurol.2020.113354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Chemotherapy-induced sensorimotor disabilities, including gait and balance disorders, as well as physical fatigue often persist for months and sometimes years into disease free survival from cancer. While associated with impaired sensory function, chronic sensorimotor disorders might also depend on chemotherapy-induced defects in other neuron types. In this report, we extend consideration to motoneurons, which, if chronically impaired, would necessarily degrade movement behavior. The present study was undertaken to determine whether motoneurons qualify as candidate contributors to chronic sensorimotor disability independently from sensory impairment. We tested this possibility in vivo from rats 5 weeks following human-scaled treatment with one of the platinum-based compounds, oxaliplatin, widely used in chemotherapy for a variety of cancers. Action potential firing of spinal motoneurons responding to different fixed levels of electrode-current injection was measured in order to assess the neurons' intrinsic capacity for stimulus encoding. The encoding of stimulus duration and intensity corroborated in untreated control rats was severely degraded in oxaliplatin treated rats, in which motoneurons invariably exhibited erratic firing that was unsustained, unpredictable from one stimulus trial to the next, and unresponsive to changes in current strength. Direct measurements of interspike oscillations in membrane voltage combined with computer modeling pointed to aberrations in subthreshold conductances as a plausible contributor to impaired firing behavior. These findings authenticate impaired spike encoding as a candidate contributor to, in the case of motoneurons, deficits in mobility and fatigue. Aberrant firing also becomes a deficit worthy of testing in other CNS neurons as a potential contributor to perceptual and cognitive disorders induced by chemotherapy in patients.
Collapse
Affiliation(s)
- Stephen N Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Randal K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA.
| |
Collapse
|
4
|
Hashimoto K. Mechanisms for the resonant property in rodent neurons. Neurosci Res 2020; 156:5-13. [DOI: 10.1016/j.neures.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023]
|
5
|
Niespodziany I, Mullier B, André VM, Ghisdal P, Jnoff E, Moreno-Delgado D, Swinnen D, Sands Z, Wood M, Wolff C. Discovery of a small molecule modulator of the Kv1.1/Kvβ1 channel complex that reduces neuronal excitability and in vitro epileptiform activity. CNS Neurosci Ther 2018; 25:442-451. [PMID: 30242974 DOI: 10.1111/cns.13060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/27/2022] Open
Abstract
AIMS Kv1.1 (KCNA1) channels contribute to the control of neuronal excitability and have been associated with epilepsy. Kv1.1 channels can associate with the cytoplasmic Kvβ1 subunit resulting in rapid inactivating A-type currents. We hypothesized that removal of channel inactivation, by modulating Kv1.1/Kvβ1 interaction with a small molecule, would lead to decreased neuronal excitability and anticonvulsant activity. METHODS We applied high-throughput screening to identify ligands able to modulate the Kv1.1-T1 domain/Kvβ1 protein complex. We then selected a compound that was characterized on recombinant Kv1.1/Kvβ1 channels by electrophysiology and further evaluated on sustained neuronal firing and on in vitro epileptiform activity using a high K+ -low Ca2+ model in hippocampal slices. RESULTS We identified a novel compound able to modulate the interaction of the Kv1.1/Kvβ1 complex and that produced a functional inhibition of Kv1.1/Kvβ1 channel inactivation. We demonstrated that this compound reduced the sustained repetitive firing in hippocampal neurons and was able to abolish the development of in vitro epileptiform activity. CONCLUSIONS This study describes a rational drug discovery approach for the identification of novel ligands that inhibit Kv1.1 channel inactivation and provides pharmacological evidence that such a mechanism translates into physiological effects by reducing in vitro epileptiform activity.
Collapse
Affiliation(s)
| | - Brice Mullier
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | | | - Philippe Ghisdal
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Eric Jnoff
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | | | - Dominique Swinnen
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Zara Sands
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Martyn Wood
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Christian Wolff
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| |
Collapse
|
6
|
Activating Transcription Factor 4 (ATF4) Regulates Neuronal Activity by Controlling GABA BR Trafficking. J Neurosci 2018; 38:6102-6113. [PMID: 29875265 DOI: 10.1523/jneurosci.3350-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
Activating Transcription Factor 4 (ATF4) has been postulated as a key regulator of learning and memory. We previously reported that specific hippocampal ATF4 downregulation causes deficits in synaptic plasticity and memory and reduction of glutamatergic functionality. Here we extend our studies to address ATF4's role in neuronal excitability. We find that long-term ATF4 knockdown in cultured rat hippocampal neurons significantly increases the frequency of spontaneous action potentials. This effect is associated with decreased functionality of metabotropic GABAB receptors (GABABRs). Knocking down ATF4 results in significant reduction of GABABR-induced GIRK currents and increased mIPSC frequency. Furthermore, reducing ATF4 significantly decreases expression of membrane-exposed, but not total, GABABR 1a and 1b subunits, indicating that ATF4 regulates GABABR trafficking. In contrast, ATF4 knockdown has no effect on surface expression of GABABR2s, several GABABR-coupled ion channels or β2 and γ2 GABAARs. Pharmacologic manipulations confirmed the relationship between GABABR functionality and action potential frequency in our cultures. Specifically, the effects of ATF4 downregulation cited above are fully rescued by transcriptionally active, but not by transcriptionally inactive, shRNA-resistant, ATF4. We previously reported that ATF4 promotes stabilization of the actin-regulatory protein Cdc42 by a transcription-dependent mechanism. To test the hypothesis that this action underlies the mechanism by which ATF4 loss affects neuronal firing rates and GABABR trafficking, we downregulated Cdc42 and found that this phenocopies the effects of ATF4 knockdown on these properties. In conclusion, our data favor a model in which ATF4, by regulating Cdc42 expression, affects trafficking of GABABRs, which in turn modulates the excitability properties of neurons.SIGNIFICANCE STATEMENT GABAB receptors (GABABRs), the metabotropic receptors for the inhibitory neurotransmitter GABA, have crucial roles in controlling the firing rate of neurons. Deficits in trafficking/functionality of GABABRs have been linked to a variety of neurological and psychiatric conditions, including epilepsy, anxiety, depression, schizophrenia, addiction, and pain. Here we show that GABABRs trafficking is influenced by Activating Transcription Factor 4 (ATF4), a protein that has a pivotal role in hippocampal memory processes. We found that ATF4 downregulation in hippocampal neurons reduces membrane-bound GABABR levels and thereby increases intrinsic excitability. These effects are mediated by loss of the small GTPase Cdc42 following ATF4 downregulation. These findings reveal a critical role for ATF4 in regulating the modulation of neuronal excitability by GABABRs.
Collapse
|
7
|
Fischer L, Leibold C, Felmy F. Resonance Properties in Auditory Brainstem Neurons. Front Cell Neurosci 2018; 12:8. [PMID: 29416503 PMCID: PMC5787568 DOI: 10.3389/fncel.2018.00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Abstract
Auditory signals carry relevant information on a large range of time scales from below milliseconds to several seconds. Different stages in the auditory brainstem are specialized to extract information in specific frequency domains. One biophysical mechanism to facilitate frequency specific processing are membrane potential resonances. Here, we provide data from three different brainstem nuclei that all exhibit high-frequency subthreshold membrane resonances that are all most likely based on low-threshold potassium currents. Fitting a linear model, we argue that, as long as neurons possess active subthreshold channels, the main determinant for their resonance behavior is the steady state membrane time constant. Tuning this leak conductance can shift membrane resonance frequencies over more than a magnitude and therefore provide a flexible mechanism to tune frequency-specific auditory processing.
Collapse
Affiliation(s)
- Linda Fischer
- Zoologisches Institut, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Christian Leibold
- Department Biologie II, Ludwig-Maximilians-Universität München, Munich, Germany.,Bernstein Center for Computational Neuroscience Munich, Munich, Germany
| | - Felix Felmy
- Zoologisches Institut, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| |
Collapse
|
8
|
Xie RG, Chu WG, Hu SJ, Luo C. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States. Int J Mol Sci 2018; 19:ijms19010161. [PMID: 29303989 PMCID: PMC5796110 DOI: 10.3390/ijms19010161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022] Open
Abstract
Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen-Guang Chu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - San-Jue Hu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Szűcs A, Rátkai A, Schlett K, Huerta R. Frequency-dependent regulation of intrinsic excitability by voltage-activated membrane conductances, computational modeling and dynamic clamp. Eur J Neurosci 2017; 46:2429-2444. [PMID: 28921695 DOI: 10.1111/ejn.13708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/28/2022]
Abstract
As one of the most unique properties of nerve cells, their intrinsic excitability allows them to transform synaptic inputs into action potentials. This process reflects a complex interplay between the synaptic inputs and the voltage-dependent membrane currents of the postsynaptic neuron. While neurons in natural conditions mostly fire under the action of intense synaptic bombardment and receive fluctuating patterns of excitation and inhibition, conventional techniques to characterize intrinsic excitability mainly utilize static means of stimulation. Recently, we have shown that voltage-gated membrane currents regulate the firing responses under current step stimulation and under physiologically more realistic inputs in a differential manner. At the same time, a multitude of neuron types have been shown to exhibit some form of subthreshold resonance that potentially allows them to respond to synaptic inputs in a frequency-selective manner. In this study, we performed virtual experiments in computational models of neurons to examine how specific voltage-gated currents regulate their excitability under simulated frequency-modulated synaptic inputs. The model simulations and subsequent dynamic clamp experiments on mouse hippocampal pyramidal neurons revealed that the impact of voltage-gated currents in regulating the firing output is strongly frequency-dependent and mostly affecting the synaptic integration at theta frequencies. Notably, robust frequency-dependent regulation of intrinsic excitability was observed even when conventional analysis of membrane impedance suggested no such tendency. Consequently, plastic or homeostatic regulation of intrinsic membrane properties can tune the frequency selectivity of neuron populations in a way that is not readily expected from subthreshold impedance measurements.
Collapse
Affiliation(s)
- Attila Szűcs
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA.,MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University, 1/C Pázmány Péter Street, Budapest, H-1117, Hungary.,Balaton Limnological Institute of the Center for Ecological Research, Tihany, Hungary
| | - Anikó Rátkai
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University, 1/C Pázmány Péter Street, Budapest, H-1117, Hungary
| | - Katalin Schlett
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University, 1/C Pázmány Péter Street, Budapest, H-1117, Hungary
| | - Ramon Huerta
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Tarcha EJ, Olsen CM, Probst P, Peckham D, Muñoz-Elías EJ, Kruger JG, Iadonato SP. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial. PLoS One 2017; 12:e0180762. [PMID: 28723914 PMCID: PMC5516987 DOI: 10.1371/journal.pone.0180762] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dalazatide is a specific inhibitor of the Kv1.3 potassium channel. The expression and function of Kv1.3 channels are required for the function of chronically activated memory T cells, which have been shown to be key mediators of autoimmune diseases, including psoriasis. OBJECTIVE The primary objective was to evaluate the safety of repeat doses of dalazatide in adult patients with mild-to-moderate plaque psoriasis. Secondary objectives were to evaluate clinical proof of concept and the effects of dalazatide on mediators of inflammation in the blood and on chronically activated memory T cell populations. METHODS Patients (n = 24) were randomized 5:5:2 to receive dalazatide at 30 mcg/dose, 60 mcg/dose, or placebo twice weekly by subcutaneous injection (9 doses total). Safety was assessed on the basis of physical and neurological examination and laboratory testing. Clinical assessments included body-surface area affected, Psoriasis Area and Severity Index (PASI), and investigator and patient questionnaires. RESULTS The most common adverse events were temporary mild (Grade 1) hypoesthesia (n = 20; 75% placebo, 85% dalazatide) and paresthesia (n = 15; 25% placebo, 70% dalazatide) involving the hands, feet, or perioral area. Nine of 10 patients in the 60 mcg/dose group had a reduction in their PASI score between baseline and Day 32, and the mean reduction in PASI score was significant in this group (P < 0.01). Dalazatide treatment reduced the plasma levels of multiple inflammation markers and reduced the expression of T cell activation markers on peripheral blood memory T cells. LIMITATIONS The study was small and drug treatment was for a short duration (4 weeks). CONCLUSION This study indicates that dalazatide is generally well tolerated and can improve psoriatic skin lesions by modulating T cell surface and activation marker expression and inhibiting mediators of inflammation in the blood. Larger studies of longer duration are warranted.
Collapse
Affiliation(s)
| | | | - Peter Probst
- Kineta Inc., Seattle, WA, United States of America
| | | | | | - James G Kruger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States of America
| | | |
Collapse
|
11
|
Wang XC, Wang S, Zhang M, Gao F, Yin C, Li H, Zhang Y, Hu SJ, Duan JH. Α-Dendrotoxin-sensitive Kv1 channels contribute to conduction failure of polymodal nociceptive C-fibers from rat coccygeal nerve. J Neurophysiol 2015; 115:947-57. [PMID: 26609114 DOI: 10.1152/jn.00786.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/23/2015] [Indexed: 01/20/2023] Open
Abstract
It is known that some patients with diabetic neuropathy are usually accompanied by abnormal painful sensations. Evidence has accumulated that diabetic neuropathic pain is associated with the hyperexcitability of peripheral nociceptors. Previously, we demonstrated that reduced conduction failure of polymodal nociceptive C-fibers and enhanced voltage-dependent sodium currents of small dorsal root ganglion (DRG) neurons contribute to diabetic hyperalgesia. To further investigate whether and how potassium channels are involved in the conduction failure, α-dendrotoxin (α-DTX), a selective blocker of the low-threshold sustained Kv1 channel, was chosen to examine its functional capability in modulating the conduction properties of polymodal nociceptive C-fibers and the excitability of sensory neurons. We found that α-DTX reduced the conduction failure of C-fibers from coccygeal nerve in vivo accompanied by an increased initial conduction velocity but a decreased activity-dependent slowing of conduction velocity. In addition, the number of APs evoked by step currents was significantly enhanced after the treatment with α-DTX in small-diameter sensory neurons. Further study of the mechanism indicates α-DTX-sensitive K(+) current significantly reduced and the activation of this current in peak and steady state shifted to depolarization for diabetic neurons. Expression of Kv channel subunits Kv1.2 and Kv1.6 was downregulated in both small dorsal root ganglion neurons and peripheral C-fibers. Taken together, these results suggest that α-DTX-sensitive Kv1 channels might play an important role in regulating the conduction properties of polymodal nociceptive C-fibers and firing properties of sensory neurons.
Collapse
Affiliation(s)
- Xiu-Chao Wang
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, People's Republic of China; Department of Psychology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shan Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ming Zhang
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fang Gao
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chun Yin
- Team Nine, Brigade of Cadets, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Hao Li
- Team Nine, Brigade of Cadets, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ying Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Xi'an, People's Republic of China; and
| | - San-Jue Hu
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jian-Hong Duan
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, People's Republic of China; State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
12
|
Chung G, Saito M, Kawasaki Y, Kawano T, Yin D, Lee S, Kogo M, Takada M, Bae YC, Kim JS, Oh SB, Kang Y. Generation of resonance-dependent oscillation by mGluR-I activation switches single spiking to bursting in mesencephalic trigeminal sensory neurons. Eur J Neurosci 2015; 41:998-1012. [PMID: 25712773 DOI: 10.1111/ejn.12858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 11/29/2022]
Abstract
The primary sensory neurons supplying muscle spindles of jaw-closing muscles are unique in that they have their somata in the mesencephalic trigeminal nucleus (MTN) in the brainstem, thereby receiving various synaptic inputs. MTN neurons display bursting upon activation of glutamatergic synaptic inputs while they faithfully relay respective impulses arising from peripheral sensory organs. The persistent sodium current (IN aP ) is reported to be responsible for both the generation of bursts and the relay of impulses. We addressed how IN aP is controlled either to trigger bursts or to relay respective impulses as single spikes in MTN neurons. Protein kinase C (PKC) activation enhanced IN aP only at low voltages. Spike generation was facilitated by PKC activation at membrane potentials more depolarized than the resting potential. By injection of a ramp current pulse, a burst of spikes was triggered from a depolarized membrane potential whereas its instantaneous spike frequency remained almost constant despite the ramp increases in the current intensity beyond the threshold. A puff application of glutamate preceding the ramp pulse lowered the threshold for evoking bursts by ramp pulses while chelerythrine abolished such effects of glutamate. Dihydroxyphenylglycine, an agonist of mGluR1/5, also caused similar effects, and increased both the frequency and impedance of membrane resonance. Immunohistochemistry revealed that glutamatergic synapses are made onto the stem axons, and that mGluR1/5 and Nav1.6 are co-localized in the stem axon. Taken together, glutamatergic synaptic inputs onto the stem axon may be able to switch the relaying to the bursting mode.
Collapse
Affiliation(s)
- Gehoon Chung
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan; Pain Cognitive Function Research Center, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim JM, Park SW, Lin HY, Shin KC, Sung DJ, Kim JG, Cho H, Kim B, Bae YM. Blockade of voltage-gated K+ currents in rat mesenteric arterial smooth muscle cells by MK801. J Pharmacol Sci 2015; 127:92-102. [DOI: 10.1016/j.jphs.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/28/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023] Open
|
14
|
Yang J, Hu S, Li F, Xing J. Resonance characteristic and its ionic basis of rat mesencephalic trigeminal neurons. Brain Res 2015; 1596:1-12. [DOI: 10.1016/j.brainres.2014.10.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
|
15
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|
16
|
Tsuruyama K, Hsiao CF, Chandler SH. Participation of a persistent sodium current and calcium-activated nonspecific cationic current to burst generation in trigeminal principal sensory neurons. J Neurophysiol 2013; 110:1903-14. [PMID: 23883859 DOI: 10.1152/jn.00410.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The properties of neurons participating in masticatory rhythmogenesis are not clearly understood. Neurons within the dorsal trigeminal principal sensory nucleus (dPrV) are potential candidates as components of the masticatory central pattern generator (CPG). The present study examines in detail the ionic mechanisms controlling burst generation in dPrV neurons in rat (postnatal day 8-12) brain stem slices using whole cell and perforated patch-clamp methods. Nominal extracellular Ca(2+) concentration transformed tonic discharge in response to a maintained step pulse of current into rhythmical bursting in 38% of nonbursting neurons. This change in discharge mode was suppressed by riluzole, a persistent Na(+) current (INaP) antagonist. Veratridine, which suppresses the Na(+) channel inactivation mechanism, induced rhythmical bursting in nonbursting neurons in normal artificial cerebrospinal fluid, suggesting that INaP contributes to burst generation. Nominal extracellular Ca(2+) exposed a prominent afterdepolarizing potential (ADP) following a single spike induced by a 3-ms current pulse, which was suppressed, but not completely blocked, by riluzole. Application of BAPTA, a Ca(2+) chelator, intracellularly, or flufenamic acid, a Ca(2+)-activated nonspecific cationic channel (ICAN) antagonist, extracellularly to the bath, suppressed rhythmical bursting and the postspike ADP. Application of drugs to alter Ca(2+) release from endoplasmic reticulum also suppressed bursting. Finally, voltage-clamp methods demonstrated that nominal Ca(2+) facilitated INaP and induced ICAN. These data demonstrate for the first time that the previously observed induction in dPrV neurons of rhythmical bursting in nominal Ca(2+) is mediated by enhancement of INaP and onset of ICAN, which are dependent on intracellular Ca(2+).
Collapse
Affiliation(s)
- Kentaro Tsuruyama
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California at Los Angeles, California
| | | | | |
Collapse
|
17
|
Simeone TA, Simeone KA, Samson KK, Kim DY, Rho JM. Loss of the Kv1.1 potassium channel promotes pathologic sharp waves and high frequency oscillations in in vitro hippocampal slices. Neurobiol Dis 2013; 54:68-81. [PMID: 23466697 DOI: 10.1016/j.nbd.2013.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 02/12/2013] [Accepted: 02/22/2013] [Indexed: 01/10/2023] Open
Abstract
In human disease, channelopathies involving functional reduction of the delayed rectifier potassium channel α-subunit Kv1.1 - either by mutation or autoimmune inhibition - result in temporal lobe epilepsy. Kv1.1 is prominently expressed in the axons of the hippocampal tri-synaptic pathway, suggesting its absence will result in widespread effects on normal network oscillatory activity. Here, we performed in vitro extracellular recordings using a multielectrode array to determine the effects of loss of Kv1.1 on spontaneous sharp waves (SPWs) and high frequency oscillations (HFOs). We found that Kcna1-null hippocampi generate SPWs and ripples (80-200Hz bandwidth) with a 50% increased rate of incidence and 50% longer duration, and that epilepsy-associated pathologic HFOs in the fast ripple bandwidth (200-600Hz) are also present. Furthermore, Kcna1-null CA3 has enhanced coupling of excitatory inputs and population spike generation and CA3 principal cells have reduced spike timing reliability. Removing the influence of mossy fiber and perforant path inputs by micro-dissecting the Kcna1-null CA3 region mostly rescued the oscillatory behavior and improved spike timing. We found that Kcna1-null mossy fibers and medial perforant path axons are hyperexcitable and produce greater pre- and post-synaptic responses with reduced paired-pulse ratios suggesting increased neurotransmitter release at these terminals. These findings were recapitulated in wild-type slices exposed to the Kv1.1 inhibitor dendrotoxin-κ. Collectively, these data indicate that loss of Kv1.1 enhances synaptic release in the CA3 region, which reduces spike timing precision of individual neurons leading to disorganization of network oscillatory activity and promotes the emergence of fast ripples.
Collapse
Affiliation(s)
- Timothy A Simeone
- Creighton University, Department of Pharmacology, Omaha, NE 68174, USA.
| | | | | | | | | |
Collapse
|
18
|
Sun W, Miao B, Wang XC, Duan JH, Ye X, Han WJ, Wang WT, Luo C, Hu SJ. Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons. PLoS One 2012; 7:e39647. [PMID: 22761855 PMCID: PMC3382466 DOI: 10.1371/journal.pone.0039647] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 05/24/2012] [Indexed: 01/29/2023] Open
Abstract
Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients' quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (I(NaT)) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of I(NaT) and a decrease of potassium currents, especially slowly inactivating potassium currents (I(AS)); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of I(NaT) and total potassium current as well as I(AS) currents induced by STZ were normalized by GAS. This study provides a clear cellular basis for the peripheral analgesic action of gastrodin for the treatment of chronic pain, including PDN.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Neuroscience, The Fourth Military Medical University, Xi’an, People’s Republic of China
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, the Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Bei Miao
- Institute of Neuroscience, The Fourth Military Medical University, Xi’an, People’s Republic of China
- Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Xuzhou Medical College, Xuzhou, People’s Republic of China
| | - Xiu-Chao Wang
- Institute of Neuroscience, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jian-Hong Duan
- Institute of Neuroscience, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xin Ye
- Department of Endocrinology, The 451th Hospital of People’s Liberation Army, Xi’an, People’s Republic of China
| | - Wen-Juan Han
- Institute of Neuroscience, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Wen-Ting Wang
- Institute of Neuroscience, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Ceng Luo
- Institute of Neuroscience, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - San-Jue Hu
- Institute of Neuroscience, The Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
19
|
Marita Golla K, Ramaswamy Raju T, Chatterji S. Brain Derived Neurotrophic Factor and Superior Collicular Extract Regulate the Expression of the 1.6 Subfamily of Voltage-gated Potassium Channels in the Developing Rat Retina in vitro. J Ophthalmic Vis Res 2012; 7:139-47. [PMID: 23275823 PMCID: PMC3520470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/13/2012] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To evaluate the role of brain derived neurotrophic factor (BDNF) and superior collicular extract (SCE) on the expression of the 1.6 subfamily of voltage-gated potassium channels (VG Kv 1.6 channels) in retinal ganglion cells (RGCs) of rats in an in vitro model. METHODS Neonatal retinal cultures were supplemented with trophic factors of interest, namely BDNF and SCE, at 0 DIV (days in vitro), 6 DIV and both 0 and 6 DIV. The expression of VG Kv 1.6 channels was evaluated by immunostaining with anti Kv 1.6 and immunofluorescence was measured by confocal scanning laser microscopy on 4, 6, 8, 10 and 12 DIV. The immunofluorescence indirectly measured the quantity of ion channels being expressed. RESULTS RGCs were identified by their soma size. BDNF and SCE enhanced RGC survival by enhancing extensive neurite outgrowth, and increased the expression of VG Kv 1.6 channels; the effect of SCE was more significant than BDNF. Trophic factors also enhanced the survival of RGCs by increasing the expression of ion channels thereby contributing to spontaneous bursts of action potentials in the early stages of RGC development. CONCLUSION The expression of delayed rectifier VG Kv 1.6 channels in RGCs may determine membrane excitability and responsiveness to trophic factors, this plays a key role in the refinement of developing retinal circuits.
Collapse
Affiliation(s)
- Kavita Marita Golla
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India,Kavita Marita Golla, MSc, PhD. Associate Professor of Physiology, 55-07-68, Martabhavan, Suviseshapuram, Rajahmundry 533105, India ; Tel: +91 880 2473771, Fax: +91 883 2483023;
| | - Trichur Ramaswamy Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Sumanthra Chatterji
- National Center for Biological Sciences (NCBS) and Tata Institute of Fundamental Sciences (TIFR), Bangalore, India
| |
Collapse
|
20
|
Curti S, Hoge G, Nagy JI, Pereda AE. Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus. J Neurosci 2012; 32:4341-59. [PMID: 22457486 PMCID: PMC3339267 DOI: 10.1523/jneurosci.6216-11.2012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023] Open
Abstract
Electrical synapses are known to form networks of extensively coupled neurons in various regions of the mammalian brain. The mesencephalic trigeminal (MesV) nucleus, formed by the somata of primary afferents originating in jaw-closing muscles, constitutes one of the first examples supporting the presence of electrical synapses in the mammalian CNS; however, the properties, functional organization, and developmental emergence of electrical coupling within this structure remain unknown. By combining electrophysiological, tracer coupling, and immunochemical analysis in brain slices of rat and mouse, we found that coupling is mostly restricted to pairs or small clusters of MesV neurons. Electrical transmission is supported by connexin36 (Cx36)-containing gap junctions at somato-somatic contacts where only a small proportion of channels appear to be open (∼0.1%). In marked contrast with most brain structures, coupling among MesV neurons increases with age, such that it is absent during early development and appears at postnatal day 8. Interestingly, the development of coupling parallels the development of intrinsic membrane properties responsible for repetitive firing in these neurons. We found that, acting together, sodium and potassium conductances enhance the transfer of signals with high-frequency content via electrical synapses, leading to strong spiking synchronization of the coupled neurons. Together, our data indicate that coupling in the MesV nucleus is restricted to mostly pairs of somata between which electrical transmission is supported by a surprisingly small fraction of the channels estimated to be present, and that coupling synergically interacts with specific membrane conductances to promote synchronization of these neurons.
Collapse
Affiliation(s)
- Sebastian Curti
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.
| | | | | | | |
Collapse
|
21
|
Evoked bursting in injured Aβ dorsal root ganglion neurons: A mechanism underlying tactile allodynia. Pain 2012; 153:657-665. [DOI: 10.1016/j.pain.2011.11.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022]
|
22
|
Lin JW. Spatial variation in membrane excitability modulated by 4-AP-sensitive K+ channels in the axons of the crayfish neuromuscular junction. J Neurophysiol 2012; 107:2692-702. [PMID: 22338023 DOI: 10.1152/jn.00857.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current-clamp recordings were made from the primary (1°) and secondary (2°) branching points (BPs) of axons at the crayfish neuromuscular junction. Action potential (AP) firing initiated by current injected at the 2° BP showed strong adaptation or high-frequency firing at threshold current, whereas AP firing frequency at the 1° BP exhibited a gradual rise with increasing current amplitude. The voltage threshold for AP (V(TH)) was higher at the 2° BP than the 1° BP. 4-Aminopyridine (4-AP) at 200 μM increased AP amplitude and duration at both BPs but reduced threshold current at the 2° BP more than at the 1° BP. This blocker lowered V(TH) at both BPs, but the difference between the BPs remained. Firing patterns evoked at the 2° BP became similar to those evoked at the 1° BP in 4-AP. Thus 4-AP-sensitive channels may be more concentrated in the distal axon and control AP initiation and firing patterns there. Orthodromic APs between the two BPs were also compared. There was no difference in AP amplitude between the two BPs, but AP half-width recorded at the 2° BP was longer than that at the 1° BP. AP duration at both BPs increased gradually, by ∼17%, during a 100-Hz, 500-ms train (in-train rise). Normalized AP half-widths revealed a smaller fractional in-train rise at the 2° BP. Thus, although distal APs were broader, AP duration there was under more stringent control than that of the proximal axon. 4-AP increased AP amplitude and duration of the entire orthodromic train and reduced the magnitude of the in-train rise in AP half-width at both BPs. However, this blocker did not uncover a clear difference between the two BPs. Thus 4-AP-sensitive channels concentrated in distal axon may be essential in preventing unintended firing and modulating AP waveform without interfering with orthodromic AP propagation.
Collapse
Affiliation(s)
- Jen-Wei Lin
- Biology Dept., Boston Univ, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Sun W, Miao B, Wang XC, Duan JH, Wang WT, Kuang F, Xie RG, Xing JL, Xu H, Song XJ, Luo C, Hu SJ. Reduced conduction failure of the main axon of polymodal nociceptive C-fibres contributes to painful diabetic neuropathy in rats. ACTA ACUST UNITED AC 2012; 135:359-75. [PMID: 22271663 DOI: 10.1093/brain/awr345] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Painful diabetic neuropathy is a common complication of diabetes mellitus and can affect many aspects of life and severely limit patients' daily functions. Signals of painful diabetic neuropathy are believed to originate in the peripheral nervous system. However, its peripheral mechanism of hyperalgesia has remained elusive. Numerous studies have accumulated that polymodal nociceptive C-fibres play a crucial role in the generation and conduction of pain signals and sensitization of which following injury or inflammation leads to marked hyperalgesia. Traditionally, the number of nociceptive primary afferent firings is believed to be determined at the free nerve endings, while the extended main axon of unmyelinated C-fibres only involves the reliable and faithful propagation of firing series to the central terminals. We challenged this classic view by showing that conduction of action potential can fail to occur in response to repetitive activity when they travel down the main axon of polymodal nociceptive C-fibres. Quantitative analysis of conduction failure revealed that the degree of conduction failure displays a frequency-dependent manner. Local administration of low threshold, rapidly activating potassium current blocker, α-dendrotoxin (0.5 nM) and persistent sodium current blocker, low doses of tetrodotoxin (<100 nM) on the main axon of C-fibres can reciprocally regulate the degree of conduction failure, confirming that conduction failure did occur along the main axon of polymodal nociceptive C-fibres. Following streptozotocin-induced diabetes, a subset of polymodal nociceptive C-fibres exhibited high-firing-frequency to suprathreshold mechanical stimulation, which account for about one-third of the whole population of polymodal nociceptive C-fibres tested. These high-firing-frequency polymodal nociceptive C-fibres in rats with diabetes displayed a marked reduction of conduction failure. Delivery of low concentrations of tetrodotoxin and Nav1.8 selective blocker, A-803467 on the main axon of C-fibres was found to markedly enhance the conduction failure in a dose-dependent manner in diabetic rats. Upregulated expression of sodium channel subunits Nav1.7 and Nav1.8 in both small dorsal root ganglion neurons and peripheral C-fibres as well as enhanced transient and persistent sodium current and increased excitability in small dorsal root ganglion neurons from diabetic rats might underlie the reduced conduction failure in the diabetic high-firing-frequency polymodal nociceptive C-fibres. This study shed new light on the functional capability in the pain signals processing for the main axon of polymodal nociceptive C-fibres and revealed a novel mechanism underlying diabetic hyperalgesia.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Higgs MH, Spain WJ. Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones. J Physiol 2011; 589:5125-42. [PMID: 21911608 DOI: 10.1113/jphysiol.2011.216721] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous studies showed that cortical pyramidal neurones (PNs) have a dynamic spike threshold that functions as a high-pass filter, enhancing spike timing in response to high-frequency input. While it is commonly assumed that Na(+) channel inactivation is the primary mechanism of threshold accommodation, the possible role of K(+) channel activation in fast threshold changes has not been well characterized. The present study tested the hypothesis that low-voltage activated Kv1 channels affect threshold dynamics in layer 2-3 PNs, using α-dendrotoxin (DTX) or 4-aminopyridine (4-AP) to block these conductances. We found that Kv1 blockade reduced the dynamic changes of spike threshold in response to a variety of stimuli, including stimulus-evoked synaptic input, current steps and ramps of varied duration, and noise. Analysis of the responses to noise showed that Kv1 channels increased the coherence of spike output with high-frequency components of the stimulus. A simple model demonstrates that a dynamic spike threshold can account for this effect. Our results show that the Kv1 conductance is a major mechanism that contributes to the dynamic spike threshold and precise spike timing of cortical PNs.
Collapse
Affiliation(s)
- Matthew H Higgs
- Neurology Section, Department of Veterans Affairs Medical Centre, Seattle, WA 98108, USA.
| | | |
Collapse
|
25
|
Masurkar AV, Chen WR. Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience 2011; 192:247-62. [PMID: 21704678 DOI: 10.1016/j.neuroscience.2011.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/06/2011] [Accepted: 06/03/2011] [Indexed: 12/23/2022]
Abstract
Odor identity is encoded by the activity of olfactory bulb glomeruli, which receive primary sensory input and transfer it to projection neurons. Juxtaglomerular cells (JGCs) may influence glomerular processing via firing of long lasting plateau potentials. Though inward currents have been investigated, little is known regarding potassium current contribution to JGC plateau potentials. We pursued study of these currents, with the overarching goal of creating components for a computational model of JGC plateau potential firing. In conditions minimizing calcium-activated potassium current (I(K(Ca))), we used whole cell voltage clamp and in vitro slice preparations to characterize three potassium currents in rat JGCs. The prominent component I(kt1) displayed rapid kinetics (τ(10%-90% rise), 0.6-2 ms; τ(inactivation), 5-10 ms) and was blocked by high concentration 4-aminopyridine (4-AP) (5 mM) and tetramethylammonium (TEA) (40 mM). It had half maximal activation at -10 mV (V(½)max) and little inactivation at rest. I(kt2), with slower kinetics (τ(10%-90% rise), 11-15 ms; τ(inactivation), 100-300 ms), was blocked by low concentration 4-AP (0.5 mM) and TEA (5 mM). The V(½)max was 0 mV and inactivation was also minimal at rest. Sustained current I(kt3) showed sensitivity to low concentration 4-AP and TEA, and had V(½)max of +10 mV. Further experiments, in conditions of physiologic calcium buffering, suggested that I(K(Ca)) contributed to I(kt3) with minimal effect on plateau potential evolution. We transformed these characterizations into Hodgkin-Huxley models that robustly mimicked experimental data. Further simulation demonstrated that I(kt1) would be most efficiently activated by plateau potential waveforms, predicting a critical role in shaping JGC firing. These studies demonstrated that JGCs possess a unique potassium current profile, with delayed rectifier (I(kt3)), atypical A-current (I(kt1)), and D-current (I(kt2)) in accordance with known expression patterns in olfactory bulb (OB) glomeruli. Our simulations also provide an initial framework for more integrative models of JGC plateau potential firing.
Collapse
Affiliation(s)
- A V Masurkar
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
26
|
Enhanced excitability and down-regulated voltage-gated potassium channels in colonic drg neurons from neonatal maternal separation rats. THE JOURNAL OF PAIN 2011; 12:600-9. [PMID: 21296029 DOI: 10.1016/j.jpain.2010.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/26/2010] [Accepted: 11/23/2010] [Indexed: 12/11/2022]
Abstract
UNLABELLED Irritable bowel syndrome (IBS), characterized mainly by abdominal pain, is a functional bowel disorder. The present study aimed to examine changes in the excitability and the activity of the voltage-gated K(+) channel in dorsal root ganglia (DRG) neurons innervating the colon of rats subjected to neonatal maternal separation (NMS). Colonic DRG neurons from NMS rats as identified by FAST DiI™ labeling showed an increased cell size compared with those from nonhandled (NH) rats. Whole cell current-clamp recordings showed that colonic DRG neurons from NMS rats displayed: 1) depolarized resting membrane potential; 2) increased input resistance; 3) a dramatic reduction in rheobase; and 4) a significant increase in the number of action potentials evoked at twice rheobase. Whole cell voltage-clamp recordings revealed that neurons from both groups exhibited transient A-type (I(A)) and delayed rectifier (I(K)) K(+) currents. Compared with NH rat neurons, the averaged density of I(K) was significantly reduced in NMS rat neurons. Furthermore, the Kv1.2 expression was significantly decreased in NMS rat colonic DRG neurons. These results suggest that NMS increases the excitability of colonic DRG neurons mainly by suppressing the I(K) current, which is likely accounted for by the downregulation of the Kv1.2 expression and somal hypertrophy. PERSPECTIVE This study demonstrates the alteration of delayed rectifier K current and Kv1.2 expression in DRG neurons from IBS model rats, representing a molecular mechanism underlying visceral pain and sensitization in IBS, suggesting the potential of Kv1.2 as a therapeutic target for the treatment of IBS.
Collapse
|
27
|
Lennertz RC, Tsunozaki M, Bautista DM, Stucky CL. Physiological basis of tingling paresthesia evoked by hydroxy-alpha-sanshool. J Neurosci 2010; 30:4353-61. [PMID: 20335471 PMCID: PMC2852189 DOI: 10.1523/jneurosci.4666-09.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/23/2009] [Accepted: 02/11/2010] [Indexed: 12/15/2022] Open
Abstract
Hydroxy-alpha-sanshool, the active ingredient in plants of the prickly ash plant family, induces robust tingling paresthesia by activating a subset of somatosensory neurons. However, the subtypes and physiological function of sanshool-sensitive neurons remain unknown. Here we use the ex vivo skin-nerve preparation to examine the pattern and intensity with which the sensory terminals of cutaneous neurons respond to hydroxy-alpha-sanshool. We found that sanshool excites virtually all D-hair afferents, a distinct subset of ultrasensitive light-touch receptors in the skin and targets novel populations of Abeta and C fiber nerve afferents. Thus, sanshool provides a novel pharmacological tool for discriminating functional subtypes of cutaneous mechanoreceptors. The identification of sanshool-sensitive fibers represents an essential first step in identifying the cellular and molecular mechanisms underlying tingling paresthesia that accompanies peripheral neuropathy and injury.
Collapse
Affiliation(s)
- Richard C. Lennertz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Makoto Tsunozaki
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
| | - Diana M. Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| |
Collapse
|
28
|
Ryglewski S, Duch C. Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron. J Neurophysiol 2009; 102:3673-88. [PMID: 19828724 DOI: 10.1152/jn.00693.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ionic currents underlie the firing patterns, excitability, and synaptic integration of neurons. Despite complete sequence information in multiple species, our knowledge about ion channel function in central neurons remains incomplete. This study analyzes the potassium currents of an identified Drosophila flight motoneuron, MN5, in situ. MN5 exhibits four different potassium currents, two fast-activating transient ones and two sustained ones, one of each is calcium activated. Pharmacological and genetic manipulations unravel the specific contributions of Shaker and Shal to the calcium independent transient A-type potassium currents. alpha-dendrotoxin (Shaker specific) and phrixotoxin-2 (Shal specific) block different portions of the transient calcium independent A-type potassium current. Following targeted expression of a Shaker dominant negative transgene in MN5, the remaining A-type potassium current is alpha-dendrotoxin insensitive. In Shal RNAi knock down the remaining A-type potassium current is phrixotoxin-2 insensitive. Additionally, barium blocks calcium-activated potassium currents but also a large portion of phrixotoxin-2-sensitive A-type currents. Targeted knock down of Shaker or Shal channels each cause identical reduction in total potassium current amplitude as acute application of alpha-dendrotoxin or phrixotoxin-2, respectively. This shows that the knock downs do not cause upregulation of potassium channels underlying other A-type channels during development. Immunocytochemistry and targeted expression of modified GFP-tagged Shaker channels with intact targeting sequence in MN5 indicate predominant axonal localization. These data can now be used to investigate the roles of Shaker and Shal for motoneuron intrinsic properties, synaptic integration, and spiking output during behavior by targeted genetic manipulations.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | |
Collapse
|
29
|
Membrane current-based mechanisms for excitability transitions in neurons of the rat mesencephalic trigeminal nuclei. Neuroscience 2009; 163:799-810. [PMID: 19591906 DOI: 10.1016/j.neuroscience.2009.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 01/24/2023]
|