1
|
Högberg T, Receveur JM, Murray A, Linget JM, Nørregaard PK, Little PB, Cooper M. Optimizing and characterizing 4-methyl substituted pyrazol-3-carboxamides leading to the peripheral cannabinoid 1 receptor inverse agonist TM38837. Bioorg Med Chem Lett 2024; 98:129572. [PMID: 38043690 DOI: 10.1016/j.bmcl.2023.129572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Several series of diverse pyrazole-3-carboxamides functionalized with 4-methylamides, 4-methylcarboxylic acids and 4-methyltetrazoles were prepared from the corresponding 4-cyanomethylpyrazoles and investigated as Cannabinoid receptor 1 (CB1) antagonists and inverse agonists with the aim of making compounds with less CNS (Central Nervous System) mediated side-effects compared to rimonabant. The compounds were evaluated and optimized with respect to lipophilicity, solubility, CB1 potency, metabolism, distribution to brain and liver, effect on weight loss in diet-induced mice models. A few carboxylic acids and tetrazoles were selected as especially promising with the tetrazole TM38837 subsequently demonstrating impressive efficacy in various animal models of obesity, producing considerable weight loss and improvements on plasma markers of inflammation and glucose homeostasis, at doses apparently producing negligible brain exposure. TM38837 became the first peripherally restricted CB1 antagonist or inverse agonist to enter clinical trials supporting its lack of CNS effects and it is now believed that the non-CNS mediated efficacy is linked to high liver exposure. This opens opportunities to be explored in other indications such as nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH). Note that this is a first-time disclosure of the structure of TM38837 and other structures appearing in literature are not connected with this program.
Collapse
|
2
|
Arceri L, Nguyen TK, Gibson S, Baker S, Wingert RA. Cannabinoid Signaling in Kidney Disease. Cells 2023; 12:1419. [PMID: 37408253 DOI: 10.3390/cells12101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
Endocannabinoid signaling plays crucial roles in human physiology in the function of multiple systems. The two cannabinoid receptors, CB1 and CB2, are cell membrane proteins that interact with both exogenous and endogenous bioactive lipid ligands, or endocannabinoids. Recent evidence has established that endocannabinoid signaling operates within the human kidney, as well as suggests the important role it plays in multiple renal pathologies. CB1, specifically, has been identified as the more prominent ECS receptor within the kidney, allowing us to place emphasis on this receptor. The activity of CB1 has been repeatedly shown to contribute to both diabetic and non-diabetic chronic kidney disease (CKD). Interestingly, recent reports of acute kidney injury (AKI) have been attributed to synthetic cannabinoid use. Therefore, the exploration of the ECS, its receptors, and its ligands can help provide better insight into new methods of treatment for a range of renal diseases. This review explores the endocannabinoid system, with a focus on its impacts within the healthy and diseased kidney.
Collapse
Affiliation(s)
- Liana Arceri
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Gibson
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sophia Baker
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
3
|
Qiu Y, Zhao Y, Hu T, Yang M, Li F, Li C, Gu W, Yang X, Zhao S, Tao H. Development of Yin-Yang ligand for cannabinoid receptors. Bioorg Chem 2023; 133:106377. [PMID: 36731294 DOI: 10.1016/j.bioorg.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Cannabinoid receptors (CBs), including CB1 and CB2, are the key components of a lipid signaling endocannabinoid system (ECS). Development of synthetic cannabinoids has been attractive to modulate ECS functions. CB1 and CB2 are structurally closely related subtypes but with distinct functions. While most efforts focus on the development of selective ligands for single subtype to circumvent the undesired off-target effect, Yin-Yang ligands with opposite pharmacological activities simultaneously on two subtypes, offer unique therapeutic potential. Herein we report the development of a new Yin-Yang ligand which functions as an antagonist for CB1 and concurrently an agonist for CB2. We found that in the pyrazole-cored scaffold, the arm of N1-phenyl group could be a switch, modification of which yielded various ligands with distinct activities. As such, the ortho-morpholine substitution exerted the desired Yin-Yang bifunctionality which, based on the docking study and molecular dynamic simulation, was proposed to be resulted from the hydrogen bonding with S173 and S285 in CB1 and CB2, respectively. Our results demonstrated the feasibility of structure guided ligand evolution for challenging Yin-Yang ligand.
Collapse
Affiliation(s)
- Yanli Qiu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yitian Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Hu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Cuixia Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weiliang Gu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodi Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
van Doorslaer de Ten Ryen S, Dalle S, Terrasi R, Koppo K, Muccioli GG, Deldicque L. Regulation of the endocannabinoid system by endurance and resistance exercise in hypoxia in human skeletal muscle. J Appl Physiol (1985) 2023; 134:569-580. [PMID: 36701485 DOI: 10.1152/japplphysiol.00645.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exercise modulates the circulating levels of the endocannabinoids ligands N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) and possibly the levels of their receptors and downstream signaling in skeletal muscle. The aim of the present study was to investigate the regulation of the endocannabinoid system by several exercise paradigms in human skeletal muscle. A second aim was to compare endocannabinoid regulation in healthy and prediabetic people in response to an acute endurance exercise. Blood and muscle samples were taken before and after resistance and endurance exercise in normoxia and hypoxia to measure plasma endocannabinoid levels as well as muscle protein expression of CB1, CB2, and downstream signaling. We found that: 1) an acute resistance exercise session decreased plasma 2-AG and N-palmitoylethanolamine (PEA) levels in normoxia; 2) 4 wk resistance training decreased plasma AEA, PEA, and N-oleoylethanolamine (OEA) levels in both normoxia and hypoxia; 3) an acute moderate-intensity endurance exercise increased plasma OEA levels in the healthy and prediabetic groups in normoxia and hypoxia, whereas plasma 2-AG levels increased in the healthy group and AEA in the prediabetic group only in normoxia. The expression of the cannabinoid receptors was only marginally regulated by acute exercise, hypoxia, and prediabetes and downstream signaling did not follow the changes detected in the endocannabinoid ligands. Altogether, our results suggest that resistance and endurance exercise regulate the levels of the endocannabinoid ligands and CB1 expression in opposite ways. The physiological impact of the changes observed in the endocannabinoid ligands in human skeletal muscle after exercise needs further investigation.NEW & NOTEWORTHY We are the first to analyze both endocannabinoids ligands and receptors in response to endurance and resistance exercise. In addition, no study before has compared both exercise paradigms regarding endocannabinoid tone, which is of interest as endocannabinoids regulate energy metabolism, and these are different between endurance and resistance exercise. Furthermore, we investigated whether the endocannabinoid tone was differently regulated in response to acute endurance exercise in prediabetic people. Linking exercise, endocannabinoids and (pre)diabetic people has never been done before.
Collapse
Affiliation(s)
| | - Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Romano Terrasi
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Giulio G Muccioli
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
6
|
Schouten M, Dalle S, Koppo K. Molecular Mechanisms Through Which Cannabidiol May Affect Skeletal Muscle Metabolism, Inflammation, Tissue Regeneration, and Anabolism: A Narrative Review. Cannabis Cannabinoid Res 2022; 7:745-757. [PMID: 36454174 DOI: 10.1089/can.2022.0220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Cannabidiol (CBD), a nonintoxicating constituent of the cannabis plant, recently gained a lot of interest among athletes, since it is no longer considered as a prohibited substance by the World Anti-Doping Agency. The increasing prevalence of CBD use among athletes is driven by a perceived improvement in muscle recovery and a reduction in pain. However, compelling evidence from intervention studies is lacking and the precise mechanisms through which CBD may improve muscle recovery remain unknown. This highlights the need for more scientific studies and an evidence-based background. In the current review, the state-of-the-art knowledge on the effects of CBD on skeletal muscle tissue is summarized with special emphasis on the underlying mechanisms and molecular targets. More specifically, the large variety of receptor families that are believed to be involved in CBD's physiological effects are discussed. Furthermore, in vivo and in vitro studies that investigated the actual effects of CBD on skeletal muscle metabolism, inflammation, tissue regeneration, and anabolism are summarized, together with the functional effects of CBD supplementation on muscle recovery in human intervention trials. Overall, CBD was effective to increase the expression of metabolic regulators in muscle of obese mice (e.g., Akt, glycogen synthase kinase-3). CBD treatment in rodents reduced muscle inflammation following eccentric exercise (i.e., nuclear factor kappa B [NF-κB]), in a model of muscle dystrophy (e.g., interleukin-6, tumor necrosis factor alpha) and of obesity (e.g., COX-2, NF-κB). In addition, CBD did not affect in vitro or in vivo muscle anabolism, but improved satellite cell differentiation in dystrophic muscle. In humans, there are some indications that CBD supplementation improved muscle recovery (e.g., creatine kinase) and performance (e.g., squat performance). However, CBD doses were highly variable (between 16.7 and 150 mg) and there are some methodological concerns that should be considered. Conclusion: CBD has the prospective to become an adequate supplement that may improve muscle recovery. However, this research domain is still in its infancy and future studies addressing the molecular and functional effects of CBD in response to exercise are required to further elucidate the ergogenic potential of CBD.
Collapse
Affiliation(s)
- Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Studies in Rats of Combined Muscle and Liver Perfusion and of Muscle Extract Indicate That Contractions Release a Muscle Hormone Directly Enhancing Hepatic Glycogenolysis. J Pers Med 2022; 12:jpm12050837. [PMID: 35629259 PMCID: PMC9145889 DOI: 10.3390/jpm12050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Established neuroendocrine signals do not sufficiently account for the exercise-induced increase in glucose production. Using an innovative, yet classical cross-circulation procedure, we studied whether contracting muscle produces a factor that directly stimulates hepatic glycogenolysis. Methods: Isolated rat hindquarters were perfused in series with isolated livers. Results: Stimulation of the sciatic nerve of one or both legs resulted in an increase in force, which rapidly waned. During one-legged contractions, hepatic glucose production increased initially (from −0.9 ± 0.5 (mean ± SE) to 3.3 ± 0.7 µmol/min, p < 0.05). The peak did not differ significantly from that seen after 20 nM of epinephrine (5.1 ± 1.2 µmol/min, p > 0.05). In response to two-legged contractions, the increase in hepatic glucose production (to 5.4 ± 1.3 µmol/min) was higher (p < 0.05) and lasted longer than that seen during one-legged contractions. During contractions, peak hepatic glucose output exceeded concomitant hepatic lactate uptake (p < 0.05), and glucose output decreased to basal levels, while lactate uptake rose to a plateau. Furthermore, in separate experiments an increase in lactate supply to isolated perfused livers increased lactate uptake, but not glucose output. In intact rats, intra-arterial injection of extract made from mixed leg muscle elicited a prolonged increase (p < 0.05) in plasma glucose concentration (from 5.2 ± 0.1 mM to 8.3 ± 1.5 mM). In perfused livers, muscle extract increased glucose output dose dependently. Fractionation by chromatography of the extract showed that the active substance had a MW below 2000. Conclusion: This study provides evidence that contracting skeletal muscle may produce a hormone with a MW below 2000, which enhances hepatic glycogenolysis according to energy needs. Further chemical characterization is warranted.
Collapse
|
8
|
ONAY A, ERTAŞ A, SÜZERER V, YENER İ, YILMAZ MA, AYAZ-TİLKAT E, EKİNCİ R, BOZHAN N, İRTEGÜN-KANDEMİR S. Cannabinoids for SARS-CoV-2 and is there evidence of their therapeutic efficacy? Turk J Biol 2021; 45:570-587. [PMID: 34803455 PMCID: PMC8573844 DOI: 10.3906/biy-2105-73] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
To combat the coronaviruses and their novel variants, therapeutic drugs and the development of vaccines that are to be effective throughout human life are urgently needed. The endocannabinoid system (ECS) acts as a modulator in the activation of the microcirculation, immune system, and autonomic nervous system, along with controlling pharmacological functions such as emotional responses, homeostasis, motor functions, cognition, and motivation. The ECS contains endogenous cannabinoids, cannabinoid receptor (CBRs), and enzymes that regulate their biosynthesis, transport, and degradation. Moreover, phytocannabinoids and synthetic cannabinoids that mimic the action of endocannabinoids also play an essential role in the modulation of the ECS. Cannabinoids, the main constituents of cannabis (Cannabis sativa L.), are therapeutic compounds that have received international attention in the health field due to their therapeutic properties. Recently, they have been tested for the treatment of COVID-19 due to their antiviral properties. Indeed, cannabinoid-type compounds, and in particular cannabidiol (CBD), isolated from glandular trichomes found in the calyx of cannabis flowers with reported antiviral properties is hypothesized to be a therapeutic option in the ministration of SARS-CoV-2 consorted with COVID-19 disease. The relevant articles were determined from the database search published mainly in Web of Science, Google scholar, PubMed, Crossref, and ClinicalTrials.gov database during the pandemic period. The articles were evaluated for the therapeutic potentials, mechanisms of action of cannabinoids, the roles of the ECS in the immune system, impact of cannabinoids in SARS-CoV-2 septic, especially if they address the application of cannabinoids as drugs for the curability and management of SARS-CoV-2 and its novel variants. Although the evidence needed to be considered using cannabinoids in the control and treatment of viral diseases is currently in its infancy, they already offer an opportunity for clinicians due to their effects in relieving pain, improving appetite, and improving childhood epilepsy, especially in cancer and human immunodeficiency virus (HIV/AIDS) patients. In addition to these, the most recent scientific evidence emphasizes their use in the treatment of the coronavirus infected patients. In brief, all preclinic and clinic studies that have been reported show that, through the cannabinoid system, cannabinoids, particularly CBD, have many mechanisms that are effective in the treatment of patients infected by SARS-CoV-2. Thus, more extensive studies are necessary in this area to fully identify the effects of cannabinoids on SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmet ONAY
- Department of Biology, Faculty of Science, Dicle University, DiyarbakırTurkey
| | - Abdulselam ERTAŞ
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, DiyarbakırTurkey
| | - Veysel SÜZERER
- Department of Pharmacy Services, Vocational School of Health, Bingöl University, BingölTurkey
| | - İsmail YENER
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, DiyarbakırTurkey
| | | | - Emine AYAZ-TİLKAT
- Department of Biology, Faculty of Science and Literature, Batman University, BatmanTurkey
| | - Remzi EKİNCİ
- Department of Field Crops, Faculty of Agriculture, Dicle University, DiyarbakırTurkey
| | - Nesrin BOZHAN
- Department of Biology, Faculty of Science, Dicle University, DiyarbakırTurkey
| | | |
Collapse
|
9
|
Zhou S, Ling X, Meng P, Liang Y, Shen K, Wu Q, Zhang Y, Chen Q, Chen S, Liu Y, Zhou L. Cannabinoid receptor 2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. J Cell Mol Med 2021; 25:8957-8972. [PMID: 34414658 PMCID: PMC8435409 DOI: 10.1111/jcmm.16857] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/24/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Kidney is one of the most important organs in maintaining the normal life activities. With the high abundance of mitochondria, renal tubular cell plays the vital role in functioning in the reabsorption and secretion of kidney. Reports have shown that mitochondrial dysfunction is of great importance to renal tubular cell senescence and subsequent kidney ageing. However, the underlying mechanisms are not elucidated. Cannabinoid receptor 2 is one of the two receptors responsible for the activation of endocannabinoid system. CB2 is primarily upregulated in renal tubular cells in chronic kidney diseases and mediates fibrogenesis. However, the role of CB2 in tubular mitochondrial dysfunction and kidney ageing has not been clarified. In this study, we found that CB2 was upregulated in kidneys in 24‐month‐old mice and d‐galactose (d‐gal)‐induced accelerated ageing mice, accompanied by the decrease in mitochondrial mass. Furthermore, gene deletion of CB2 in d‐gal‐treated mice could greatly inhibit the activation of β‐catenin signalling and restore the mitochondrial integrity and Adenosine triphosphate (ATP) production. In CB2 knockout mice, renal tubular cell senescence and kidney fibrosis were also significantly inhibited. CB2 overexpression or activation by the agonist AM1241 could sufficiently induce the decrease in PGC‐1α and a variety of mitochondria‐related proteins and trigger cellular senescence in cultured human renal proximal tubular cells. CB2‐activated mitochondrial dysfunction and cellular senescence could be blocked by ICG‐001, a blocker for β‐catenin signalling. These results show CB2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. The intrinsic mechanism may be related to its activation in β‐catenin signalling.
Collapse
Affiliation(s)
- Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Central Laboratory, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Ye Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunyu Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, China
| | - Qiyan Chen
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, China
| | - Shuangqin Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Sieck GC. Physiology in Perspective: Harnessing Homeostasis. Physiology (Bethesda) 2021; 36:71-72. [PMID: 33595383 DOI: 10.1152/physiol.00003.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|