1
|
Xu F, Zhang Q, Xuan D, Zhao S, Wang Y, Han L, Huang S, Zhu H, Wang T, Chen X. Daytime variation in non-cardiac surgery impacts the recovery after general anesthesia. Ann Med 2023; 55:1134-1143. [PMID: 36947128 PMCID: PMC10035960 DOI: 10.1080/07853890.2023.2187875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Circadian rhythm involved with physiology has been reported to affect pharmacokinetics or pharmacodynamics. We hypothesized that circadian variations in physiology disturb anesthesia and eventually affect recovery after anesthesia. METHODS A retrospective cohort study initially included 107,406 patients (1 June 2016-6 June 2021). Patients were classified into morning or afternoon surgery groups. The primary outcome was daytime variation in PACU (post-anesthesia care unit) recovery time and Steward score. Inverse probability weighting (IPW) approach based on propensity score and univariable/multivariable linear regression were used to estimate this outcome. RESULTS Of 28,074 patients, 13,418 (48%) patients underwent morning surgeries, and 14,656 (52%) patients underwent afternoon surgeries. LOWESS curves and IPW illustrated daytime variation in PACU recovery time and Steward score. Before adjustment, compared to morning surgery group, afternoon surgery group had less PACU recovery time (median [interquartile range], 57 [46, 70] vs. 54 [43, 66], p < 0.001) and a higher Steward score (5.62 [5.61, 5.63] vs. 5.66 [5.65, 5.67], p < 0.001). After adjustment, compared to morning surgery group, afternoon surgery group had less PACU recovery time (58 [46, 70] vs. 54 [43, 66], p < 0.001). In multivariable linear regression, morning surgery is statistically associated with an increased PACU recovery time (coefficient, -3.20; 95% confidence interval, -3.55 to -2.86). Among non-cardiac surgeries, daytime variation might affect recovery after general anesthesia. These findings indicate that the timing of surgery improves recovery after general anesthesia, with afternoon surgery providing protection.KEY MESSAGESIn this retrospective cohort study of 28,074 participants, the afternoon surgery group has a higher Steward score than the morning surgery group.In multivariable linear regression, morning surgery is statistically associated with an increased PACU recovery time.Among non-cardiac surgeries, daytime variation affects the recovery after general anesthesia, with afternoon surgery providing protection.
Collapse
Affiliation(s)
- Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingtong Zhang
- Department of Anesthesiology, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, China
| | - Dongsheng Xuan
- Department of Anesthesiology, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyu Zhu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Arrieta A, Chapski DJ, Reese A, Kimball T, Song K, Rosa-Garrido M, Vondriska TM. Circadian Control of Histone Turnover During Cardiac Development and Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567086. [PMID: 38014083 PMCID: PMC10680691 DOI: 10.1101/2023.11.14.567086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rationale: During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting an unrecognized role for the circadian clock in temporal control of histone turnover and coordinate cardiomyocyte gene expression. Objective: To elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Methods and Results: Bmal1 knockdown in neonatal rat ventricular myocytes (NRVM) decreased myocyte size, total cellular protein, and transcription of the fetal hypertrophic gene Nppb following treatment with increasing serum concentrations or the α-adrenergic agonist phenylephrine (PE). Bmal1 knockdown decreased expression of clock-controlled genes Per2 and Tcap, and salt-inducible kinase 1 (Sik1) which was identified via gene ontology analysis of Bmal1 targets upregulated in adult versus embryonic hearts. Epigenomic analyses revealed co-localized chromatin accessibility and Bmal1 localization in the Sik1 promoter. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by MNase-qPCR and impaired histone turnover indicated by metabolic labeling of acid-soluble chromatin fractions and immunoblots of total and chromatin-associated core histones. Sik1 knockdown basally increased myocyte size, while simultaneously impairing and driving Nppb and Per2 transcription, respectively. Conclusions: Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription.
Collapse
|
3
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
4
|
Dai HR, Guo HL, Hu YH, Xu J, Ding XS, Cheng R, Chen F. Precision caffeine therapy for apnea of prematurity and circadian rhythms: New possibilities open up. Front Pharmacol 2022; 13:1053210. [PMID: 36532766 PMCID: PMC9753576 DOI: 10.3389/fphar.2022.1053210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2024] Open
Abstract
Caffeine is the globally consumed psychoactive substance and the drug of choice for the treatment of apnea of prematurity (AOP), but its therapeutic effects are highly variable among preterm infants. Many of the molecular underpinnings of the marked individual response have remained elusive yet. Interestingly, the significant association between Clock gene polymorphisms and the response to caffeine therapy offers an opportunity to advance our understanding of potential mechanistic pathways. In this review, we delineate the functions and mechanisms of human circadian rhythms. An up-to-date advance of the formation and ontogeny of human circadian rhythms during the perinatal period are concisely discussed. Specially, we summarize and discuss the characteristics of circadian rhythms in preterm infants. Second, we discuss the role of caffeine consumption on the circadian rhythms in animal models and human, especially in neonates and preterm infants. Finally, we postulate how circadian-based therapeutic initiatives could open new possibilities to promote precision caffeine therapy for the AOP management in preterm infants.
Collapse
Affiliation(s)
- Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
6
|
Kilgallen AB, van den Akker F, Feyen DAM, Crnko S, Snijders Blok CJB, Gremmels H, du Pré BC, Reijers R, Doevendans PA, de Jager SCA, Sluijter JPG, Sampaio-Pinto V, van Laake LW. Circadian Dependence of the Acute Immune Response to Myocardial Infarction. Front Pharmacol 2022; 13:869512. [PMID: 35694249 PMCID: PMC9174900 DOI: 10.3389/fphar.2022.869512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythms influence the recruitment of immune cells and the onset of inflammation, which is pivotal in the response to ischemic cardiac injury after a myocardial infarction (MI). The hyperacute immune response that occurs within the first few hours after a MI has not yet been elucidated. Therefore, we characterized the immune response and myocardial damage 3 hours after a MI occurs over a full twenty-four-hour period to investigate the role of the circadian rhythms in this response. MI was induced at Zeitgeber Time (ZT) 2, 8, 14, and 20 by permanent ligation of the left anterior descending coronary artery. Three hours after surgery, animals were terminated and blood and hearts collected to assess the immunological status and cardiac damage. Blood leukocyte numbers varied throughout the day, peaking during the rest-phase (ZT2 and 8). Extravasation of leukocytes was more pronounced during the active-phase (ZT14 and 20) and was associated with greater chemokine release to the blood and expression of adhesion molecules in the heart. Damage to the heart, measured by Troponin-I plasma levels, was elevated during this time frame. Clock gene oscillations remained intact in both MI-induced and sham-operated mice hearts, which could explain the circadian influence of the hyperacute inflammatory response after a MI. These findings are in line with the clinical observation that patients who experience a MI early in the morning (i.e., early active phase) have worse clinical outcomes. This study provides further insight on the immune response occurring shortly after an MI, which may contribute to the development of novel and optimization of current therapeutic approaches.
Collapse
Affiliation(s)
- Aoife B. Kilgallen
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Dries A. M. Feyen
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sandra Crnko
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christian J. B. Snijders Blok
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hendrik Gremmels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bastiaan C. du Pré
- Division of Internal Medicine, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Robin Reijers
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
- Central Military Hospital, Utrecht, Netherlands
| | - Saskia C. A. de Jager
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| | - Vasco Sampaio-Pinto
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linda W. van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
8
|
Herrera-Zelada N, Zuñiga-Cuevas U, Ramirez-Reyes A, Lavandero S, Riquelme JA. Targeting the Endothelium to Achieve Cardioprotection. Front Pharmacol 2021; 12:636134. [PMID: 33603675 PMCID: PMC7884828 DOI: 10.3389/fphar.2021.636134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Despite considerable improvements in the treatment of myocardial infarction, it is still a highly prevalent disease worldwide. Novel therapeutic strategies to limit infarct size are required to protect myocardial function and thus, avoid heart failure progression. Cardioprotection is a research topic with significant achievements in the context of basic science. However, translation of the beneficial effects of protective approaches from bench to bedside has proven difficult. Therefore, there is still an unmet need to study new avenues leading to protecting the myocardium against infarction. In line with this, the endothelium is an essential component of the cardiovascular system with multiple therapeutic targets with cardioprotective potential. Endothelial cells are the most abundant non-myocyte cell type in the heart and are key players in cardiovascular physiology and pathophysiology. These cells can regulate vascular tone, angiogenesis, hemostasis, and inflammation. Accordingly, endothelial dysfunction plays a fundamental role in cardiovascular diseases, which may ultimately lead to myocardial infarction. The endothelium is of paramount importance to protect the myocardium from ischemia/reperfusion injury via conditioning strategies or cardioprotective drugs. This review will provide updated information on the most promising therapeutic agents and protective approaches targeting endothelial cells in the context of myocardial infarction.
Collapse
Affiliation(s)
- Nicolas Herrera-Zelada
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ursula Zuñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andres Ramirez-Reyes
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jaime A. Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Li H, Kilgallen AB, Münzel T, Wolf E, Lecour S, Schulz R, Daiber A, Van Laake LW. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection. Br J Pharmacol 2020; 177:5393-5412. [PMID: 31833063 PMCID: PMC7680009 DOI: 10.1111/bph.14949] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Risk factors in the environment such as air pollution and mental stress contribute to the development of chronic non-communicable disease. Air pollution was identified as the leading health risk factor in the physical environment, followed by water pollution, soil pollution/heavy metals/chemicals and occupational exposures, however neglecting the non-chemical environmental health risk factors (e.g. mental stress and noise). Epidemiological data suggest that environmental risk factors are associated with higher risk for cardiovascular, metabolic and mental diseases, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, depression and anxiety disorders. We provide an overview on the impact of the external exposome comprising risk factors/exposures on cardiovascular health with a focus on dysregulation of stress hormones, mitochondrial function, redox balance and inflammation with special emphasis on the circadian clock. Finally, we assess the impact of circadian clock dysregulation on cardiovascular health and the potential of environment-specific preventive strategies or "chrono" therapy for cardioprotection. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Aoife B Kilgallen
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany.,Structural Chronobiology, Institute of Molecular Biology, Mainz, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Linda W Van Laake
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Abstract
The Earth turns on its axis every 24 h; almost all life on the planet has a mechanism - circadian rhythmicity - to anticipate the daily changes caused by this rotation. The molecular clocks that control circadian rhythms are being revealed as important regulators of physiology and disease. In humans, circadian rhythms have been studied extensively in the cardiovascular system. Many cardiovascular functions, such as endothelial function, thrombus formation, blood pressure and heart rate, are now known to be regulated by the circadian clock. Additionally, the onset of acute myocardial infarction, stroke, arrhythmias and other adverse cardiovascular events show circadian rhythmicity. In this Review, we summarize the role of the circadian clock in all major cardiovascular cell types and organs. Second, we discuss the role of circadian rhythms in cardiovascular physiology and disease. Finally, we postulate how circadian rhythms can serve as a therapeutic target by exploiting or altering molecular time to improve existing therapies and develop novel ones.
Collapse
|
11
|
Canaple L, Gréchez-Cassiau A, Delaunay F, Dkhissi-Benyahya O, Samarut J. Maternal eating behavior is a major synchronizer of fetal and postnatal peripheral clocks in mice. Cell Mol Life Sci 2018; 75:3991-4005. [PMID: 29804258 PMCID: PMC11105238 DOI: 10.1007/s00018-018-2845-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Most living organisms show circadian rhythms in physiology and behavior. These oscillations are generated by endogenous circadian clocks, present in virtually all cells where they control key biological processes. To study peripheral clocks in vivo, we developed an original model, the Rev-Luc mouse to follow noninvasively and longitudinally Rev-Luc oscillations in peripheral clocks using in vivo bioluminescence imaging. We found in vitro and in vivo a robust diurnal rhythm of Rev-Luc, mainly in liver, intestine, kidney and adipose tissues. We further confirmed in vivo that Rev-Luc peripheral tissues are food-entrainable oscillators, not affected by age or sex. These data strongly support the relevance of the Rev-Luc model for circadian studies, especially to investigate in vivo the establishment and the entrainment of the rhythm throughout ontogenesis. We then showed that Rev-Luc expression develops dynamically and gradually, both in amplitude and in phase, during fetal and postnatal development. We also demonstrate for the first time that the immature peripheral circadian system of offspring in utero is mainly entrained by maternal cues from feeding regimen. The prenatal entrainment will also differentially determine the Rev-Luc expression in pups before weaning underlining the importance of the maternal chrononutrition on the circadian system entrainment of the offspring.
Collapse
Affiliation(s)
- Laurence Canaple
- Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon; CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, 69364, Lyon, France.
| | - Aline Gréchez-Cassiau
- Université Côte d'Azur, CNRS UMR7277, INSERM U1091, Institut de Biologie Valrose, Bâtiment de Sciences Naturelles, 28 Avenue Valrose, 06108, Nice Cedex 2, France
| | - Franck Delaunay
- Université Côte d'Azur, CNRS UMR7277, INSERM U1091, Institut de Biologie Valrose, Bâtiment de Sciences Naturelles, 28 Avenue Valrose, 06108, Nice Cedex 2, France
| | - Ouria Dkhissi-Benyahya
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Jacques Samarut
- Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon; CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, 69364, Lyon, France.
| |
Collapse
|
12
|
Rakshit K, Qian J, Gaonkar KS, Dhawan S, Colwell CS, Matveyenko AV. Postnatal Ontogenesis of the Islet Circadian Clock Plays a Contributory Role in β-Cell Maturation Process. Diabetes 2018; 67:911-922. [PMID: 29500314 PMCID: PMC5910002 DOI: 10.2337/db17-0850] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/23/2018] [Indexed: 12/13/2022]
Abstract
Development of cell replacement therapies in diabetes requires understanding of the molecular underpinnings of β-cell maturation. The circadian clock regulates diverse cellular functions important for regulation of β-cell function and turnover. However, postnatal ontogenesis of the islet circadian clock and its potential role in β-cell maturation remain unknown. To address this, we studied wild-type Sprague-Dawley as well as Period1 luciferase transgenic (Per1:LUC) rats to determine circadian clock function, clock protein expression, and diurnal insulin secretion during islet development and maturation process. We additionally studied β-cell-specific Bmal1-deficient mice to elucidate a potential role of this key circadian transcription factor in β-cell functional and transcriptional maturation. We report that emergence of the islet circadian clock 1) occurs during the early postnatal period, 2) depends on the establishment of global behavioral circadian rhythms, and 3) leads to the induction of diurnal insulin secretion and gene expression. Islet cell maturation was also characterized by induction in the expression of circadian transcription factor BMAL1, deletion of which altered postnatal development of glucose-stimulated insulin secretion and the associated transcriptional network. Postnatal development of the islet circadian clock contributes to early-life β-cell maturation and should be considered for optimal design of future β-cell replacement strategies in diabetes.
Collapse
Affiliation(s)
- Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN
| | - Jingyi Qian
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Krutika Satish Gaonkar
- Division of Biostatistics and Informatics, Department of Health Sciences Research, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN
| | - Sangeeta Dhawan
- Department of Translational Research & Cellular Therapeutics, City of Hope, Duarte, CA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
13
|
Xu J, Wang Y, Xu Y, Zhou C. Clock gene Bmal1 in mice embryo is dispensable for early embryo development but critical for live birth. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1307975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jian Xu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Reproductive Medicine Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yizi Wang
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanwen Xu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Canquan Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Neonatal rat cardiomyocytes as an in vitro model for circadian rhythms in the heart. J Mol Cell Cardiol 2017; 112:58-63. [DOI: 10.1016/j.yjmcc.2017.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023]
|
15
|
Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus. J Neurosci 2017; 38:1326-1334. [PMID: 29054877 DOI: 10.1523/jneurosci.2006-17.2017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus coordinates daily rhythms including sleep-wake, hormone release, and gene expression. The cells of the SCN must synchronize to each other to drive these circadian rhythms in the rest of the body. The ontogeny of circadian cycling and intercellular coupling in the SCN remains poorly understood. Recent in vitro studies have recorded circadian rhythms from the whole embryonic SCN. Here, we tracked the onset and precision of rhythms in PERIOD2 (PER2), a clock protein, within the SCN isolated from embryonic and postnatal mice of undetermined sex. We found that a few SCN cells developed circadian periodicity in PER2 by 14.5 d after mating (E14.5) with no evidence for daily cycling on E13.5. On E15.5, the fraction of competent oscillators increased dramatically corresponding with stabilization of their circadian periods. The cells of the SCN harvested at E15.5 expressed sustained, synchronous daily rhythms. By postnatal day 2 (P2), SCN oscillators displayed the daily, dorsal-ventral phase wave in clock gene expression typical of the adult SCN. Strikingly, vasoactive intestinal polypeptide (VIP), a neuropeptide critical for synchrony in the adult SCN, and its receptor, VPAC2R, reached detectable levels after birth and after the onset of circadian synchrony. Antagonists of GABA or VIP signaling or action potentials did not disrupt circadian synchrony in the E15.5 SCN. We conclude that endogenous daily rhythms in the fetal SCN begin with few noisy oscillators on E14.5, followed by widespread oscillations that rapidly synchronize on E15.5 by an unknown mechanism.SIGNIFICANCE STATEMENT We recorded the onset of PER2 circadian oscillations during embryonic development in the mouse SCN. When isolated at E13.5, the anlagen of the SCN expresses high, arrhythmic PER2. In contrast, a few cells show noisy circadian rhythms in the isolated E14.5 SCN and most show reliable, self-sustained, synchronized rhythms in the E15.5 SCN. Strikingly, this synchrony at E15.5 appears before expression of VIP or its receptor and persists in the presence of blockers of VIP, GABA or neuronal firing. Finally, the dorsal-ventral phase wave of PER2 typical of the adult SCN appears ∼P2, indicating that multiple signals may mediate circadian synchrony during the ontogeny of the SCN.
Collapse
|
16
|
Du Pré BC, Demkes EJ, Feyen DAM, Dierickx P, Crnko S, Kok BJM, Sluijter JPG, Doevendans PA, Vos MA, Van Veen TAB, Van Laake LW. SCA1 + Cells from the Heart Possess a Molecular Circadian Clock and Display Circadian Oscillations in Cellular Functions. Stem Cell Reports 2017; 9:762-769. [PMID: 28803917 PMCID: PMC5599230 DOI: 10.1016/j.stemcr.2017.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022] Open
Abstract
Stem cell antigen 1-positive (SCA1+) cells (SPCs) have been investigated in cell-based cardiac repair and pharmacological research, although improved cardiac function after injection has been variable and the mode of action remains unclear. Circadian (24-hr) rhythms are biorhythms regulated by molecular clocks that play an important role in (patho)physiology. Here, we describe (1) the presence of a molecular circadian clock in SPCs and (2) circadian rhythmicity in SPC function. We isolated SPCs from human fetal heart and found that these cells possess a molecular clock based on typical oscillations in core clock components BMAL1 and CRY1. Functional analyses revealed that circadian rhythmicity also governs SPC proliferation, stress tolerance, and growth factor release, with large differences between peaks and troughs. We conclude that SPCs contain a circadian molecular clock that controls crucial cellular functions. Taking circadian rhythms into account may improve reproducibility and outcome of research and therapies using SPCs. SCA1+ cells are a cell source used in pharmacology studies and cardiac repair SCA1+ cells possess a molecular circadian (24-hr) clock Proliferation, stress tolerance, and paracrine secretion follow a circadian pattern Taking rhythmicity into account may improve studies using SCA1+ cells
Collapse
Affiliation(s)
- Bastiaan C Du Pré
- Department of Medical Physiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Cardiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Evelyne J Demkes
- Department of Medical Physiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Cardiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Dries A M Feyen
- Department of Cardiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Pieterjan Dierickx
- Department of Cardiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Hubrecht Institute-KNAW, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Cardiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Bart J M Kok
- Department of Medical Physiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Toon A B Van Veen
- Department of Medical Physiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Linda W Van Laake
- Department of Cardiology, Division of Heart and Lungs, and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
17
|
Variation within Variation: Comparison of 24-h Rhythm in Rodent Infarct Size between Ischemia Reperfusion and Permanent Ligation. Int J Mol Sci 2017; 18:ijms18081670. [PMID: 28763007 PMCID: PMC5578060 DOI: 10.3390/ijms18081670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/06/2023] Open
Abstract
The detrimental effects of myocardial infarction in humans and rodents have a 24-h rhythm. In some human cohorts however, rhythmicity was absent, while the time of maximum damage differs between cohorts. We hypothesized that the type of damage influences the 24-h rhythm in infarct size. Myocardial infarction was induced in 12-week-old C57BL/six mice at four different time-points during the day using either permanent ligation (PL) or 30-min of ischemia followed by reperfusion (IR), with a control group wherein no ligation was applied. Infarct size was measured by echocardiography and histology at a 1-month follow-up. Rhythmicity in infarct size was present in the PL group at the functional and histological level, with maximal damage occurring when the infarct was induced at noon. In the IR group, no circadian rhythm was found. The time of the coronary artery ligation determines the outcome of myocardial infarction. Our data showed that in rodents, the presence of circadian rhythmicity and time of peak infarct size varies between experimental setups.
Collapse
|
18
|
Rhyme and reason: the role of circadian rhythms in skin and its implications for physicians. Future Sci OA 2016; 2:FSO115. [PMID: 28031962 PMCID: PMC5137927 DOI: 10.4155/fsoa-2016-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
|
19
|
Lecour S, Bøtker HE, Condorelli G, Davidson SM, Garcia-Dorado D, Engel FB, Ferdinandy P, Heusch G, Madonna R, Ovize M, Ruiz-Meana M, Schulz R, Sluijter JPG, Van Laake LW, Yellon DM, Hausenloy DJ. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc Res 2014; 104:399-411. [PMID: 25344369 PMCID: PMC4242141 DOI: 10.1093/cvr/cvu225] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ischaemic heart disease (IHD) remains the leading cause of death and disability worldwide. As a result, novel therapies are still needed to protect the heart from the detrimental effects of acute ischaemia–reperfusion injury, in order to improve clinical outcomes in IHD patients. In this regard, although a large number of novel cardioprotective therapies discovered in the research laboratory have been investigated in the clinical setting, only a few of these have been demonstrated to improve clinical outcomes. One potential reason for this lack of success may have been the failure to thoroughly assess the cardioprotective efficacy of these novel therapies in suitably designed preclinical experimental animal models. Therefore, the aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to provide recommendations for improving the preclinical assessment of novel cardioprotective therapies discovered in the research laboratory, with the aim of increasing the likelihood of success in translating these new treatments into improved clinical outcomes.
Collapse
Affiliation(s)
- Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and MRC Inter-University Cape Heart Group, University of Cape Town, Cape Town, South Africa
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus N, Denmark
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Institute, National Research Council of Italy, Rozzano, Italy
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews
| | - David Garcia-Dorado
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institut für Pathophysiologie, West German Heart and Vascular Centre, Universitätsklinikum Essen, Essen, Germany
| | - Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, 'G. d'Annunzio' University of Chieti, Chieti, Italy Texas Heart Institute, Houston, TX, USA Department of Internal Medicine, University of Texas Medical School, Center of Cardiovascular and Atherosclerosis Research, Houston, TX, USA
| | - Michel Ovize
- Inserm U 1060 (CarMeN_Cardioprotection Team) & CIC de Lyon, Service d'Exploration Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Marisol Ruiz-Meana
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | | | - Linda W Van Laake
- University Medical Center Utrecht and Hubrecht Institute, Utrecht, the Netherlands
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews
| |
Collapse
|
20
|
Sluijter JPG, Condorelli G, Davidson SM, Engel FB, Ferdinandy P, Hausenloy DJ, Lecour S, Madonna R, Ovize M, Ruiz-Meana M, Schulz R, Van Laake LW. Novel therapeutic strategies for cardioprotection. Pharmacol Ther 2014; 144:60-70. [PMID: 24837132 DOI: 10.1016/j.pharmthera.2014.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
The morbidity and mortality from ischemic heart disease (IHD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of occluded coronary arteries. Although it is essential to re-open the artery as soon as possible, paradoxically this leads to additional myocardial injury, called acute ischemia-reperfusion injury (IRI), for which currently no effective therapy is available. Therefore, novel therapeutic strategies are required to protect the heart from acute IRI in order to reduce myocardial infarction size, preserve cardiac function and improve clinical outcomes in patients with IHD. In this review article, we will first outline the pathophysiology of acute IRI and review promising therapeutic strategies for cardioprotection. These include novel aspects of mitochondrial function, epigenetics, circadian clocks, the immune system, microvesicles, growth factors, stem cell therapy and gene therapy. We discuss the therapeutic potential of these novel cardioprotective strategies in terms of pharmacological targeting and clinical application.
Collapse
Affiliation(s)
- Joost P G Sluijter
- Department of Cardiology, University Medical Center Utrecht, The Netherlands; ICIN, Netherlands Heart Institute, Utrecht, The Netherlands
| | | | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Derek J Hausenloy
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, South Africa
| | - Rosalinda Madonna
- Department of Neurosciences and Imaging, Institute of Cardiology, University of Chieti, Chieti, Italy
| | - Michel Ovize
- Service d'Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, France; Inserm U1060-CarMeN, CIC de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Marisol Ruiz-Meana
- Laboratori Cardiologia, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Spain
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig Universität, Gießen, Germany
| | - Linda W Van Laake
- Department of Cardiology, University Medical Center Utrecht, The Netherlands.
| | | |
Collapse
|
21
|
Sieck G. Physiology in Perspective: The Life We Take for Granted. Physiology (Bethesda) 2014; 29:6-7. [DOI: 10.1152/physiol.00063.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|