1
|
Špirková A, Kovaříková V, Šefčíková Z, Pisko J, Kšiňanová M, Koppel J, Fabian D, Čikoš Š. Glutamate can act as a signaling molecule in mouse preimplantation embryos. Biol Reprod 2022; 107:916-927. [PMID: 35746896 PMCID: PMC9562114 DOI: 10.1093/biolre/ioac126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Free amino acids are present in the natural environment of the preimplantation embryo, and their availability can influence early embryo development. Glutamic acid is one of the amino acids with highest concentrations in female reproductive fluids, and we investigated whether glutamic acid/glutamate can affect preimplantation embryo development by acting through cell membrane receptors. Using RT-PCR, we detected 15 ionotropic glutamate receptor transcripts and 8 metabotropic glutamate receptor transcripts in mouse ovulated oocytes and/or in vivo developed blastocysts. Using immunohistochemistry, we detected expression of two AMPA receptor subunits, three kainate receptor subunits and member 5 metabotropic glutamate receptor protein in blastocysts. Extracellular concentrations of glutamic acid starting at 5 mM impaired mouse blastocyst development, and this fact may be of great practical importance since glutamic acid and its salts (mainly monosodium glutamate) are widely used as food additives. Experiments with glutamate receptor agonists (in combination with gene expression analysis) revealed that specific AMPA receptors (formed from GRIA3 and/or GRIA4 subunits), kainate receptors (formed from GRIK 3 and GRIK 4 or GRIK 5 subunits) and GRM5 glutamate receptor were involved in this effect. The glutamic acid-induced effects were prevented or reduced by pre-treatment of blastocysts with AMPA, kainate and GRM5 receptor antagonists, further confirming the involvement of these receptor types. Our results show that glutamic acid can act as a signaling molecule in preimplantation embryos, exerting its effects through activation of cell membrane receptors.
Collapse
Affiliation(s)
- Alexandra Špirková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Veronika Kovaříková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Zuzana Šefčíková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Jozef Pisko
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Martina Kšiňanová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Juraj Koppel
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Štefan Čikoš
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| |
Collapse
|
2
|
Lim SY, Dora R, Yatiman NH, Wong JE, Haron H, Poh BK. No effect of monosodium glutamate on subjective appetite and subsequent energy intake in children of different ethnicities. Appetite 2021; 167:105629. [PMID: 34364967 DOI: 10.1016/j.appet.2021.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Studies have shown that monosodium glutamate (MSG) can enhance satiety and reduce appetite among infants and adults. In a multi-ethnic country such as Malaysia, it is also important to consider whether ethnic variations will influence the effects of MSG on appetite regulation. Thus, this crossover study aimed to investigate the effects of MSG on the subjective appetite and subsequent energy intake among Malaysian children from the three major ethnic groups, namely the Malays, Chinese and Indians. A total of 92 participants aged 9-11 years from the three ethnic groups were recruited for this study. A cup of low-energy vegetable preload soup (100g, with MSG or without MSG) was served to each of the participants on the day of the study, followed by an ad libitum meal 45 min later. Appetite ratings of hunger, fullness, desire to eat and desire to snack were recorded using visual analogue scale (VAS) before the preload, after the preload, before the ad libitum meal and after the ad libitum meal. Results showed that the subjective appetite of the children did not differ between preload conditions (MSG+ or MSG-) throughout the study. Malay, Chinese and Indian children had similar total energy intake during the subsequent meal after the consumption of preload soups. In conclusion, the addition of MSG to low energy preload neither influenced the perception of appetite nor total energy intake in a subsequent ad libitum meal among children. No difference attributable to the participants' ethnicity was observed. Future studies should be conducted to examine whether repeated ingestion of MSG-containing protein-rich preload has potential longer-term effects on appetite and subsequent meal intakes among children from different ethnicities.
Collapse
Affiliation(s)
- Sim Yee Lim
- Nutritional Sciences Programme & Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala, Lumpur, Malaysia.
| | - Rosmawati Dora
- Nutritional Sciences Programme & Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala, Lumpur, Malaysia.
| | - Noor Hafizah Yatiman
- Nutritional Sciences Programme & Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala, Lumpur, Malaysia.
| | - Jyh Eiin Wong
- Nutritional Sciences Programme & Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala, Lumpur, Malaysia.
| | - Hasnah Haron
- Nutritional Sciences Programme & Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala, Lumpur, Malaysia.
| | - Bee Koon Poh
- Nutritional Sciences Programme & Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala, Lumpur, Malaysia.
| |
Collapse
|
3
|
The Protective Effect of Anthocyanins Extracted from Aronia Melanocarpa Berry in Renal Ischemia-Reperfusion Injury in Mice. Mediators Inflamm 2021; 2021:7372893. [PMID: 33551679 PMCID: PMC7846408 DOI: 10.1155/2021/7372893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/25/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background Our previous research showed the antioxidant activity of anthocyanins extracted from Aronia melanocarpa of black chokeberry in vitro. Ischemia acute kidney injury is a significant risk in developing progressive and deterioration of renal function leading to clinic chronic kidney disease. There were many attempts to protect the kidney against this progression of renal damage. Current study was designed to examine the effect of pretreatment with three anthocyanins named cyanidin-3-arabinoside, cyanidin-3-glucodise, and cyaniding-3-galactoside against acute ischemia-reperfusion injury in mouse kidney. Methods Acute renal injury model was initiated by 30 min clamping bilateral renal pedicle and followed by 24-hour reperfusion in C57Bl/6J mice. Four groups of mice were orally pretreated in 50 mg/g/12 h for two weeks with cyanidin-3-arabinoside, cyanidin-3-glucodise, and cyaniding-3-galactoside and anthocyanins (three-cyanidin mixture), respectively, sham-control group and the renal injury-untreated groups only with saline. Results The model resulted in renal dysfunction with high serum creatinine, blood urea nitrogen, and changes in proinflammatory cytokines (TNF-ɑ, IL-1β, IL-6, and MCP-1), renal oxidative stress (SOD, GSH, and CAT), lipid peroxidation (TBARS and MDA), and apoptosis (caspase-9). Pretreatment of two weeks resulted in different extent amelioration of renal dysfunction and tubular damage and suppression of proinflammatory cytokines, oxidative stress, lipid peroxidation, and apoptosis, thus suggesting that cyanidins are potentially effective in acute renal ischemia by the decrease of inflammation, oxidative stress, and lipid peroxidation, as well as apoptosis. Conclusion the current study provided the first attempt to investigate the role of anthocyanins purified from Aronia melanocarpa berry in amelioration of acute renal failure via antioxidant and cytoprotective effects.
Collapse
|
4
|
Basavalingappa V, Guterman T, Tang Y, Nir S, Lei J, Chakraborty P, Schnaider L, Reches M, Wei G, Gazit E. Expanding the Functional Scope of the Fmoc-Diphenylalanine Hydrogelator by Introducing a Rigidifying and Chemically Active Urea Backbone Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900218. [PMID: 31316891 PMCID: PMC6619482 DOI: 10.1002/advs.201900218] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Indexed: 05/22/2023]
Abstract
Peptidomimetic low-molecular-weight hydrogelators, a class of peptide-like molecules with various backbone amide modifications, typically give rise to hydrogels of diverse properties and increased stability compared to peptide hydrogelators. Here, a new peptidomimetic low-molecular-weight hydrogelator is designed based on the well-studied N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) peptide by replacing the amide bond with a frequently employed amide bond surrogate, the urea moiety, aiming to increase hydrogen bonding capabilities. This designed ureidopeptide, termed Fmoc-Phe-NHCONH-Phe-OH (Fmoc-FuF), forms hydrogels with improved mechanical properties, as compared to those formed by the unmodified Fmoc-FF. A combination of experimental and computational structural methods shows that hydrogen bonding and aromatic interactions facilitate Fmoc-FuF gel formation. The Fmoc-FuF hydrogel possesses properties favorable for biomedical applications, including shear thinning, self-healing, and in vitro cellular biocompatibility. Additionally, the Fmoc-FuF, but not Fmoc-FF, hydrogel presents a range of functionalities useful for other applications, including antifouling, slow release of urea encapsulated in the gel at a high concentration, selective mechanical response to fluoride anions, and reduction of metal ions into catalytic nanoparticles. This study demonstrates how a simple backbone modification can enhance the mechanical properties and functional scope of a peptide hydrogel.
Collapse
Affiliation(s)
- Vasantha Basavalingappa
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Tom Guterman
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Yiming Tang
- Department of PhysicsState Key Laboratory of Surface PhysicsKey Laboratory for Computational Physical Sciences (MOE),and Collaborative Innovation Center of Advanced Microstructures (Nanjing)Fudan UniversityShanghai200433P. R. China
| | - Sivan Nir
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem91905Israel
| | - Jiangtao Lei
- Department of PhysicsState Key Laboratory of Surface PhysicsKey Laboratory for Computational Physical Sciences (MOE),and Collaborative Innovation Center of Advanced Microstructures (Nanjing)Fudan UniversityShanghai200433P. R. China
| | - Priyadarshi Chakraborty
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Lee Schnaider
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Meital Reches
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem91905Israel
| | - Guanghong Wei
- Department of PhysicsState Key Laboratory of Surface PhysicsKey Laboratory for Computational Physical Sciences (MOE),and Collaborative Innovation Center of Advanced Microstructures (Nanjing)Fudan UniversityShanghai200433P. R. China
| | - Ehud Gazit
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
5
|
Meng F, Seredych M, Chen C, Gura V, Mikhalovsky S, Sandeman S, Ingavle G, Ozulumba T, Miao L, Anasori B, Gogotsi Y. MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney. ACS NANO 2018; 12:10518-10528. [PMID: 30257087 DOI: 10.1021/acsnano.8b06494] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The wearable artificial kidney can deliver continuous ambulatory dialysis for more than 3 million patients with end-stage renal disease. However, the efficient removal of urea is a key challenge in miniaturizing the device and making it light and small enough for practical use. Here, we show that two-dimensional titanium carbide (MXene) with the composition of Ti3C2T x, where T x represents surface termination groups such as -OH, -O-, and -F, can adsorb urea, reaching 99% removal efficiency from aqueous solution and 94% from dialysate at the initial urea concentration of 30 mg/dL, with the maximum urea adsorption capacity of 10.4 mg/g at room temperature. When tested at 37 °C, we achieved a 2-fold increase in urea removal efficiency from dialysate, with the maximum urea adsorption capacity of 21.7 mg/g. Ti3C2T x showed good hemocompatibility; it did not induce cell apoptosis or reduce the metabolizing cell fraction, indicating no impact on cell viability at concentrations of up to 200 μg/mL. The biocompatibility of Ti3C2T x and its selectivity for urea adsorption from dialysate open a new opportunity in designing a miniaturized dialysate regeneration system for a wearable artificial kidney.
Collapse
Affiliation(s)
- Fayan Meng
- A.J. Drexel Nanomaterials Institute, and Materials Science and Engineering Department , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
- Pharmaceutical College , Guangxi Medical University , Nanning , Guangxi 530021 , People's Republic of China
| | - Mykola Seredych
- A.J. Drexel Nanomaterials Institute, and Materials Science and Engineering Department , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Chi Chen
- A.J. Drexel Nanomaterials Institute, and Materials Science and Engineering Department , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
- School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Victor Gura
- Cedars Sinai Medical Center, The David Geffen School of Medicine, UCLA , 50 North la Cienega Boulevard, Suite 310 , Beverly Hills , California 90211 , United States
| | - Sergey Mikhalovsky
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences , University of Brighton , Huxley Building, Lewes Road , Brighton , East Sussex BN2 4GJ , U.K
- ANAMAD Ltd, Sussex Innovation Centre , Science Park Square , Brighton BN1 9SB , U.K
| | - Susan Sandeman
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences , University of Brighton , Huxley Building, Lewes Road , Brighton , East Sussex BN2 4GJ , U.K
| | - Ganesh Ingavle
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences , University of Brighton , Huxley Building, Lewes Road , Brighton , East Sussex BN2 4GJ , U.K
- Symbiosis Centre for Stem Cell Research , Symbiosis International University , Lavale, Pune 412115 , India
| | - Tochukwu Ozulumba
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences , University of Brighton , Huxley Building, Lewes Road , Brighton , East Sussex BN2 4GJ , U.K
| | - Ling Miao
- School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Babak Anasori
- A.J. Drexel Nanomaterials Institute, and Materials Science and Engineering Department , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute, and Materials Science and Engineering Department , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
6
|
Empagliflozin, SGLT2 inhibitor, attenuates renal fibrosis in rats exposed to unilateral ureteric obstruction: potential role of klotho expression. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1347-1360. [DOI: 10.1007/s00210-018-1544-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 01/06/2023]
|
7
|
Blonde GD, Travers SP, Spector AC. Taste sensitivity to a mixture of monosodium glutamate and inosine 5'-monophosphate by mice lacking both subunits of the T1R1+T1R3 amino acid receptor. Am J Physiol Regul Integr Comp Physiol 2018; 314:R802-R810. [PMID: 29443544 DOI: 10.1152/ajpregu.00352.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The taste of l-glutamate and its synergism with 5'-ribonucleotides is thought to be primarily mediated through the T1R1+T1R3 heterodimer in some mammals, including rodents and humans. While knockout (KO) mice lacking either receptor subunit show impaired sensitivity to a range of monosodium glutamate (MSG) concentrations mixed with 2.5 mM inosine 5'-monophosphate (IMP) in amiloride, wild-type (WT) controls can detect this IMP concentration, hindering direct comparison between genotypes. Moreover, some residual sensitivity persists in the KO group, suggesting that the remaining subunit could maintain a limited degree of function. Here, C57BL/6J, 129X1/SvJ, and T1R1+T1R3 double KO mice ( n = 16 each to start the experiment) were trained in a two-response operant task in gustometers and then tested for their ability to discriminate 100 µM amiloride from MSG (starting with 0.6 M) and IMP (starting with 2.5 mM) in amiloride (MSG+I+A). Testing continued with successive dilutions of both MSG and IMP (in amiloride). The two WT strains were similarly sensitive to MSG+I+A ( P > 0.8). KO mice, however, were significantly impaired relative to either WT strain ( P < 0.01), although they were able to detect the highest concentrations. Thus, normal detectability of MSG+I+A requires an intact T1R1+T1R3 receptor, without regard for allelic variation in the T1R3 gene between the WT strains. Nevertheless, residual sensitivity by the T1R1+T1R3 KO mice demonstrates that a T1R-independent mechanism can contribute to the detectability of high concentrations of this prototypical umami compound stimulus.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Susan P Travers
- Division of Biosciences, College of Dentistry, Ohio State University , Columbus, Ohio
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
8
|
Salama SA, Arab HH, Maghrabi IA. Troxerutin down-regulates KIM-1, modulates p38 MAPK signaling, and enhances renal regenerative capacity in a rat model of gentamycin-induced acute kidney injury. Food Funct 2018; 9:6632-6642. [DOI: 10.1039/c8fo01086b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Troxerutin enhances renal tissue regeneration, improves renal function, and decreases renal tissue injury in gentamycin-treated rats.
Collapse
Affiliation(s)
- Samir A. Salama
- Division of Biochemistry
- Department of Pharmacology and GTMR Unit
- College of Clinical Pharmacy
- Taif University
- Taif 21974
| | - Hany H. Arab
- Division of Biochemistry
- Department of Pharmacology and GTMR Unit
- College of Clinical Pharmacy
- Taif University
- Taif 21974
| | - Ibrahim A. Maghrabi
- Department of Clinical Pharmacy
- College of Clinical Pharmacy
- Taif University
- Taif 21974
- Saudi Arabia
| |
Collapse
|
9
|
Salama SA, Arab HH, Maghrabi IA, Hassan MH, AlSaeed MS. Gamma-Glutamyl Cysteine Attenuates Tissue Damage and Enhances Tissue Regeneration in a rat Model of Lead-Induced Nephrotoxicity. Biol Trace Elem Res 2016; 173:96-107. [PMID: 26767370 DOI: 10.1007/s12011-016-0624-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
Lead is a biohazardous metal that is commonly involved in human illness including renal injury. Although it is a non-redox reactive metal, lead-induced renal injury is largely based on oxidative stress. The current work aimed at exploring the possible protective effect of γ-glutamyl cysteine (γGC) against lead-induced renal injury. Rats were allocated to normal and γGC control groups, lead-treated group, and lead and γGC-treated group. γGC alleviated lead-induced renal injury as evidenced by attenuation of histopathological aberration, amelioration of oxidative injury as demonstrated by significant reduction in lipid and protein oxidation, elevation of total antioxidant capacity, and glutathione level. The activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was significantly elevated. γGC significantly decreased levels of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β and the activity of the apoptotic marker caspase-3. In addition, γGC reduced kidney lead content, enhanced weight gain, and improved renal function as demonstrated by reduced serum levels of urea and creatinine. Importantly, γGC upregulated proliferating cell nuclear antigen (PCNA) expression, denoting enhanced renal regenerative capacity. Together, our findings highlight evidence for alleviating effects of γGC against lead-induced renal injury that is potentially mediated through diminution of oxidative tissue injury, reduction of inflammatory response, attenuation of apoptosis, and enhancement of renal regenerative capacity.
Collapse
Affiliation(s)
- Samir A Salama
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
- Divsion of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia.
| | - Hany H Arab
- Divsion of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif, 21974, Saudi Arabia
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munaworah, 30001, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Mohammed S AlSaeed
- Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif, 21974, Saudi Arabia
| |
Collapse
|
10
|
Abstract
Our understanding of the molecular basis of umami taste and its appetitive qualities has been greatly aided by studies in laboratory rodents. This review describes methods for testing responses to the prototypical umami substance monosodium glutamate (MSG) in rodents. Two techniques, forced exposure to MSG and 2-bottle choice tests with ascending concentrations, were used to evaluate the responses to the taste of umami itself, and 2 other methods used oral or postoral MSG to modify the responses to other flavors. Intake and preference for MSG are enhanced in mice by experience with MSG and with other nutrients with positive postoral effects. In addition, flavor preferences are enhanced in mice and rats by gastric or intestinal MSG infusions via an associative learning process. Even mice with an impaired or absent ability to taste MSG can learn to prefer a flavor added to an MSG solution, supporting the notion that glutamate acts postorally. The more complex flavor of dashi seasoning, which includes umami substances (inosinate, glutamate), is attractive to rodents, but dashi does not condition flavor preferences. Details of the postoral glutamate detection process and the nature of the signal involved in learned preferences are still uncertain but probably involve gastric or intestinal sensors or both and vagal transmission. Some findings suggest that postoral glutamate effects may enhance food preferences in humans, but this requires further study.
Collapse
Affiliation(s)
- Karen Ackroff
- Brooklyn College of the City University of New York, Brooklyn, NY
| | | |
Collapse
|
11
|
Bachmanov AA, Bosak NP, Glendinning JI, Inoue M, Li X, Manita S, McCaughey SA, Murata Y, Reed DR, Tordoff MG, Beauchamp GK. Genetics of Amino Acid Taste and Appetite. Adv Nutr 2016; 7:806S-22S. [PMID: 27422518 PMCID: PMC4942865 DOI: 10.3945/an.115.011270] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite.
Collapse
Affiliation(s)
| | | | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY
| | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA
| | - Satoshi Manita
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | - Yuko Murata
- Monell Chemical Senses Center, Philadelphia, PA; National Research Institute of Fisheries Science, Yokohama, Japan; and
| | | | | | - Gary K Beauchamp
- Monell Chemical Senses Center, Philadelphia, PA; Department of Psychology and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Ackroff K, Sclafani A. Flavor Preferences Conditioned by Oral Monosodium Glutamate in Mice. Chem Senses 2013; 38:745-58. [DOI: 10.1093/chemse/bjt049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Ackroff K, Weintraub R, Sclafani A. MSG intake and preference in mice are influenced by prior testing experience. Physiol Behav 2012; 107:207-17. [PMID: 22776625 DOI: 10.1016/j.physbeh.2012.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/04/2012] [Accepted: 06/30/2012] [Indexed: 12/28/2022]
Abstract
Monosodium glutamate (MSG), the prototypical umami substance, is used as a flavor enhancer in many foods, but when presented alone is often only weakly attractive. Yet with experience mice will develop strong preferences for MSG solution over water. The present experiments explored the conditions that change indifference to preference for MSG. C57BL/6J mice were given a series of 2-day two-bottle tests with water vs. an ascending series of MSG concentrations (0.1-450 mM) to assess preference and intake. Naive mice were indifferent to all concentrations, but following forced one-bottle exposure to 300 mM MSG they preferred most concentrations and consumed more MSG. Exposure to 100mM MSG also increased subsequent MSG preference but not intake. Experience with other nutritive solutions (8% sucrose, 8% Polycose, 8% casein hydrolysate, and isocaloric 3.5% soybean oil emulsion) also enhanced subsequent MSG preference and intake. Polycose and sucrose experience were almost as effective as MSG experience. However, not all sapid solutions were effective; 0.8% sucralose and 10mM MSG exposure did not alter subsequent MSG preference. The generality of the preexposure effect was tested by offering an ascending series (0.1-100 mM) of inosine monophosphate (IMP), another umami substance; initial indifference was converted to preference after forced exposure to 300 mM MSG. Together these results suggest that a combination of oral and post-oral effects may be responsible for the experience effect, with MSG itself the most potent stimulus. A final experiment revealed that MSG preference in naïve mice is enhanced by presenting the MSG and water drinking spouts far apart rather than side by side. Thus the preferences for umami solutions in mice are subject to influence from prior tastant experience as well spout position, which should be taken into account when studying acceptance of taste solutions in mice.
Collapse
Affiliation(s)
- Karen Ackroff
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York 11210, USA.
| | | | | |
Collapse
|
14
|
Peuhkuri K, Sihvola N, Korpela R. Dietary proteins and food-related reward signals. Food Nutr Res 2011; 55:5955. [PMID: 21909291 PMCID: PMC3168366 DOI: 10.3402/fnr.v55i0.5955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/14/2011] [Accepted: 05/10/2011] [Indexed: 11/16/2022] Open
Abstract
Proteins play a crucial role in almost all biological processes. Dietary proteins are generally considered as energy yielding nutrients and as a source of amino acids for various purposes. In addition, they may have a role in food-related reward signals. The purpose of this review was to give an overview of the role of dietary proteins in food-related reward and possible mechanisms behind such effects. Dietary proteins may elicit food-related reward by several different postprandial mechanisms, including neural and humoral signals from the gastrointestinal tract to the brain. In order to exert rewarding effects, protein have to be absorbed from the intestine and reach the target cells in sufficient concentrations, or act via receptors ad cell signalling in the gut without absorption. Complex interactions between different possible mechanisms make it very difficult to gain a clear view on the role and intesity of each mechanism. It is concluded that, in principle, dietary proteins may have a role in food-related reward. However, the evidence is based mostly on experiments with animal models and one should be careful in drawing conclusions of clinical relevance.
Collapse
Affiliation(s)
- Katri Peuhkuri
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
15
|
Flavor preferences conditioned by post-oral infusion of monosodium glutamate in rats. Physiol Behav 2011; 104:488-94. [PMID: 21605576 DOI: 10.1016/j.physbeh.2011.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/20/2011] [Accepted: 05/09/2011] [Indexed: 11/21/2022]
Abstract
Monosodium glutamate (MSG), the prototypical umami source, can enhance preference for associated flavors in humans and rodents. Although MSG flavor preference has been attributed to its taste, vagally-mediated post-oral detection has also been demonstrated. Recent studies showed that water-restricted rats acquired a preference for a flavor paired with intragastric (IG) infusion of 60 mM MSG in rats. The present study extends this work by comparing MSG-based flavor conditioning in water- and food-restricted rats and testing the persistence of flavor preferences. Rats with IG catheters drank flavored solutions paired with volume-matched infusions of 60 mM MSG or water in daily 30-min sessions. Two training/test cycles were conducted, each with eight one-bottle training sessions followed by two two-bottle preference tests without infusions. Food- and water-restricted groups displayed similar preferences for the MSG-paired flavor. When non-reinforced testing was continued after the second cycle, the food-restricted group sustained its preference across three 2-day tests, but water-restricted rats lost their preference. Other food-restricted rats learned to prefer a flavor paired with intraduodenal infusion, indicating that gastric stimulation by MSG is not required. A third experiment showed that adding 2 mM of the nucleotide inosine monophosphate to the IG infusion of MSG did not significantly enhance flavor conditioning. Because MSG-based flavor preferences can be obtained with infusions that bypass the stomach, the site for detecting MSG reinforcement may be intestinal.
Collapse
|
16
|
Abstract
When allowed to choose between different macronutrients, most animals display a strong attraction toward carbohydrates compared with proteins. It remains uncertain, however, whether this food selection pattern depends primarily on the sensory properties intrinsic to each nutrient or, alternatively, metabolic signals can act independently of the hedonic value of sweetness to stimulate elevated sugar intake. Here we show that Trpm5(-/-) mice, which lack the cellular mechanisms required for sweet and several forms of l-amino acid taste transduction, develop a robust preference for d-glucose compared with isocaloric l-serine independently of the perception of sweetness. Moreover, a close relationship was found between glucose oxidation and taste-independent nutrient intake levels, with animals increasing intake as a function of glucose oxidation rates. Furthermore, microdialysis measurements revealed nutrient-specific dopaminergic responses in accumbens and dorsal striatum during intragastric infusions of glucose or serine. Specifically, intragastric infusions of glucose induced significantly higher levels of dopamine release compared with isocaloric serine in both ventral and dorsal striatum. Intragastric stimulation of dopamine release seemed to depend on glucose utilization, because administration of an anti-metabolic glucose analog resulted in lower dopamine levels in striatum, an effect that was reversed by intravenous glucose infusions. Together, our findings suggest that carbohydrate-specific preferences can develop independently of taste quality or caloric load, an effect associated with the ability of a given nutrient to regulate glucose metabolism and stimulate brain dopamine centers.
Collapse
|
17
|
Bachmanov AA, Inoue M, Ji H, Murata Y, Tordoff MG, Beauchamp GK. Glutamate taste and appetite in laboratory mice: physiologic and genetic analyses. Am J Clin Nutr 2009; 90:756S-763S. [PMID: 19571213 PMCID: PMC3136004 DOI: 10.3945/ajcn.2009.27462l] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This article provides an overview of our studies of variation in voluntary glutamate consumption in mice. In 2-bottle preference tests, mice from the C57BL/6ByJ (B6) strain consume more monosodium l-glutamate (MSG) than do mice from the 129P3/J (129) strain. We used these mice to study physiologic and genetic mechanisms that underlie the strain differences in glutamate intake. Our genetic analyses showed that differences between B6 mice and 129 mice in MSG consumption are unrelated to strain variation in consumption of sodium or sweeteners and therefore are attributed to mechanisms specific for glutamate. These strain differences could be due to variation in responses to either taste or postingestive effects of glutamate. To examine the role of taste responsiveness, we measured MSG-evoked activity in gustatory nerves and showed that it is similar in B6 and 129 mice. On the other hand, strain-specific postingestive effects of glutamate were evident from our finding that exposure to MSG increases its consumption in B6 mice and decreases its consumption in 129 mice. We therefore examined whether B6 mice and 129 mice differ in postingestive metabolism of glutamate. We showed that, after intragastric administration of MSG, the MSG is preferentially metabolized through gluconeogenesis in B6 mice, whereas thermogenesis is the predominant process for 129 mice. We hypothesize that a process related to gluconeogenesis of the ingested glutamate generates the rewarding stimulus, which probably occurs in the liver before glucose enters the general circulation, and that the glutamate-induced postingestive thermogenesis generates an aversive stimulus. Our animal model studies raise the question of whether humans also vary in glutamate metabolism in a manner that influences their glutamate preference, consumption, and postingestive processing.
Collapse
|
18
|
Taste perception of monosodium glutamate and inosine monophosphate by 129P3/J and C57BL/6ByJ mice. Physiol Behav 2009; 98:481-8. [PMID: 19666040 DOI: 10.1016/j.physbeh.2009.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/23/2009] [Accepted: 07/29/2009] [Indexed: 11/24/2022]
Abstract
Our previous studies have shown that in long-term two-bottle preference tests, mice from the C57BL/6ByJ (B6) inbred strain drink more monosodium glutamate (MSG) and inosine monophosphate (IMP) than mice from the 129P3/J (129) inbred strain. The goal of this study was to examine whether this variation in consumption could be attributed to strain differences in perception of the taste quality of MSG and IMP. We developed a conditioned taste aversion (CTA) in B6 and 129 mice to 100 mM MSG or 10 mM IMP and used a brief-access taste assay to examine CTA generalization. B6 and 129 mice did not differ in the generalization patterns following CTA to MSG: mice from both strains generalized CTA from MSG to NaCl. In contrast, strain differences in the generalization patterns were evident following the CTA to IMP: while mice from both strains generalized CTA from IMP to MSG, 129 mice tended to have stronger CTA generalization to saccharin and d-tryptophan, both of which are perceived as sweet by humans. These data suggest that the strain differences in MSG consumption are not due to variation in perception of the taste quality of MSG. Instead, the differential intake of IMP likely reflects strain differences in the way the taste quality of IMP is perceived. Our data suggest that mice perceive MSG and IMP as complex taste stimuli: some taste components are shared between these two substances, but their relative intensity seems to be different for MSG and IMP. The amiloride-sensitive salt taste component is more prevalent in MSG than in IMP taste, and in B6 compared with 129 mice.
Collapse
|
19
|
Uematsu A, Tsurugizawa T, Kondoh T, Torii K. Conditioned flavor preference learning by intragastric administration of L-glutamate in rats. Neurosci Lett 2009; 451:190-3. [PMID: 19146916 DOI: 10.1016/j.neulet.2008.12.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/27/2008] [Accepted: 12/25/2008] [Indexed: 11/28/2022]
Abstract
The preference for foods or fluids in rats is partly dependent on its postingestive consequences. Many studies have investigated postingestive effect of high caloric substances, such as carbohydrate or fat. In this study, we examined postingestive effect of L-glutamate at the preferable concentration using conditioned flavor preference paradigm. Adult male rats with chronic intragastric (IG) cannula were trained to drink a flavored solution (conditioned stimulus; CS+) paired with IG infusion of nutrient solution and another flavored solution (CS-) with IG distilled water infusion on alternate days. The nutrient solution was 60mM monosodium L-glutamate, sodium chloride or glucose. Before and after conditioning, rats received 30min two-bottle choice tests for CS+ and CS- solution. All groups exhibited no significant preference for CS+ in pre-test period. By the last half of conditioning period, intake of CS+ solution was significantly higher than that of CS- in MSG group, but not in NaCl and glucose groups. After conditioned, the MSG group showed significantly higher intake and preference for CS+ solution (69.9%), while the NaCl and glucose group did not show any significant intake and preference for CS+ solution (50.9%, 43.5%, respectively). These results indicate that the amino acid L-glutamate at a preferable concentration has a positive postingestive effect as demonstrated by its ability to condition a flavor preference. The mechanism(s) for this positive effect could be through a direct effect on gut Glu receptors rather than the provision of calories or glucose from metabolized Glu; Further studies are needed to test these hypotheses.
Collapse
Affiliation(s)
- Akira Uematsu
- Institute of Life Sciences, Ajinomoto Co., Inc., Kawasaki-ku, Kawasaki 210-8681, Japan
| | | | | | | |
Collapse
|
20
|
Current world literature. Ageing: biology and nutrition. Curr Opin Clin Nutr Metab Care 2009; 12:95-100. [PMID: 19057195 DOI: 10.1097/mco.0b013e32831fd97a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|