1
|
Madsen O, Rikkers RSC, Wells JM, Bergsma R, Kar SK, Taverne N, Taverne-Thiele AJ, Ellen ED, Woelders H. Transcriptomic analysis of intestinal organoids, derived from pigs divergent in feed efficiency, and their response to Escherichia coli. BMC Genomics 2024; 25:173. [PMID: 38350904 PMCID: PMC10863143 DOI: 10.1186/s12864-024-10064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND There is increasing interest in using intestinal organoids to study complex traits like feed efficiency (FE) and host-microbe interactions. The aim of this study was to investigate differences in the molecular phenotype of organoids derived from pigs divergent for FE as well as their responses to challenge with adherent and invasive Escherichia coli (E. coli). RESULTS Colon and ileum tissue from low and high FE pigs was used to generate 3D organoids and two dimensional (2D) monolayers of organoid cells for E. coli challenge. Genome-wide gene expression was used to investigate molecular differences between pigs that were phenotypically divergent for FE and to study the difference in gene expression after challenge with E. coli. We showed, (1) minor differences in gene expression of colon organoids from pigs with low and high FE phenotypes, (2) that an E. coli challenge results in a strong innate immune gene response in both colon and ileum organoids, (3) that the immune response seems to be less pronounced in the colon organoids of high FE pigs and (4) a slightly stronger immune response was observed in ileum than in colon organoids. CONCLUSIONS These findings demonstrate the potential for using organoids to gain insights into complex biological mechanisms such as FE.
Collapse
Affiliation(s)
- Ole Madsen
- Animal Breeding & Genomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Roxann S C Rikkers
- Animal Breeding & Genomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Rob Bergsma
- Topigs Norsvin, Schoenaker 6, 6641 SZ, Beuningen, the Netherlands
| | - Soumya K Kar
- Animal Nutrition, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Nico Taverne
- Host-Microbe Interactomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Anja J Taverne-Thiele
- Host-Microbe Interactomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Esther D Ellen
- Animal Breeding & Genomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| | - Henri Woelders
- Animal Breeding & Genomics, Wageningen University & Research, PO Box 338, Wageningen, 6700 AH, the Netherlands
| |
Collapse
|
2
|
Wang J, Fan H, Li M, Zhao K, Xia S, Chen Y, Shao J, Tang T, Bai X, Liu Z, Lu Y, Chen X, Sun W, Jia X, Lai S. Integration of Non-Coding RNA and mRNA Profiles Reveals the Mechanisms of Rumen Development Induced by Different Types of Diet in Calves. Genes (Basel) 2023; 14:genes14051093. [PMID: 37239453 DOI: 10.3390/genes14051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Selecting suitable feed types and understanding the gastrointestinal digestive mechanism are helpful for the growth and health of calves in intensive dairy farming. However, the effects on rumen development of changing the molecular genetic basis and the regulatory mechanism by using different feed types are still unclear. Nine 7-day-old Holstein bull calves were randomly divided into GF (concentrate), GFF (alfalfa: oat grass = 3:2) and TMR (concentrate: alfalfa grass: oat grass: water = 0.30:0.12:0.08:0.50) diet experiment groups. Rumen tissue and serum samples were collected for physiological and transcriptomic analysis after 80 days. The results showed that serum α-amylase content and ceruloplasmin activity were significantly higher in the TMR group, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis ncRNAs and mRNAs were significantly enriched in the pathways of rumen epithelial development and stimulated rumen cell growth, including the Hippo signaling pathway, Wnt signaling pathway, thyroid hormone signaling pathway, ECM-receptor interaction and the absorption of protein and fat. The circRNAs/lncRNA-miRNAs-mRNA networks constructed, including novel_circ_0002471, novel_circ_0012104, TCONS_00946152, TCONS_00960915, bta-miR-11975, bta-miR-2890, PADI3 and CLEC6A, participated in metabolic pathways of lipid, immune system, oxidative stress and muscle development. In conclusion, the TMR diet could improve rumen digestive enzyme activities, stimulate rumen nutrient absorption and stimulate the DEGs related to energy homeostasis and microenvironment balance, and is thus better than the GF and GFF diets for promoting rumen growth and development.
Collapse
Affiliation(s)
- Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Huimei Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mianying Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Kaisen Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yusheng Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangrui Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Analysis of merged transcriptomic and genomic datasets to identify genes and pathways underlying residual feed intake in growing pigs. Sci Rep 2022; 12:21946. [PMID: 36536008 PMCID: PMC9763391 DOI: 10.1038/s41598-022-26496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Improvement of feed efficiency (FE) in pigs is an important milestone in order to reduce the economic and environmental impact of pig production. The goal of finding biomarkers for FE has persisted for decades. However, due to the complexity of the FE trait, these goals have still not been met. Here, we search for quantitative trait loci (QTL), candidate genes, and biological pathways associated with FE using both genotype and RNA-seq data. We obtained genotype and colon epithelium RNA-seq data for 375 and 96 pigs, respectively. In total, a genome-wide association study (GWAS) and differential expression (DE) analysis led to detection of three QTL on SSC9 and 17 DE-genes associated with FE. Possible intersection points between genes located in QTL and DE-genes were found on levels of transcription factor-target interaction. Moreover, cis-eQTL analysis revealed associations between genotype and expression levels of three DE-genes and three genes located in the GWAS QTLs, which may establish the connection between genotype and phenotype through DE. Finally, single nucleotide polymorphism calling using RNA-seq data for genes located in GWAS QTLs revealed 53 polymorphisms of which eleven were missense variants.
Collapse
|
4
|
Yuan J, Zhou X, Xu G, Xu S, Liu B. Genetic diversity and population structure of Tongcheng pigs in China using whole-genome SNP chip. Front Genet 2022; 13:910521. [PMID: 36092902 PMCID: PMC9455598 DOI: 10.3389/fgene.2022.910521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tongcheng (TC) pigs, distinguished by their superior meat quality, are a Chinese indigenous pig breed. Recently, the genetic resources of TC pigs are under tremendous threat due to the introduction of cosmopolitan pig breeds and African swine fever disease. To promote their management and conservation, the present study assessed genetic diversity and population structure of TC pigs using single nucleotide polymorphism (SNP) markers. A total of 26, 999 SNPs were screened from 51, 315 SNPs in 68 TC pigs. The multi-dimensional scaling (MDS) analysis and neighbor-joining tree revealed that all 68 pigs were from a purebred population. The effective population size decreased over time, and it was 96 prior to generation 20. Both linkage disequilibrium (LD) and neutrality test indicated a low selection of TC pigs with average LD value of 0.15 ± 0.23. Genetic diversity results exhibited a minor allele frequency (MAF) of 0.23, observed heterozygosity (HO) of 0.32, expected heterozygosity (He) of 0.31, and nucleotide diversity (Pi) of 0.31. All these parameters indicated a remarkably high genetic diversity of TC pigs. Additionally, 184 runs of homozygosity (ROH) segments were detected from the whole genome of TC pigs with an average ROH length of 23.71Mb, ranging from 11.26Mb to 69.02 Mb. The highest ROH coverage was found on chromosome 1 (10.12%), while the lowest was on chromosome 18 (1.49%). The average inbreeding coefficients based on ROH (FROH) was 0.04%. Fourteen ROH islands containing 240 genes were detected on 9 different autosomes. Some of these 240 genes were overlapped with the genes related to biological processes such as immune function, reproduction, muscular development, and fat deposition, including FFAR2, FFAR4, MAPK8, NPY5R, KISS1, and these genes might be associated with such traits as meat quality and disease resistance in TC pigs. Taken together, population structure and genetic diversity results suggested that the TC pig represented a valuable genetic resource. However, TC pig breed conservation program remains to be further optimized to ensure adequate genetic diversity and avoid inbreeding depression. Our findings provide theoretical basis for formulating management and conservation strategies for TC pigs.
Collapse
Affiliation(s)
- Jiao Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- The Engineering Technology Research Center of Local Pig Breed Improvement of Hubei Province, Wuhan, China
| | - Guoqiang Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sanping Xu
- Department of Agricultural and Rural Bureau, Xianning, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- The Engineering Technology Research Center of Local Pig Breed Improvement of Hubei Province, Wuhan, China
| |
Collapse
|
5
|
Zhang D, Zhang X, Li F, Li X, Zhao Y, Zhang Y, Zhao L, Xu D, Wang J, Yang X, Cui P, Wang W. Identification and characterization of circular RNAs in association with the feed efficiency in Hu lambs. BMC Genomics 2022; 23:288. [PMID: 35399048 PMCID: PMC8996647 DOI: 10.1186/s12864-022-08517-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Circular RNA (circRNA), as a new members of noncoding RNA family, have vital functions in many biological processes by as microRNA sponges or competing endogenous RNAs (ceRNAs). However, little has been reported about the genetic mechanism of circRNAs regulation of feed efficiency in sheep. Results This study aimed to explore the expression of circRNAs in the liver of Hu sheep with High-RFI (High residual feed intake) and Low-RFI (Low residual feed intake) using transcriptome sequencing. A total of 20,729 circRNAs were identified in two groups, in which 219 circRNAs were found as significantly differentially expressed. Several circRNAs were validated by using RT-PCR, sanger sequencing and RT-qPCR methods. These results demonstrated that the RNA-seq result and expression level of circRNAs identified are reliable. Subsequently, GO and KEGG enrichment analysis of the parental genes of the differentially expressed (DE) circRNAs were mainly involved in immunity response and metabolic process. Finally, the ceRNA regulatory networks analysis showed that the target binding sites for miRNA such as novel_41, novel_115, novel_171 and oar-miR-485-3p in the identified DE cirRNAs. Importantly, two metabolic (SHISA3 and PLEKHH2) and four (RTP4, CD274, OAS1, and RFC3) immune-related target mRNAs were identified from 4 miRNAs. Association analysis showed that the polymorphism (RTP4 c.399 A > G) in the target gene RTP4 were significantly associated with RFI (P < 0.05). Conclusions Analysis of sequencing data showed some candidate ceRNAs that may play key roles in the feed efficiency in sheep by regulating animal immune and metabolic. These results provide the basis data for further study of the biological functions of circRNAs in regulating sheep feed efficiency. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08517-5.
Collapse
|
6
|
Messad F, Louveau I, Renaudeau D, Gilbert H, Gondret F. Analysis of merged whole blood transcriptomic datasets to identify circulating molecular biomarkers of feed efficiency in growing pigs. BMC Genomics 2021; 22:501. [PMID: 34217223 PMCID: PMC8254903 DOI: 10.1186/s12864-021-07843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Improving feed efficiency (FE) is an important goal due to its economic and environmental significance for farm animal production. The FE phenotype is complex and based on the measurements of the individual feed consumption and average daily gain during a test period, which is costly and time-consuming. The identification of reliable predictors of FE is a strategy to reduce phenotyping efforts. Results Gene expression data of the whole blood from three independent experiments were combined and analyzed by machine learning algorithms to propose molecular biomarkers of FE traits in growing pigs. These datasets included Large White pigs from two lines divergently selected for residual feed intake (RFI), a measure of net FE, and in which individual feed conversion ratio (FCR) and blood microarray data were available. Merging the three datasets allowed considering FCR values (Mean = 2.85; Min = 1.92; Max = 5.00) for a total of n = 148 pigs, with a large range of body weight (15 to 115 kg) and different test period duration (2 to 9 weeks). Random forest (RF) and gradient tree boosting (GTB) were applied on the whole blood transcripts (26,687 annotated molecular probes) to identify the most important variables for binary classification on RFI groups and a quantitative prediction of FCR, respectively. The dataset was split into learning (n = 74) and validation sets (n = 74). With iterative steps for variable selection, about three hundred’s (328 to 391) molecular probes participating in various biological pathways, were identified as important predictors of RFI or FCR. With the GTB algorithm, simpler models were proposed combining 34 expressed unique genes to classify pigs into RFI groups (100% of success), and 25 expressed unique genes to predict FCR values (R2 = 0.80, RMSE = 8%). The accuracy performance of RF models was slightly lower in classification and markedly lower in regression. Conclusion From small subsets of genes expressed in the whole blood, it is possible to predict the binary class and the individual value of feed efficiency. These predictive models offer good perspectives to identify animals with higher feed efficiency in precision farming applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07843-4.
Collapse
Affiliation(s)
- Farouk Messad
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
| | | | | | - Hélène Gilbert
- GenPhySE, INRAE, INP-ENVT, 31326, Castanet Tolosan, France
| | | |
Collapse
|
7
|
Effect of Supplementing Seaweed Extracts to Pigs until d35 Post-Weaning on Performance and Aspects of Intestinal Health. Mar Drugs 2021; 19:md19040183. [PMID: 33810463 PMCID: PMC8066862 DOI: 10.3390/md19040183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
The objective of this study was to examine the effects of feeding laminarin (LAM) and fucoidan (FUC) enriched seaweed extracts up to d35 post-weaning on measures of animal performance, intestinal microbial and transcriptome profiles. 75 pigs were assigned to one of three groups: (1) basal diet; (2) basal diet + 250 ppm fucoidan; (3) basal diet + 300 ppm laminarin with 7 replicates per treatment group. Measures of performance were collected weekly and animals sacrificed on d35 post-weaning for the sampling of gastrointestinal tissue and digesta. Animal performance was similar between the basal group and the groups supplemented with FUC and LAM (P > 0.05). Pigs fed the basal diet had higher alpha diversity compared to both the LAM and FUC supplemented pigs (P < 0.05). Supplementation with LAM and FUC increased the production of butyric acid compared to basal fed pigs (P < 0.05). At genus level pigs fed the LAM supplemented diet had the greatest abundance of Faecalbacterium, Roseburia and the lowest Campylobacter of the three experimental treatments (P< 0.05). While neither extract had beneficial effects on animal performance, LAM supplementation had a positive influence on intestinal health through alterations in the gastrointestinal microbiome and increased butyrate production.
Collapse
|
8
|
Effects of reducing dietary crude protein concentration and supplementation with either laminarin or zinc oxide on the growth performance and intestinal health of newly weaned pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Yang L, He T, Xiong F, Chen X, Fan X, Jin S, Geng Z. Identification of key genes and pathways associated with feed efficiency of native chickens based on transcriptome data via bioinformatics analysis. BMC Genomics 2020; 21:292. [PMID: 32272881 PMCID: PMC7146967 DOI: 10.1186/s12864-020-6713-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Improving feed efficiency is one of the important breeding targets for poultry industry. The aim of current study was to investigate the breast muscle transcriptome data of native chickens divergent for feed efficiency. Residual feed intake (RFI) value was calculated for 1008 closely related chickens. The 5 most efficient (LRFI) and 5 least efficient (HRFI) birds were selected for further analysis. Transcriptomic data were generated from breast muscle collected post-slaughter. RESULTS The differently expressed genes (DEGs) analysis showed that 24 and 325 known genes were significantly up- and down-regulated in LRFI birds. An enrichment analysis of DEGs showed that the genes and pathways related to inflammatory response and immune response were up-regulated in HRFI chickens. Moreover, Gene Set Enrichment Analysis (GSEA) was also employed, which indicated that LRFI chickens increased expression of genes related to mitochondrial function. Furthermore, protein network interaction and function analyses revealed ND2, ND4, CYTB, RAC2, VCAM1, CTSS and TLR4 were key genes for feed efficiency. And the 'phagosome', 'cell adhesion molecules (CAMs)', 'citrate cycle (TCA cycle)' and 'oxidative phosphorylation' were key pathways contributing to the difference in feed efficiency. CONCLUSIONS In summary, a series of key genes and pathways were identified via bioinformatics analysis. These key genes may influence feed efficiency through deep involvement in ROS production and inflammatory response. Our results suggested that LRFI chickens may synthesize ATP more efficiently and control reactive oxygen species (ROS) production more strictly by enhancing the mitochondrial function in skeletal muscle compared with HRFI chickens. These findings provide some clues for understanding the molecular mechanism of feed efficiency in birds and will be a useful reference data for native chicken breeding.
Collapse
Affiliation(s)
- Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Tingting He
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Fengliang Xiong
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xianzhen Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xinfeng Fan
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China. .,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
10
|
Rattigan R, Sweeney T, Vigors S, Thornton K, Rajauria G, O’Doherty JV. The Effect of Increasing Inclusion Levels of a Fucoidan-Rich Extract Derived from Ascophyllum nodosum on Growth Performance and Aspects of Intestinal Health of Pigs Post-Weaning. Mar Drugs 2019; 17:E680. [PMID: 31801301 PMCID: PMC6950662 DOI: 10.3390/md17120680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
This study examines the effects of increasing dietary inclusion levels of fucoidan, from a 44% fucoidan extract on the growth performance and intestinal health of pigs post-weaning (PW). Seventy-two newly weaned pigs (8.4 kg (SD 1.06)) were assigned to: (T1) basal diet (BD); (T2) BD + 125 ppm fucoidan; (T3) BD + 250 ppm fucoidan (8 pens/treatment). The appropriate quantity of a 44% fucoidan extract was included to achieve these inclusion levels. Faecal scores were recorded daily. On d15 PW, samples were collected from the intestinal tract from 1 pig/pen from the BD and BD + 250 ppm fucoidan groups. Pigs supplemented with 250 ppm fucoidan had improved faecal scores and increased concentrations of total volatile fatty acids and propionate in the colon (p < 0.05). The fucoidan-rich extract reduced the expression of CLDN5 (duodenum), SCL5A1/SGLT1 and SI (jejunum) and TJP1, FABP2, and SLC5A1 (ileum) (p < 0.05). The extract reduced the relative abundance of Prevotella and Lachnospiraceae (p < 0.05) and increased the abundance of Helicobacter (p < 0.01) in the caecum. However, no negative impact on growth performance or small intestinal morphology was observed. Thus, the inclusion of 250 ppm fucoidan improves faecal consistency without affecting growth performance and therefore warrants further investigation as a supplement for the prevention of PW diarrhoea under more challenging commercial conditions.
Collapse
Affiliation(s)
- Ruth Rattigan
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (R.R.); (S.V.); (G.R.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland; (T.S.); (K.T.)
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (R.R.); (S.V.); (G.R.)
| | - Kevin Thornton
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland; (T.S.); (K.T.)
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (R.R.); (S.V.); (G.R.)
| | - John V O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (R.R.); (S.V.); (G.R.)
| |
Collapse
|
11
|
Laminarin-rich extract improves growth performance, small intestinal morphology, gene expression of nutrient transporters and the large intestinal microbial composition of piglets during the critical post-weaning period. Br J Nutr 2019; 123:255-263. [PMID: 31640819 DOI: 10.1017/s0007114519002678] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of natural bioactive compounds which can prevent the post-weaning growth check and enhance gastrointestinal health in the absence of in-feed medications is an urgent priority for the swine industry. The objective of this experiment was to determine the effects of increasing dietary inclusion levels of laminarin in the first 14 d post-weaning on pig growth performance and weaning associated intestinal dysfunction. At weaning, ninety-six pigs (8·4 (sd 1·09) kg) (meatline boars × (large white × landrace sows)) were blocked by live weight, litter and sex and randomly assigned to: (1) basal diet; (2) basal + 100 parts per million (ppm) laminarin; (3) basal + 200 ppm laminarin and (4) basal + 300 ppm laminarin (three pigs/pen). The appropriate quantity of a laminarin-rich extract (65 % laminarin) was added to the basal diet to achieve the above dietary inclusion levels of laminarin. After 14 d of supplementation, eight pigs from the basal group and the best-performing laminarin group were euthanised for sample collection. The 300 ppm laminarin group was selected as this group had higher ADFI compared with all other groups and higher ADG than the basal group (P < 0·05). Laminarin supplementation increased villus height in the duodenum and jejunum (P < 0·05). Laminarin supplementation increased the expression of SLC2A8/GLUT8 in the duodenum, SLC2A2/GLUT2, SLC2A7/GLUT7, SLC15A1/PEPT1 and FABP2 in the jejunum and SLC16A1/MCT1 in the colon. Laminarin supplementation reduced Enterobacteriaceae numbers in the caecum (P < 0·05) and increased lactobacilli numbers (P < 0·05), total volatile fatty acid concentrations and the molar proportions of butyrate (P < 0·01) in the colon. In conclusion, 300 ppm laminarin from a laminarin-rich extract has potential, as a dietary supplement, to improve performance and prevent post-weaning intestinal dysfunction.
Collapse
|