1
|
Jayasinghe V, Joshi R, Joshi T, Paracha TU, Kooi C, Mostafa MM, Bauer CMT, Charlton SJ, Iartchouk O, Maillet A, Morris MK, Ruda VM, Sandham DA, Wang Y, Newton R, Giembycz MA. Genomic crosstalk between carbachol, a muscarinic receptor agonist, and the long-acting β 2-adrenoceptor agonist, indacaterol, in human airway epithelial cells. J Pharmacol Exp Ther 2025; 392:103579. [PMID: 40305997 DOI: 10.1016/j.jpet.2025.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Many patients with chronic obstructive pulmonary disease are susceptible to recurrent exacerbations. In this study, we hypothesized that endogenous acetylcholine (ACh) may act as a proinflammatory mediator because long-acting muscarinic receptor antagonists protect against exacerbations, which have an inflammatory basis. This possibility was explored by determining if carbachol (CCh), a stable ACh analog, was a genomic stimulus in BEAS-2B bronchial epithelial cells. The ability of CCh to interact with indacaterol (Ind), a long-acting β2-adrenoceptor agonist, was also assessed given that (1) sympathomimetic bronchodilators can promote adverse gene expression changes in airway structural cells, and (2) crosstalk between β2-adrenoceptor and Gq-coupled muscarinic receptor agonists is well described. Unlike Ind, which induced 624 unique genes, CCh was a relatively weak genomic stimulus, implying that ACh may not behave as a proinflammatory mediator as hypothesized. Nevertheless, checkerboard assays using BEAS-2B cells expressing a cAMP-response element luciferase reporter determined that CCh interacted with Ind in a supra-additive manner and that this interaction was replicated on 39 Ind-regulated genes. Functional annotation of the Ind-regulated transcriptomes identified "transcription" and "signalling" as the dominant themes, with gene ontology terms associated with "inflammation" and "immune processes" being highly represented. A comparable gene ontology signature was obtained when Ind and CCh were combined; however, the number, magnitude and duration of gene expression changes were significantly enhanced. If genomic interactions occur between a long-acting β2-adrenoceptor agonist and ACh in vivo, then they may enhance the expression of adverse-effect genes that could maintain, or even augment, features of lung pathology in chronic obstructive pulmonary disease. SIGNIFICANCE STATEMENT: Long-acting muscarinic receptor antagonists reduce exacerbation risk in chronic obstructive pulmonary disease, implying the etiology could have an inflammatory basis mediated by acetylcholine. However, in BEAS-2B cells, carbachol was a weak genomic stimulus, although it enhanced changes in indacaterol-regulated gene expression. Functional annotation of carbachol + indacaterol-regulated genes identified gene ontology terms associated with several themes, including inflammation. Interaction between a long-acting β2-adrenoceptor agonist and endogenous acetylcholine could, paradoxically, augment airway inflammation in patients with chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Varuna Jayasinghe
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taruna Joshi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamkeen U Paracha
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | - Vera M Ruda
- Novartis Biomedical Research, Cambridge, Massachusetts
| | | | - Yanqun Wang
- Novartis Biomedical Research, Cambridge, Massachusetts
| | - Robert Newton
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Braun JL, Hamstra SI, Messner HN, Fajardo VA. SERCA2a tyrosine nitration coincides with impairments in maximal SERCA activity in left ventricles from tafazzin-deficient mice. Physiol Rep 2020; 7:e14215. [PMID: 31444868 PMCID: PMC6708055 DOI: 10.14814/phy2.14215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) is imperative for normal cardiac function regulating both muscle relaxation and contractility. SERCA2a is the predominant isoform in cardiac muscles and is inhibited by phospholamban (PLN). Under conditions of oxidative stress, SERCA2a may also be impaired by tyrosine nitration. Tafazzin (Taz) is a mitochondrial‐specific transacylase that regulates mature cardiolipin (CL) formation, and its absence leads to mitochondrial dysfunction and excessive production of reactive oxygen/nitrogen species (ROS/RNS). In the present study, we examined SERCA function, SERCA2a tyrosine nitration, and PLN expression/phosphorylation in left ventricles (LV) obtained from young (3‐5 months) and old (10‐12 months) wild‐type (WT) and Taz knockdown (TazKD) male mice. These mice are a mouse model for Barth syndrome, which is characterized by mitochondrial dysfunction, excessive ROS/RNS production, and dilated cardiomyopathy (DCM). Here, we show that maximal SERCA activity was impaired in both young and old TazKD LV, a result that correlated with elevated SERCA2a tyrosine nitration. In addition PLN protein was decreased, and its phosphorylation was increased in TazKD LV compared with control, which suggests that PLN may not contribute to the impairments in SERCA function. These changes in expression and phosphorylation of PLN may be an adaptive response aimed to improve SERCA function in TazKD mice. Nonetheless, we demonstrate for the first time that SERCA function is impaired in LVs obtained from young and old TazKD mice likely due to elevated ROS/RNS production. Future studies should determine whether improving SERCA function can improve cardiac contractility and pathology in TazKD mice.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Holt N Messner
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
3
|
Icariside II attenuates eosinophils-induced airway inflammation and remodeling via inactivation of NF-κB and STAT3 in an asthma mouse model. Exp Mol Pathol 2020; 113:104373. [PMID: 31917285 DOI: 10.1016/j.yexmp.2020.104373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/10/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory airway disease. Icariside II has been reported to exert anti-inflammatory effect in multiple human diseases. The present study aimed to investigate the effects and mechanisms of Icariside II on airway inflammation and remodeling in asthma. We established an asthma mouse model with ovalbumin (OVA) immunization. Histological analysis using H&E, PAS and Masson staining showed that administration of Icariside II attenuated OVA-induced airway inflammation and remodeling. Icariside II reduced the numbers of total white blood cells and eosinophils in bronchoalveolar lavage fluid (BALF). The levels of interleukin (IL)-4, IL-5, IL-13 and transforming growth factor (TGF)-β1 in peripheral blood and the expression of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), eotaxin-1, CC-chemokine receptor-3 (CCR-3), Toll-like receptor (TLR)-2 and TLR-4 were significantly down-regulated in lung tissues of OVA-induced mouse model. These results suggested that Icariside II inhibited eosinophil activation and thus decreased eosinophils-induced airway inflammation and remodeling in asthma. Moreover, Icariside II suppressed TGF-β1-induced cell proliferation, migration, and CTGF expression in airway smooth muscle cells (ASMCs). In both OVA-induced mouse model of asthma and TGF-β1-induced ASMCs, Icariside II decreased IκBα degradation, nuclear translocation of NF-κB p65 and STAT3 phophorylation, indicating an inactivation of NF-κB and STAT3 in the presence of Icariside II. Therefore, we demonstrate that Icariside II attenuates eosinophils-induced airway inflammation and remodeling in asthmatic mice and inhibits TGF-β1-induced cell proliferation and migration in ASMCs via suppressing NF-κB and STAT3 signalings.
Collapse
|
4
|
Yarova PL, Stewart AL, Sathish V, Britt RD, Thompson MA, P Lowe AP, Freeman M, Aravamudan B, Kita H, Brennan SC, Schepelmann M, Davies T, Yung S, Cholisoh Z, Kidd EJ, Ford WR, Broadley KJ, Rietdorf K, Chang W, Bin Khayat ME, Ward DT, Corrigan CJ, T Ward JP, Kemp PJ, Pabelick CM, Prakash YS, Riccardi D. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Sci Transl Med 2015; 7:284ra60. [PMID: 25904744 DOI: 10.1126/scitranslmed.aaa0282] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/24/2015] [Indexed: 12/27/2022]
Abstract
Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics.
Collapse
Affiliation(s)
- Polina L Yarova
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Alecia L Stewart
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rodney D Britt
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Alexander P P Lowe
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - Michelle Freeman
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hirohito Kita
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah C Brennan
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Thomas Davies
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Sun Yung
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Zakky Cholisoh
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - Emma J Kidd
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - William R Ford
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - Kenneth J Broadley
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - Katja Rietdorf
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Wenhan Chang
- Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Mohd E Bin Khayat
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Donald T Ward
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, London SE1 9RT, UK
| | - Paul J Kemp
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
5
|
Beppu LY, Anilkumar AA, Newbury RO, Dohil R, Broide DH, Aceves SS. TGF-β1-induced phospholamban expression alters esophageal smooth muscle cell contraction in patients with eosinophilic esophagitis. J Allergy Clin Immunol 2014; 134:1100-1107.e4. [PMID: 24835503 PMCID: PMC4231011 DOI: 10.1016/j.jaci.2014.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/18/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic antigen-mediated disease characterized by esophageal eosinophilia, remodeling, and fibrosis. TGF-β1 is a central regulator of EoE remodeling and increases esophageal smooth muscle (ESM) cell contraction. OBJECTIVE In this study we aimed to understand the molecular mechanisms by which TGF-β1 could induce ESM cell contraction. METHODS We used primary human ESM cells and esophageal myofibroblasts (EMFs) to assess the mechanisms of TGF-β1-induced contraction. We analyzed the expression, phosphorylation, and function of phospholamban (PLN), a sarcoendoplasmic reticulum regulatory protein induced by TGF-β1. Expression of PLN, phospho-PLN, and its regulatory pathway was analyzed in the ESM of biopsy specimens from patients with EoE and control subjects. Gene silencing in EMFs from patients with EoE was used to understand the role of PLN in contraction. RESULTS TGF-β1 induced and phosphorylated PLN in primary human ESM cells and EMFs from patients with EoE. PLN and phospho-PLN levels were increased in smooth muscle from patients with EoE compared with that seen in smooth muscle from control subjects in vivo. PLN inhibition significantly diminished TGF-β1-induced EMF contraction in patients with EoE. PLN expression and ESM/EMF contraction depended on TGF-β receptor I signals. CONCLUSION We describe a previously unrecognized mechanism for ESM cell contraction that depends on TGF-β1, its receptors, and PLN. Because PLN levels are increased in smooth muscle from patients with EoE and PLN silencing diminishes contraction, we provide a novel potential mechanistic framework and therapeutic target for ESM dysfunction in patients with EoE.
Collapse
Affiliation(s)
- Lisa Y Beppu
- Division of Allergy and Immunology, University of California, San Diego, Calif; Department of Pediatrics, University of California, San Diego, Calif
| | - Arjun A Anilkumar
- Division of Allergy and Immunology, University of California, San Diego, Calif; Department of Medicine, University of California, San Diego, Calif
| | - Robert O Newbury
- Department of Pediatrics, University of California, San Diego, Calif; Division of Pathology, University of California, San Diego, Calif
| | - Ranjan Dohil
- Department of Pediatrics, University of California, San Diego, Calif; Division of Gastroenterology, University of California, San Diego, Calif
| | - David H Broide
- Division of Allergy and Immunology, University of California, San Diego, Calif; Department of Medicine, University of California, San Diego, Calif
| | - Seema S Aceves
- Division of Allergy and Immunology, University of California, San Diego, Calif; Department of Pediatrics, University of California, San Diego, Calif; Department of Medicine, University of California, San Diego, Calif.
| |
Collapse
|
6
|
Dale PR, Cernecka H, Schmidt M, Dowling MR, Charlton SJ, Pieper MP, Michel MC. The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease. Curr Opin Pharmacol 2014; 16:31-42. [PMID: 24682092 PMCID: PMC4071415 DOI: 10.1016/j.coph.2014.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Muscarinic receptors increase smooth muscle tone in airways and urinary bladder. β-Adrenoceptors relax smooth muscle tone and oppose muscarinic contraction. Opposition involves transmitter release, signal transduction and receptor expression. This supports the combined use of muscarinic antagonists and β-adrenoceptor agonists.
Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder. Muscarinic agonism may attenuate β-adrenoceptor-mediated relaxation more than other contractile stimuli. Chronic treatment with one drug class may regulate expression of the target receptor but also that of the opposing receptor. Prejunctional β2-adrenoceptors can enhance neuronal acetylcholine release. Moreover, at least in the airways, muscarinic receptors and β-adrenoceptors are expressed in different locations, indicating that only a combined modulation of both systems may cause dilatation along the entire bronchial tree. While all of these factors contribute to a rationale for a combination of muscarinic receptor antagonists and β-adrenoceptor agonists, the full value of such combination as compared to monotherapy can only be determined in clinical studies.
Collapse
Affiliation(s)
- Philippa R Dale
- Department of Pharmacology, Cambridge University, Cambridge, UK
| | - Hana Cernecka
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Martina Schmidt
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Mark R Dowling
- Department of Molecular Pharmacology, Respiratory Diseases, Novartis Institutes for Biomedical Research, Horsham, UK
| | - Steven J Charlton
- Department of Molecular Pharmacology, Respiratory Diseases, Novartis Institutes for Biomedical Research, Horsham, UK
| | - Michael P Pieper
- Respiratory Diseases Research and Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany
| | - Martin C Michel
- Respiratory Diseases Research and Department of Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany; Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
7
|
Abstract
INTRODUCTION There is an unmet need for a new class of direct bronchodilators for the treatment of asthma and chronic obstructive lung disease. Unexpectedly, bitter taste receptors (TAS2Rs) have been localized on airway smooth muscle and when activated cause marked smooth muscle relaxation through a mechanism that is distinct from β2-adrenegic receptors. Thus TAS2R agonists have emerged as a novel class of bronchodilator. AREAS COVERED A synopsis of the TAS2R family and its biology for bitter taste perception on the tongue is provided, followed by a review of the identification and molecular and physiological characterization of TAS2R subtypes on human and mouse airway smooth muscle. The proposed molecular mechanisms leading to the relaxation response are provided, along with gaps in our understanding at certain points in the signaling cascade. Unresolved issues that may need to be considered for drug development are discussed. EXPERT OPINION TAS2R agonists show promise as a new class of highly efficacious bronchodilators for treatment of obstructive lung disease. With tens of thousands of known natural and synthetic bitter compounds, there is substantial diversity within the known agonists, and, a ready source of agents for screening and further development of an inhaled TAS2R agonist for therapeutic purposes.
Collapse
Affiliation(s)
- Stephen B Liggett
- University of South Florida Morsani College of Medicine, Departments of Internal Medicine and Molecular Pharmacology and Physiology , 12901 Bruce B. Downs Blvd, MDC02 Tampa, FL 33612 , USA.
| |
Collapse
|
8
|
An SS, Wang WCH, Koziol-White CJ, Ahn K, Lee DY, Kurten RC, Panettieri RA, Liggett SB. TAS2R activation promotes airway smooth muscle relaxation despite β(2)-adrenergic receptor tachyphylaxis. Am J Physiol Lung Cell Mol Physiol 2012; 303:L304-11. [PMID: 22683571 DOI: 10.1152/ajplung.00126.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca(2+) concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β(2)-adrenergic receptor (β(2)AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β(2)AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β(2)AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca(2+) concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β(2)AR desensitization by β-agonist amounted to 92 ± 6.0% (P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% (P < 0.001) desensitization of β(2)AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic β-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.
Collapse
Affiliation(s)
- Steven S An
- Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St., Rm. E-7616, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kelada SNP, Wilson MS, Tavarez U, Kubalanza K, Borate B, Whitehead GS, Maruoka S, Roy MG, Olive M, Carpenter DE, Brass DM, Wynn TA, Cook DN, Evans CM, Schwartz DA, Collins FS. Strain-dependent genomic factors affect allergen-induced airway hyperresponsiveness in mice. Am J Respir Cell Mol Biol 2011; 45:817-24. [PMID: 21378263 DOI: 10.1165/rcmb.2010-0315oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Asthma is etiologically and clinically heterogeneous, making the genomic basis of asthma difficult to identify. We exploited the strain-dependence of a murine model of allergic airway disease to identify different genomic responses in the lung. BALB/cJ and C57BL/6J mice were sensitized with the immunodominant allergen from the Dermatophagoides pteronyssinus species of house dust mite (Der p 1), without exogenous adjuvant, and the mice then underwent a single challenge with Der p 1. Allergic inflammation, serum antibody titers, mucous metaplasia, and airway hyperresponsiveness were evaluated 72 hours after airway challenge. Whole-lung gene expression analyses were conducted to identify genomic responses to allergen challenge. Der p 1-challenged BALB/cJ mice produced all the key features of allergic airway disease. In comparison, C57BL/6J mice produced exaggerated Th2-biased responses and inflammation, but exhibited an unexpected decrease in airway hyperresponsiveness compared with control mice. Lung gene expression analysis revealed genes that were shared by both strains and a set of down-regulated genes unique to C57BL/6J mice, including several G-protein-coupled receptors involved in airway smooth muscle contraction, most notably the M2 muscarinic receptor, which we show is expressed in airway smooth muscle and was decreased at the protein level after challenge with Der p 1. Murine strain-dependent genomic responses in the lung offer insights into the different biological pathways that develop after allergen challenge. This study of two different murine strains demonstrates that inflammation and airway hyperresponsiveness can be decoupled, and suggests that the down-modulation of expression of G-protein-coupled receptors involved in regulating airway smooth muscle contraction may contribute to this dissociation.
Collapse
Affiliation(s)
- Samir N P Kelada
- Molecular Genetics Section, Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-0148, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Duan QL, Gaume BR, Hawkins GA, Himes BE, Bleecker ER, Klanderman B, Irvin CG, Peters SP, Meyers DA, Hanrahan JP, Lima JJ, Litonjua AA, Tantisira KG, Liggett SB. Regulatory haplotypes in ARG1 are associated with altered bronchodilator response. Am J Respir Crit Care Med 2011; 183:449-54. [PMID: 20851928 PMCID: PMC3056223 DOI: 10.1164/rccm.201005-0758oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/17/2010] [Indexed: 11/16/2022] Open
Abstract
RATIONALE β₂-agonists, the most common treatment for asthma, have a wide interindividual variability in response, which is partially attributed to genetic factors. We previously identified single nucleotide polymorphisms in the arginase 1 (ARG1) gene, which are associated with β₂-agonist bronchodilator response (BDR). OBJECTIVES To identify cis-acting haplotypes in the ARG1 locus that are associated with BDR in patients with asthma and regulate gene expression in vitro. METHODS We resequenced ARG1 in 96 individuals and identified three common, 5' haplotypes (denoted 1, 2, and 3). A haplotype-based association analysis of BDR was performed in three independent, adult asthma drug trial populations. Next, each haplotype was cloned into vectors containing a luciferase reporter gene and transfected into human airway epithelial cells (BEAS-2B) to ascertain its effect on gene expression. MEASUREMENTS AND MAIN RESULTS BDR varied by haplotype in each of the three populations with asthma. Individuals with haplotype 1 were more likely to have higher BDR, compared to those with haplotypes 2 and 3, which is supported by odds ratios of 1.25 (95% confidence interval, 1.03-1.71) and 2.18 (95% confidence interval, 1.34-2.52), respectively. Luciferase expression was 50% greater in cells transfected with haplotype 1 compared to haplotypes 2 and 3. CONCLUSIONS The identified ARG1 haplotypes seem to alter BDR and differentially regulate gene expression with a concordance of decreased BDR and reporter activity from haplotypes 2 and 3. These findings may facilitate pharmacogenetic tests to predict individuals who may benefit from other therapeutic agents in addition to β(2)-agonists for optimal asthma management. Clinical trial registered with www.clinicaltrials.gov (NCT00156819, NCT00046644, and NCT00073840).
Collapse
Affiliation(s)
- Qing Ling Duan
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang Z, Cooper PR, Damera G, Mukhopadhyay I, Cho H, Kehrl JH, Panettieri RA, Druey KM. Beta-agonist-associated reduction in RGS5 expression promotes airway smooth muscle hyper-responsiveness. J Biol Chem 2011; 286:11444-55. [PMID: 21278382 DOI: 10.1074/jbc.m110.212480] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although short-acting and long-acting inhaled β(2)-adrenergic receptor agonists (SABA and LABA, respectively) relieve asthma symptoms, use of either agent alone without concomitant anti-inflammatory drugs (corticosteroids) may increase the risk of disease exacerbation in some patients. We found previously that pretreatment of human precision-cut lung slices (PCLS) with SABA impaired subsequent β(2)-agonist-induced bronchodilation, which occurred independently of changes in receptor quantities. Here we provide evidence that prolonged exposure of cultured human airway smooth muscle (HuASM) cells to β(2)-agonists directly augments procontractile signaling pathways elicited by several compounds including thrombin, bradykinin, and histamine. Such treatment did not increase surface receptor amounts or expression of G proteins and downstream effectors (phospholipase Cβ and myosin light chain). In contrast, β-agonists decreased expression of regulator of G protein signaling 5 (RGS5), which is an inhibitor of G-protein-coupled receptor (GPCR) activity. RGS5 knockdown in HuASM increased agonist-evoked intracellular calcium flux and myosin light chain (MLC) phosphorylation, which are prerequisites for contraction. PCLS from Rgs5(-/-) mice contracted more to carbachol than those from WT mice, indicating that RGS5 negatively regulates bronchial smooth muscle contraction. Repetitive β(2)-agonist use may not only lead to reduced bronchoprotection but also to sensitization of excitation-contraction signaling pathways as a result of reduced RGS5 expression.
Collapse
Affiliation(s)
- Zhao Yang
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Masuno K, Haldar SM, Jeyaraj D, Mailloux CM, Huang X, Panettieri RA, Jain MK, Gerber AN. Expression profiling identifies Klf15 as a glucocorticoid target that regulates airway hyperresponsiveness. Am J Respir Cell Mol Biol 2011; 45:642-9. [PMID: 21257922 DOI: 10.1165/rcmb.2010-0369oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoids (GCs), which activate GC receptor (GR) signaling and thus modulate gene expression, are widely used to treat asthma. GCs exert their therapeutic effects in part through modulating airway smooth muscle (ASM) structure and function. However, the effects of genes that are regulated by GCs on airway function are not fully understood. We therefore used transcription profiling to study the effects of a potent GC, dexamethasone, on human ASM (HASM) gene expression at 4 and 24 hours. After 24 hours of dexamethasone treatment, nearly 7,500 genes had statistically distinguishable changes in expression; quantitative PCR validation of a 40-gene subset of putative GR-regulated genes in 6 HASM cell lines suggested that the early transcriptional targets of GR signaling are similar in independent HASM lines. Gene ontology analysis implicated GR targets in controlling multiple aspects of ASM function. One GR-regulated gene, the transcription factor, Kruppel-like factor 15 (Klf15), was already known to modulate vascular smooth and cardiac muscle function, but had no known role in the lung. We therefore analyzed the pulmonary phenotype of Klf15(-/-) mice after ovalbumin sensitization and challenge. We found diminished airway responses to acetylcholine in ovalbumin-challenged Klf15(-/-) mice without a significant change in the induction of asthmatic inflammation. In cultured cells, overexpression of Klf15 reduced proliferation of HASM cells, whereas apoptosis in Klf15(-/-) murine ASM cells was increased. Together, these results further characterize the GR-regulated gene network in ASM and establish a novel role for the GR target, Klf15, in modulating airway function.
Collapse
Affiliation(s)
- Kiriko Masuno
- Department of Molecular and Cellular Pharmacology, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
14
|
Sathish V, Thompson MA, Bailey JP, Pabelick CM, Prakash YS, Sieck GC. Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2009; 297:L26-34. [PMID: 19395670 DOI: 10.1152/ajplung.00026.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway inflammation leads to increased intracellular Ca(2+) ([Ca(2+)](i)) levels in airway smooth muscle (ASM) cells. Sarcoplasmic reticulum Ca(2+) release and reuptake are key components of ASM [Ca(2+)](i) regulation. Ca(2+) reuptake occurs via sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA) and is regulated by the inhibitory protein phospholamban (PLB) in many cell types. In human ASM, we tested the hypothesis that inflammation increases PLB, thus inhibiting SERCA function, and leading to maintained [Ca(2+)](i) levels. Surprisingly, we found that human ASM does not express PLB protein (although mRNA is detectable). Overnight exposure to the proinflammatory cytokines TNFalpha and IL-13 did not induce PLB expression, raising the issue of how SERCA is regulated. We then found that direct SERCA phosphorylation (via CaMKII) occurs in human ASM. In fura-2-loaded human ASM cells, we found that the CaMKII antagonist KN-93 significantly slowed the rate of fall of [Ca(2+)](i) transients induced by ACh or bradykinin (in zero extracellular Ca(2+)), suggesting a role for CaMKII-mediated SERCA regulation. SERCA expression was decreased by cytokine exposure, and the rate of fall of [Ca(2+)](i) transients was slowed in cells exposed to TNFalpha and IL-13. Cytokine effects on Ca(2+) reuptake were unaffected by additional exposure to KN-93. These data indicate that in human ASM, SERCA is regulated by mechanisms such as CaMKII and that airway inflammation maintains [Ca(2+)](i) levels by decreasing SERCA expression and slowing Ca(2+) reuptake.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
15
|
Noble K, Matthew A, Burdyga T, Wray S. A review of recent insights into the role of the sarcoplasmic reticulum and Ca entry in uterine smooth muscle. Eur J Obstet Gynecol Reprod Biol 2009; 144 Suppl 1:S11-9. [PMID: 19285773 DOI: 10.1016/j.ejogrb.2009.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The uterine sacroplasmic reticulum (SR) takes up and stores calcium [Ca], using an ATPase (SERCA) and the Ca-buffering proteins, calsequestrin and calreticulin. This stored Ca can be released via IP(3)-gated Ca channels. Decreases in luminal Ca concentration [Ca] have been directly measured following agonist stimulation. During spontaneous contractions however, there appears to be no involvement of the SR, as Ca entry and efflux across the plasma membrane account for these phasic contractions. After over-viewing current knowledge concerning SR structure and function, we highlight three areas of research which suggest new ways of looking at the role of the SR in the uterus, although they may be controversial or speculative at the moment. Firstly, we review the evidence for the function, if any, of Ca-induced SR Ca release channels, the ryanodine receptor (RyR) and the lack of Ca sparks (the elemental release events from RyRs), in the uterus. Secondly, we ask does regulation of SERCA by the accessory protein, phospholamban, occur in the uterus and what is the effect of knocking out phospholamban on uterine activity? Thirdly, we address the question of when and how store-operated Ca entry occurs in the myometrium. By analogy with other, usually less excitable tissues, is there a mechanism that links store Ca depletion to plasma membrane Ca entry in smooth muscle cells within intact uterus and is it physiologically relevant and regulated? Are the recently described proteins ORAI and STIM-1 involved in uterine store-operated Ca entry? We end the review by integrating these new insights with previous data to present a new working model of the SR in the uterus.
Collapse
Affiliation(s)
- Karen Noble
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L693BX, UK
| | | | | | | |
Collapse
|
16
|
Swift SM, Gaume BR, Small KM, Aronow BJ, Liggett SB. Differential coupling of Arg- and Gly389 polymorphic forms of the beta1-adrenergic receptor leads to pathogenic cardiac gene regulatory programs. Physiol Genomics 2008; 35:123-31. [PMID: 18664629 DOI: 10.1152/physiolgenomics.90225.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The beta(1)-adrenergic receptor (beta(1)AR; ADRB1) polymorphism Arg389Gly is located in an intracellular loop and is associated with distinct human and mouse cardiovascular phenotypes. To test the hypothesis that beta(1)-Arg389 and beta(1)-Gly389 alleles could differentially couple to pathways beyond that of classic G(s)-adenylyl cyclase (AC)/cAMP signaling, we performed comparative gene expression profile analyses on hearts from wild-type and transgenic mice that expressed either human beta(1)-Arg389 or beta(1)-Gly389 receptors, or AC5, sampling at an early age prior to the onset of pathological features. All three models upregulated the expression of genes associated with RNA metabolism and translation and downregulated genes associated with mitochondria and energy metabolism, consistent with shared cAMP-driven increase in cardiac contractility, protein synthesis, and compensatory downregulation of mitochondrial energy production. Both beta(1)AR alleles activated additional genes associated with other pathways. Uniquely, beta(1)-Arg389 hearts exhibited upregulated expression of genes associated with inflammation, programmed cell death, and extracellular matrix. These observations expand the scope of 7-transmembrane domain receptor signaling propagation beyond known cognate G protein couplings. Moreover, they implicate alterations of a repertoire of processes evoked by a single amino acid variation in the cardiac beta(1)AR that might be exploited for genotype-specific heart failure diagnostics and therapeutics.
Collapse
Affiliation(s)
- Steven M Swift
- Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
17
|
Oloizia B, Paul RJ. Ca2+ clearance and contractility in vascular smooth muscle: evidence from gene-altered murine models. J Mol Cell Cardiol 2008; 45:347-62. [PMID: 18598701 DOI: 10.1016/j.yjmcc.2008.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/17/2008] [Accepted: 05/29/2008] [Indexed: 01/15/2023]
Abstract
The central importance of calcium clearance proteins, and their regulators, in the modulation of myocardial contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) has long been established. Key players identified include the Na(+)-Ca(2+) exchanger, the Na(+)-K(+) ATPase, the sarco(endo)plasmic reticulum Ca(2+)-ATPase and associated phospholamban. Gene-targeted and transgenic murine models have been critical in the elucidation of their function. The study of these proteins in the regulation of contractile parameters in vascular smooth muscle, on the other hand, is less well studied. More recently, gene-targeted and transgenic models have expanded our knowledge of Ca(2+) clearance proteins and their role in both tonic and phasic smooth muscle contractility. In this review, we will briefly treat the mechanisms which underlie Ca(2+) clearance in smooth muscle. These will be addressed in light of studies using gene-modified mouse models, the results of which will be compared and contrasted with those in the cardiomyocyte. The recently identified human mutations in phospholamban, which lead to dilated cardiomyopathy, are also present in vascular and other smooth muscle. Given the importance of these Ca(2+) clearance systems to modulation of smooth muscle, it is likely that mutations will also lead to smooth muscle pathology.
Collapse
Affiliation(s)
- Brian Oloizia
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| | | |
Collapse
|
18
|
Abstract
Airway smooth muscle abnormalities are central to the pathophysiology of asthma. These airway smooth muscle cell abnormalities may include changes in cell number, size, phenotype, or function. Gene expression studies performed using asthmatic airway smooth muscle cells represent one approach to identifying the abnormalities of airway smooth muscle that occur in asthma in vivo. However, due to the technical challenges involved, only two studies have been performed to date using freshly obtained tissue from subjects with asthma. The first of these studies suggested increased expression of myosin light-chain kinase in airway smooth muscle from patients with asthma, whereas the second study found no difference in myosin light-chain kinase expression, nor any difference in other markers of smooth muscle phenotype in asthma. Studies performed in cell culture through the application of gene expression microarrays to profile airway smooth muscle cells exposed to potential mediators of asthma yield more consistent results, including induction by IL-13 of tenascin, the H1 histamine receptor, and IL-13 receptor subunits. However, the significance of these microarray findings for smooth muscle function is uncertain. Furthermore, gene expression studies have a fundamental limitation in that many functional properties of airway smooth muscle are regulated at other levels (e.g., protein phosphorylation). Thus, gene expression studies ultimately must be integrated with other methodological approaches to adequately study airway smooth muscle in asthma in vivo.
Collapse
|
19
|
Ortega VE, Hawkins GA, Peters SP, Bleecker ER. Pharmacogenetics of the beta 2-adrenergic receptor gene. Immunol Allergy Clin North Am 2008; 27:665-84; vii. [PMID: 17996583 DOI: 10.1016/j.iac.2007.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Asthma is a complex genetic disease with multiple genetic and environmental determinants contributing to the observed variability in response to common antiasthma therapies. One focus of asthma pharmacogenetic research has been the beta2-adrenergic receptor gene (ADR beta 2) and its effect on individual responses to beta agonist therapy. Knowledge about the effects of ADR beta 2 variation on therapeutic responses is evolving and should not alter current Asthma Guideline approaches, which consist of the use of short-acting beta agonists (SABAs) for as-needed symptom-based therapy and the use of a regular long-acting beta agonist (LABA) in combination with inhaled corticosteroid therapy for those asthmatics whose symptoms are not controlled by inhaled corticosteroid alone. These approaches are based upon studies showing a consistent pharmacogenetic response to regular use of SABAs and less consistent findings in studies evaluating LABAs. The emerging pharmacogenetic studies are provocative and should lead to functional studies. Meanwhile, the conflicting data concerning LABAs may be caused by such factors as small sample sizes of study populations and differences in experimental design.
Collapse
Affiliation(s)
- Victor E Ortega
- Center for Human Genomics, Section of Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
20
|
Sathish V, Leblebici F, Kip SN, Thompson MA, Pabelick CM, Prakash YS, Sieck GC. Regulation of sarcoplasmic reticulum Ca2+ reuptake in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2008; 294:L787-96. [PMID: 18245264 DOI: 10.1152/ajplung.00461.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in airway smooth muscle (ASM) during agonist stimulation involves sarcoplasmic reticulum (SR) Ca(2+) release and reuptake. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is key to replenishment of SR Ca(2+) stores. We examined regulation of SERCA in porcine ASM: our hypothesis was that the regulatory protein phospholamban (PLN) and the calmodulin (CaM)-CaM kinase (CaMKII) pathway (both of which are known to regulate SERCA in cardiac muscle) play a role. In porcine ASM microsomes, we examined the expression and extent of PLN phosphorylation after pharmacological inhibition of CaM (with W-7) vs. CaMKII (with KN-62/KN-93) and found that PLN is phosphorylated by CaMKII. In parallel experiments using enzymatically dissociated single ASM cells loaded with the Ca(2+) indicator fluo 3 and imaged using fluorescence microscopy, we measured the effects of PLN small interfering RNA, W-7, and KN-62 on [Ca(2+)](i) responses to ACh and direct SR stimulation. PLN small interfering RNA slowed the rate of fall of [Ca(2+)](i) transients to 1 microM ACh, as did W-7 and KN-62. The two inhibitors additionally slowed reuptake in the absence of PLN. In other cells, preexposure to W-7 or KN-62 did not prevent initiation of ACh-induced [Ca(2+)](i) oscillations (which were previously shown to result from repetitive SR Ca(2+) release/reuptake). However, when ACh-induced [Ca(2+)](i) oscillations reached steady state, subsequent exposure to W7 or KN-62 decreased oscillation frequency and amplitude and slowed the fall time of [Ca(2+)](i) transients, suggesting SERCA inhibition. Exposure to W-7 completely abolished ongoing ACh-induced [Ca(2+)](i) oscillations in some cells. Preexposure to W-7 or KN-62 did not affect caffeine-induced SR Ca(2+) release, indicating that ryanodine receptor channels were not directly inhibited. These data indicate that, in porcine ASM, the CaM-CaMKII pathway regulates SR Ca(2+) reuptake, potentially through altered PLN phosphorylation.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
McGraw DW, Elwing JM, Fogel KM, Wang WC, Glinka CB, Mihlbachler KA, Rothenberg ME, Liggett SB. Crosstalk between Gi and Gq/Gs pathways in airway smooth muscle regulates bronchial contractility and relaxation. J Clin Invest 2007; 117:1391-8. [PMID: 17415415 PMCID: PMC1838924 DOI: 10.1172/jci30489] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 02/06/2007] [Indexed: 11/17/2022] Open
Abstract
Receptor-mediated airway smooth muscle (ASM) contraction via G(alphaq), and relaxation via G(alphas), underlie the bronchospastic features of asthma and its treatment. Asthma models show increased ASM G(alphai) expression, considered the basis for the proasthmatic phenotypes of enhanced bronchial hyperreactivity to contraction mediated by M(3)-muscarinic receptors and diminished relaxation mediated by beta(2)-adrenergic receptors (beta(2)ARs). A causal effect between G(i) expression and phenotype has not been established, nor have mechanisms whereby G(i) modulates G(q)/G(s) signaling. To delineate isolated effects of altered G(i), transgenic mice were generated overexpressing G(alphai2) or a G(alphai2) peptide inhibitor in ASM. Unexpectedly, G(alphai2) overexpression decreased contractility to methacholine, while G(alphai2) inhibition enhanced contraction. These opposite phenotypes resulted from different crosstalk loci within the G(q) signaling network: decreased phospholipase C and increased PKCalpha, respectively. G(alphai2) overexpression decreased beta(2)AR-mediated airway relaxation, while G(alphai2) inhibition increased this response, consistent with physiologically relevant coupling of this receptor to both G(s) and G(i). IL-13 transgenic mice (a model of asthma), which developed increased ASM G(alphai), displayed marked increases in airway hyperresponsiveness when G(alphai) function was inhibited. Increased G(alphai) in asthma is therefore a double-edged sword: a compensatory event mitigating against bronchial hyperreactivity, but a mechanism that evokes beta-agonist resistance. By selective intervention within these multipronged signaling modules, advantageous G(s)/G(q) activities could provide new asthma therapies.
Collapse
Affiliation(s)
- Dennis W. McGraw
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jean M. Elwing
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kevin M. Fogel
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wayne C.H. Wang
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Clare B. Glinka
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kathryn A. Mihlbachler
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Marc E. Rothenberg
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stephen B. Liggett
- Pulmonary Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Cardiopulmonary Genomics Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|